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Abstract
In this paper we report and characterize a semi-automatic prostate segmentation method for
prostate brachytherapy. Based on anatomical evidence and requirements of the treatment
procedure, a warped and tapered ellipsoid was found suitable as the a priori 3D shape of the
prostate. By transforming the acquired endorectal transverse images of the prostate into ellipses,
the shape fitting problem was cast into a convex problem which can be solved efficiently.

The average whole gland error between volumes created from manual and semi-automatic
contours from 21 patients was 6.63±0.9%. For use in brachytherapy treatment planning, the
resulting contours were modified, if deemed necessary, by radiation oncologists prior to treatment.
The average whole gland volume error between the volumes computed from semi-automatic
contours and those computed from modified contours, from 40 patients, was 5.82±4.15%. The
amount of bias in the physicians’ delineations when given an initial semi-automatic contour was
measured by comparing the volume error between 10 prostate volumes computed from manual
contours with those of modified contours. This error was found to be 7.25±0.39% for the whole
gland. Automatic contouring reduced subjectivity, as evidenced by a decrease in segmentation
inter- and intra-observer variability from 4.65% and 5.95% for manual segmentation to 3.04% and
3.48% for semi-automatic segmentation, respectively. We characterized the performance of the
method relative to the reference obtained from manual segmentation by using a novel approach
that divides the prostate region into nine sectors. We analyzed each sector independently as the
requirements for segmentation accuracy depend on which region of the prostate is considered.

The measured segmentation time is 14±1 seconds with an additional 32±14 seconds for
initialization. By assuming 1–3 minutes for modification of the contours, if necessary, a total
segmentation time of less than 4 minutes is required, with no additional time required prior to
treatment planning. This compares favorably to the 5–15 minute manual segmentation time
required for experienced individuals. The method is currently used at the British Columbia Cancer
Agency (BCCA) Vancouver Cancer Centre as part of the standard treatment routine in low dose
rate prostate brachytherapy and is found to be a fast, consistent and accurate tool for the
delineation of the prostate gland in ultrasound images.
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1. Introduction
The young adult prostate has the approximate shape and size of a walnut (Halpern et al.,
2002). The superior region of the prostate, or base, encircles the bladder neck, while the
inferior region, or apex, of the gland is bounded by the muscles of the pelvic floor. The
rectum runs parallel to the posterior aspect of the gland. The prostate is transversally at its
largest in the superior mid-gland region and tapers down toward the apex. The normal
prostate has average dimensions of 33mm in length (superior-inferior), 24mm in thickness
(anterior-posterior) and 41mm in width (left-right). This may vary in different geographical
location or due to malignancies such as tumors, benign prostatic hyperplasia, etc.

Low dose rate (LDR) prostate brachytherapy is a common radiation treatment, generally
indicated for early stage (intracapsular) prostate cancer with low to intermediate risk
features. In this treatment method, 40–150 small radioactive seeds (iodine-125 or
palladium-103) are injected through the perineum and permanently implanted into the
prostate and periprostatic tissue. The goal is to deliver a tumoricidal dose to the prostate plus
the planning margin (comprising the planning target volume, or PTV) while maintaining a
low and tolerable dose to radiosensitive regions such as the urethra and rectum.

Prior to treatment planning, a pre-operative trans-rectal volume study is carried out in which
a series of 9–14 parallel trans-rectal ultrasound (TRUS) images of the prostate are taken
with a spacing of 5mm. These images are manually segmented by a radiation oncologist,
who also adds the planning margins from which a 3D PTV is created. A medical physicist
subsequently generates a treatment plan that attempts to conform the prescription dose to the
volume. Implementation of the treatment plan is carried out 3–5 weeks later.

Manual segmentation of the TRUS images is tedious and demonstrably subjective,
depending on the experience, skill, and technique of the contourer. This is particularly
evident in the base and apical regions of the gland, where the prostate boundary blends into
the surrounding anatomy on TRUS images, becoming more ambiguous and difficult to
delineate. Consequently, there is substantial inter-observer variation in the contours for a
given patient in these regions.

For an algorithm to improve the efficiency and consistency of the brachytherapy treatment,
it needs to satisfy the following important requirements. First, it should be able to produce
contours that are not distinguishable from those generated by medical practitioners. Second,
it should produce contours that are amenable to the design of uncomplicated treatment plans.
Third, it should not require considerable changes to the conventional clinical procedure.
Moreover, a fast and automatic solution to manual contouring would greatly facilitate intra-
operative planning, where additional and significant gains in treatment quality are likely to
be realized (Nag et al., 2001).

In the proposed method, the boundary of the prostate in TRUS images is delineated based on
prior knowledge of the shape of the gland resulting in smooth, symmetric and less user
dependent contours. The 3D geometric model of the prostate is created based on the
assumption that the prostate has a tapered ellipsoidal shape and is slightly warped
posteriorly due to the presence of the TRUS probe. Using an a-priori shape - in this case, a
tapered, warped ellipsoid- aids segmentation in the less visible base and apex of the gland.
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Manual initialization of the algorithm makes use of the physician’s experience. The
simplicity of the algorithm and the formulation of the most intensive part of the computation
as a convex problem results in a fast, close to real-time, repeatable, segmentation method.

Symmetry and smoothness are two other desired features which greatly aid treatment
planning. The use of symmetric contours with respect to the sagittal plane for treatment
planning is an accepted practice. Symmetric contours lead to simple treatment plans that are
also simple to change to insure adequate dose coverage, should the shape, size and position
of the prostate change significantly with respect to the volume study. A population study of
biochemical and survival outcomes on a total of 1006 consecutive prostate brachytherapy
interventions (July 1998 – October 2003) performed at the BC Cancer Agency, the
institution where we collected the patient data, shows excellent oncologic outcomes for men
with favorable-risk disease, with very low rates of biochemical or metastatic recurrence
(Morris et al., 2009).

The paper is arranged as follows: Section 2 is a brief review of recent work on medical
image segmentation, mainly focusing on prostate segmentation. Section 3 defines the
problem to be solved and assumptions used. In Section 4 the algorithm is introduced along
with the measures and methods used for evaluating this algorithm. Evaluation results can be
seen in Section 5 and finally the conclusion is presented in Section 6.

2. A review of previous work
Various prostate segmentation methods have been proposed in recent years (Noble and
Boukerroui, 2006). These can be classified into those which solely rely on image data, and
those which incorporate prior information about the expected shape of the prostate. The
advantage of not constraining the solution to certain geometrical classes may result in more
robust segmentation of irregular prostate shapes and some prostate surface abnormal
deformations that may be caused by cancer. Examples of image-based segmentation
methods used in the literature are contrast enhancement, image smoothing and Canny’s edge
detector (Pathak et al., 2000), multi-resolution discrete wavelet pyramids for coarse-to-fine
segmentation (Boukerroui et al., 2003) and the use of phase symmetry for outlining
dominant edges and linking edge segments to create a final contour (Zaim, 2008).

However, the disadvantage of methods that rely solely on image information is that they are
more sensitive to factors such as image quality and noise, and generally require more effort
to achieve reasonable results. Because they do not use prior shape data, the majority of the
proposed general segmentation methods do not work for ultrasound images of the prostate.
Deformable models such as active contour models (ACM) and snake models have been
widely used for medical image segmentation. They are curves or surfaces in which the
deformation (e.g. with the means of Gabor filters) is guided by internal forces (e.g. the
constraint of the curve being smooth) and external forces (e.g. edges in the image). Because
they can not tolerate the large amount of noise in ultrasound images very well, for such
methods to work, additional constraints must be imposted, e.g., the deformation must be
limited by an a-priori shape, or alternatively, significant user interaction must be used
(Noble and Boukerroui, 2006). Active shape models (ASM) (Cootes et al., 1995) use shape
models that deform within some constraints. These constraints and the initial shape model
are derived, statistically, from a training set. (Ecabert et al., 2008; Hodge et al., 2006; Huang
and Metaxas, 2008; Jendoubi et al., 2004; Ladak et al., 2000; Nanayakkara et al., 2006;
Nascimento and Marques, 2008; Pluempitiwiriyawej et al., 2005; Shen et al., 2003;
Thevenaz and Unser, 2008; Yezzi et al., 1997; Zhan and Shen, 2006; Zhan et al., 2007).

The use of ellipses, ellipsoids, superellipses and other similar shapes has been a relatively
attractive approach for prostate segmentation as most prostates conform well to these
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representations, and the reduced parameter space results in fast segmentation algorithms. In
Kachouie et al. (2006) the velocity of an evolving ellipse initially placed on the center of the
prostate is guided by the first and second moments of the Gaussian probability density
function fitted to the image histogram. However, further work is said to be needed for
robustness to poorer images. Gong et al. (2004) have used deformable superellipses; ellipses
that can be deformed by adjusting their aspect ratio, squareness, tapering and bending. Their
extensive comparison of manual and computer-generated contours on 125 prostate
ultrasound images resulted in a mean error of less than 2 mm between computer generated
and manual contours. The segmentation duration was reported to be less than 5 seconds for
each 256 × 256 image on a Pentium 4 PC running at 2 GHz. However, this method only
generates 2D contours. Penna et al. (2007) create a 3D model of the prostate using a new
class of surfaces: Fourier Ellipsoids. This method has the advantage of being able to handle
more complex shapes. However, in vivo quantitative validation has not yet been carried out.

In Badiei et al. (2006) an ellipsoidal volume is generated. The method is based on fitting
ellipses and ellipsoids with the aid of initial points defined by the user and the Interacting
Multiple Model Probabilistic Data Association (IMMPDA) (Abolmaesumi and Sirouspour,
2004) edge detection technique. It has the benefit of being fast, owing to solving a convex
problem, but often results in relatively large false positive regions mainly in the anterolateral
and inferior regions of the gland. This is due to the tapering of most prostates both in the 2D
transverse plane and in the 3D volume along the main axis from the base to the apex. In
Mahdavi and Salcudean (2008) we introduce 2D tapering which is later extended to 3D in
Mahdavi et al. (2009). The complete approach, together with a more extensive evaluation,
are provided in this paper.

Amongst the many proposed methods for segmentation of the prostate in ultrasound images,
only a small number offer 3D segmentation of the gland (Hodge et al., 2006; Hu et al., 2003;
Penna et al., 2007; Tutar et al., 2006; Zhan and Shen, 2006). The need for using 3D models
as opposed to 2D is specifically seen when the quality drops in some image slices, specially
the base and apex. With the use of a 3D model and the higher quality mid-region images,
contours can be generated for the lower quality base and apical images based on the shape of
the mid-gland. Additionally, surface smoothness from one image to the other is more easily
maintained. The method proposed in Penna et al. (2007) requires 90 seconds to create the
prostate surface model and generate the solid models necessary for HIFU therapy planning.
Of this duration, only 10 seconds are required to model the surface. However, manual
tracing of approximately 5 transverse and 3 sagittal images of the prostate is needed to
initialize this algorithm, which, as reported, requires another 1.5 minutes and introduces
operator variability that has not been quantified. In Tutar et al. (2006), 3D semi-automatic
segmentation is based on fitting the best surface to a set of images under shape constraints.
These constraints are derived by modeling the shape of the prostate using spherical
harmonics. A measure of percent volume overlap (the intersection divided by the union of
two volumes) between automatic and manual (average of three observers’ manual contours)
of 83.5 % is reported on a data set of 30 patients, while the inter-observer variability is 82.8
%. However, this method also requires the user to manually segment the mid-gland axial
and sagittal contours for initialization. After initialization, the 3D prostate shape is identified
in 1–4 minutes, of which the authors report initialization times of approximately one minute.
In Zhan and Shen (2006) the use of a deformable model based on statistical matching of
both texture and shape on 3D TRUS images (256 × 256 × 176 volume size, 0.312 mm/
voxel) is used. They report a mean overlap volume error of 4.16 % compared to manual
segmentation on six patients and a segmentation time of 3 minutes. Since their method is
applied to 3D TRUS images, how it will fare relative to a conventional prostate volume
acquired with a brachytherapy stepper, where the slices are at 5mm intervals (resulting in 8–
12 images per case), is not discussed in the paper. A 2D segmentation method based on
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active shape models is described in Hodge et al. (2006). This method was extended to 3D by
using a rotational-based slicing method which results in an average mean absolute distance
and maximum distance of 1.09±0.49 mm and 7.27±2.32 mm between manual and automatic
contours (on 36 patient data sets). The gold standard was created by averaging three
repeated manual delineations of three trained graduate students. The average run time is
reported 6.9±2.1 minutes. This includes the average time needed for manual editing of the
2D images. Manual editing is allowed after each 2D image is segmented (reported to be
needed in 26.3 % of the 2D images in each case), after which the modified points are then
clamped and the model is re-deformed. The performance of the method without manual
editing, and the inter and intra-observer variability of the algorithm have not been reported.

Relative to the above mentioned 3D prostate segmentation methods, our method requires
less extensive user interaction, has a smaller total segmentation time, including initialization,
and has a substantially faster user-independent segmentation time, making it a suitable
candidate for later extensions to real-time dosimetry. Furthermore, we provide a complete
method characterization, including segmentation error volumes and intra and inter-observer
variability, as provided in Penna et al. (2007).

3. Problem Statement and Assumptions
Given a series of 2D trans-rectal transverse B-mode ultrasound images of the prostate (B&K
Pro-Focus System B-Series machine with the MFI Biplane Transducer, image size 640 ×
480 pixel, 0.155mm 2D image resolution, 5mm image spacing), from the base to the apex,
the goal is to generate a 3D volume of the gland in a real (or close to real) time, preferably
using the least user interaction. For ease of treatment planning and execution, the prostate
brachytherapy procedure in the BCCA Vancouver Cancer Centre, prefers symmetric and
smooth 3D prostate volumes. Also, speed is important for the future use of this algorithm
intra-operatively. It is assumed that the prostate is positioned in the TRUS images such that
symmetry is maintained with respect to the mid-sagittal plane. This is usually met since the
current treatment planning procedure requires such a condition. If such a condition is not
met, an initial rotation and translation can be easily applied to the images.

4. Methodology
TRUS images of the prostate show posterior warping of the gland due to the presence of the
TRUS probe. Additionally, tapering is often seen both transversally, toward the anterior
aspect of the gland (creating a pointed appearance), and axially, with the gland narrowing
toward the apex. Our method is based on the assumption of separability between the probe-
induced warping, the tapering, and ellipsoidal fit, so that each can be handled independently.
In doing so, the fitting and hence, the segmentation problem, is simplified into the convex
problem of fitting an ellipsoid to the preprocessed data. Fig. 1 illustrates the main steps of
the segmentation algorithm. Details of each step are presented below.

4.1. Algorithm
4.1.1. Initialization—A prostate volume study used for brachytherapy treatment planning
consists of a set of transversal prostate images. Selection of the mid-gland, apex, and base
images is the first step in the semi-automatic segmentation algorithm. The mid-gland image
is where the initial 2D segmentation will be carried out. It contains the largest and most
visible section of the gland. The base and apex are the extreme superior and inferior images
of the prostate, respectively. They are not always visible in TRUS images, and will not be
used in the algorithm. Their contours will be defined by projection of the final 3D shape on
the respective planes. However, the depth of the base and apex images is important in order
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to extend the segmentation from 2D, on the mid-gland, to 3D. The term ‘slices’, hereafter,
will refer to the images starting from image base + 1 to image apex − 1.

On the mid-gland image, the user selects six boundary points which, in addition to p1 - the
TRUS probe center, initiate the algorithm. These boundary points are: p2-lowest posterior
lateral, p3-extreme right, p4-mid-posterior, p5-mid-anterior, p6- intersection of the mid-
perpendicular line between p2 and p3 with the boundary, and p7- intersection of the mid-
perpendicular line between p3 and p5 with the boundary (Fig. 2a). Points p3, p4, and p5 are
primarily determined by the size of the prostate. Points p1, p2, p4 are used to calculate the
amount of warping. Points p6 and p7 have the main contribution in determining the amount
of tapering. The aim is to extract the most information from the image while keeping the
variability of the point selection low by directing the user to specific regions; either to
extremes (e.g. points p3, p4, and p5) or by guiding lines (points p6 and p7). These points
along with their symmetric reflections across the medial line will be referred to as the ‘initial
points’.

4.1.2. Image un-warping—Based on the initial points, the posterior region of the mid-
gland image is un-warped to reduce the deformation caused by the TRUS probe using Eq.1
below. In this equation r is the current distance of an image pixel on a radial line starting
from the probe center with angle φ (φ = 90° being the medial line) and rnew is the distance of
the re-located pixel. In this sinusoidal Gaussian function, the maximum deformation is
achieved when φ = 90° and reduces as r increases.

(1)

σ is a variable which represents the amount of radial stretch and is calculated by solving Eq.
1 for φ = 90° to obtain:

(2)

In this angle, r is set as the distance between p1 and p4 and rnew as the distance between p1
and the reflection of p4 about a horizontal line passing through p2. If rnew > r no un-warping
is required.

Eq.1 is also used to un-warp the initial points. Assuming that the presence of the TRUS
probe causes uniform deformation along the prostate, all the other TRUS images are also un-
warped. Therefore, the effect of the TRUS probe on the gland is largely removed.

4.1.3. Image un-tapering and mid-gland ellipse fitting—The un-warped initial
points are used to fit an initial tapered ellipse on the now un-warped mid-gland slice (Fig.
2b). The tapered ellipse parameters P = (x0, y0, ax, ay, t1) are found by solving the following
problem using the recursive Levenberg-Marquardt algorithm (Bazaraa et al., 2006):

(3)
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with ax and ay being the radii along the axes, −1 ≤ t1 ≤ 1 the tapering parameter and [x0, y0]
the center of the shape. [xi, yi], i = 1 … N, are the coordinates of the boundary points with N
being the number of initial points as previously defined. Fig. 3 shows the effect of changing
the tapering value, t, in a tapered ellipse from −1 (thick dashed line) to +1 (thick line).

Throughout this algorithm, 2D segmentation is carried out with the aid of the IMMPDA
edge detector (Abolmaesumi and Sirouspour, 2004). In this edge detector, the evolution of
the radius from an arbitrary seed point inside the contour to the contour edge is modeled as a
dynamic system in the radius angle. Multiple models can be incorporated in the dynamic
system to accommodate abrupt changes in the edge. Two constant velocity models (Eq. 4)
have been used in our approach.

(4)

where j = 1, 2 is the number of trajectory models used to describe the boundary,

 are the system states at the kth radius in which dj(k) is the distance
of the prostate boundary from the arbitrary seed point inside the prostate and dθj (k) is its
derivative with respect to angle θ. Vj(k) is the process noise vector with covariance Qj(k).
Zj(k) is the process output (measured boundary location) and ωj(k) is the measurement noise
with covariance Rj(k). The two models used in our implementation have the following
process noise vector and measurement noise covariances:

where the numerical values have been obtained by trial and error in prior work (Badiei et al.,
2006) and have not been adjusted for any of the patient data they were used in. Each
trajectory model is associated with a Kalman filter. The output of these filters is combined
with a probabilistic data association filter for more accurate contour extraction. Since no
numerical optimization technique is used in the IMMPDA method, it is fast enough to be
used repetitively within a segmentation algorithm. Meanwhile, the interacting multiple
model (IMM) estimator increases its accuracy and robustness when noise is present in the
images. For further details please refer to (Abolmaesumi and Sirouspour, 2004)

The initial tapered ellipse fitted to the initial points is used to guide the IMMPDA edge
detector by setting limits on how far from this contour the edge detector can search. These
limits prevent the edge detection from drifting away from the prostate boundary in regions
with low image contrast. The resulting edge points are once again fed to the Levenberg-
Marquardt algorithm to obtain an improved fit of the tapered ellipse. The tapering value of
this contour, t1, is used to un-taper the ultrasound images. We assume that the prostate is
most tapered at the mid-gland and the tapering linearly reduces to zero superiorly and
inferiorly. Using the negative of the tapering value for each slice, all images along with the
initial points on the mid-gland slice are un-tapered. The result of this step are transverse
images in which the prostate has an elliptical shape.
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An ellipse is fitted to the un-warped and un-tapered initial points. This can be done in many
ways; we use the simple and fast generalized eigenvector solution of Varah (1996). The
ellipse guides the IMMPDA edge detector and to the extracted edges, a second ellipse is
fitted on the mid-gland slice (Fig. 2c).

4.1.4. Semi-ellipsoid fitting for slice contour propagation—An IMMPDA edge
detection and second ellipse fitting similar to that applied to the mid-gland slice is carried
out on the rest of the slices. However, since there are no user defined points on these images,
the initial ellipses are created by fitting two semi-ellipsoids; one that extends superiorly
toward the base, and another inferiorly toward the apex (see Fig. 1). Each is fitted to the
union of the data points on the mid-gland contour and the point on the intersection of the
axial line passing through the center of the mid-gland contour with the respective base − 1,
or apex + 1 slice. This is again solved as a generalized eigenvector problem. Two semi-
ellipsoids were found to give a better initial approximation than a single ellipsoid because
the prostate tapers more rapidly toward the apex.

The intersections of these two semi-ellipsoids with each of the slices are used to guide the
subsequent IMMPDA edge detection on each slice. A line is fitted to the centers of the
resulting 2D contours. This line represents the main axis of the prostate and will be later
used for re-aligning the final 2D contours.

4.1.5. Tapered ellipsoid fitting—At this stage, 2D contours have been generated from
all un-warped and un-tapered images. Yet there is no guarantee that smoothness and
continuity is maintained from one contour to the next, in the direction of the TRUS probe.
Hence, a tapered ellipsoid with an elliptical cross-section and tapering along its main axis is
fitted to these contours. Similarly to the 2D tapered ellipse fitting, P = (x0, y0, z0, ax, ay, az,
t2, t3) is obtained by solving the following problem using the Levenberg-Marquardt
algorithm:

(5)

where ax, ay, az are the radii along the axes, [x0, y0, z0] is the position of the center of the
volume and t2 and t3 are the respective x and y tapering values in the direction of the TRUS
probe. [xi, yi, zi], i = 1 … M are the coordinates of the M boundary points generated by
segmenting all image slices.

The fitting of this 3D shape to the boundary points is no longer a convex problem and is the
most time consuming part of the algorithm. Suitable selection of the initial parameters, can
greatly reduce the search period and prevent the optimization algorithm from converging to
local minima. To aid the optimization algorithm, the center of the 3D shape, [x0, y0, z0], and
the axes, ax, ay, az, are determined by first fitting an ellipsoid to the data cloud consisting of
the ellipse contours of all slices. Since this is a generalized eigenvalue problem, the one and
only minimum is found almost instantly. The six derived parameters are used along with two
tapering parameters, t2 and t3 initially set to zero to define an ellipsoid, as starting values for
the optimization algorithm (Eq.5).

4.1.6. Contour tapering and warping—We have assumed that the prostate is parallel to
the TRUS probe and not rotated about its main axis. This reasonable assumption simplifies
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the fitting problem since introducing three additional rotation parameters into the
optimization algorithm will increase both the running time and the possibility of the
algorithm converging to local minima. To take account of the possibility that the prostate
may be slightly pitched or yawed, the best line fitted to the centers of the extracted 2D
contours of all images before 3D shape fitting, is used as the actual axis of the final 3D
shape. After slicing the 3D tapered ellipsoid at the corresponding image depths, the centers
of the final 2D contours are repositioned to align with this axis.

Finally, the repositioned contours are tapered and warped to match the original images (Fig.
4a, 4b). The negative of the same tapering values initially used to un-taper the images is
used to taper the contours. However, to ensure that the posterior aspect of the contours do
not overlap with the rectum, the warping parameter may need to be modified. When the
mid-posterior point on the final contour is lower than the initial posterior point selected by
the user, the σ is re-calculated using (2) but with r and rnew respectively set to the distance
between p1 and p4 and the distance between p1 and the mid-posterior point on the final mid-
gland contour. This change in s is only made if r > rnew, otherwise, the previous value of σ is
used.

4.2. Evaluation
The presented semi-automatic prostate segmentation algorithm is currently being used by all
the radiation oncologists who practice prostate brachytherapy at the Vancouver Cancer
Centre, BCCA. Prior to treatment planning, initial delineations of the prostate, hereinafter
called ‘pre-modified semi-automatic’ contours, are approved and modified, if deemed
necessary, by the radiation oncologist in charge of the patient treatment. We will call these
approved contours, whether modified or not, ‘post-modified semi-automatic’ contours. The
post-modified semi-automatic contours are used by medical physicists to generate a
treatment plan, which in turn is again checked by the radiation oncologist before the actual
implant takes place. Thus, while our semi-automated prostate segmentation is used to
provide initial contours, these are not used for treatment without the treating radiation
oncologists having the final say.

Modifications applied to the contours are not always due to segmentation errors, but are
mainly required for brachytherapy treatment planning purposes, to ensure that the treatment
plans created on these contours are robust and implantable. This is also observed in manual
segmentation where the physician may not necessarily follow the prostate boundary e.g. to
avoid needle interference with the pelvic bone or manage dose distribution in a certain
region.

To evaluate this algorithm we have carried out two sets of studies: evaluation of the
accuracy of the algorithm, and evaluation of the repeatability of the algorithm. We start by
comparing the semi-automatic contours before and after modification to indicate to what
extent and in which regions the performance of the algorithm was not satisfying for
brachytherapy treatment planning. In order to understand how biased the physicians’
modifications are by the initial semi-automatic contours, we compare the post-modified
semi-automatic results with that of manual. In order to evaluate our method based on a
commonly used approach in the literature, we compare the pre-modified semi-automatic
results with that of manual, generally used as the reference in the literature. In the next step
we measure inter- and intra-observer variability of both manual and semi-automatic
segmentation. A comparison of these two provides a judgment on the repeatability of the
algorithm. The acceptable range for the segmentation error is provided by the intra- and
inter-observer variability of manual contouring.
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The term ‘reference’, used throughout this work refers to the prostate geometric shape
relative to which the comparison is carried out. Depending on the study, this can be manual
segmentation results, post-modified segmentation results, etc. The term ‘case’ refers to a set
of patient images. An ‘observer’ is an individual carrying out segmentation. All observers
who perform contouring in this paper have adequate knowledge in manual and/or semi-
automatic segmentation and include an expert radiation oncologist, a radiation therapist and
a graduate student with significant training in ultrasound prostate segmentation.

The comparison measures used are:

• Mean Absolute Distance, MAD: the average absolute radial distance between
contours CA and CB, in a slice.

• Maximum Distance, MAXD: the maximum absolute radial distance between
contours CA and CB in a slice.

Since the boundary of the prostate in the mid-gland slice is visible enough for manual
segmentation, these two measures are calculated for this slice only.

• Percent volume difference (%), V diff: the difference between the volumes of two
delineated prostates defined as:

(6)

• in which ref in this equation is the reference and V denotes the volume.

• Percent volume error (%), V err: the absolute volume of the non over-lapping
region between two delineated prostates defined as:

(7)

V diff and V err provide measures of size similarity and shape similarity, respectively. They
are either calculated for the entire prostate, or for each of the nine sectors of the gland (Fig.
5). The nine sectors are created by first subdividing the prostate into posterior, anterior, and
two lateral sectors, the latter of which are considered as a single region. The axis of division
is the axis of the reference shape. These regions are then partitioned according to whether
they are in the base, mid-gland or apex (respectively 0.3, 0.4, 0.3 of the length of the base-
apex axis), forming a total of nine sectors for the purposes of analysis.

This subdivision scheme is clinically motivated by the different consequences of
segmentation errors with respect to treatment planning in these regions. For example,
because the posterior aspect of the prostate is adjacent to the rectum, overestimating the
boundary there can result in high doses to the radiosensitive rectal wall and subsequently
higher rates of rectal morbidity. This analysis therefore aims to consider contouring
performance in the context of treatment.

4.2.1. Accuracy—This consists of a comparison between 3D shapes generated from: (i)
pre-modified semi-automatic contours and post-modified semi-automatic contours (the
reference), (ii) manually segmented contours (the reference) and post-modified semi-
automatic contours, (iii) manually segmented contours (the reference) and pre-modified
semi-automatic contours.

Comparison between pre- and post-modified contours can give a measure of how satisfied
the physicians are with the results of the algorithm and which regions of the prostate need
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the most modifications. It can indicate the degree of which semi-automatic contouring alone
is successful in providing reasonable prostate contours for treatment planning. In this
analysis, a total of 40 cases were semi-automatically segmented by various radiation
therapists and then modified by radiation oncologists.

Modifications of the physicians to the semi-automatic contours may be biased by the
initially given contours. To measure this bias, we compare manually created contours for 10
prostate image sets with post-modified semi-automatic contours, generated by three
observers (one expert and two trained by experts) for the same image sets.

Finally, to include a commonly used method of evaluation reported in the literature, a
comparison between prostate shapes generated by the semi-automatic algorithm and by
manual segmentation, is also carried out. For this purpose, 21 cases were manually
segmented by an expert and two individuals trained by an expert and the average of their
contours were compared to semi-automatic segmentations of an observer experienced with
the algorithm and blind to the manual contours.

4.2.2. Repeatability—This analysis is performed to evaluate the consistency of the
contours across different observers and at different times. It consists of comparison between
(i) manual contours generated by different observers vs. the ‘average’ manual contour (the
reference) and semi-automatic contours generated by different observers vs. the ‘average’
semi-automatic contour (the reference) and (ii) initial semi-automatic (the reference) vs.
repeated semi-automatic and initial manual (the reference) vs. repeated manual contours. For
this aim, 10 cases were segmented by different observers once manually and once using the
algorithm. Five of these cases were repeatedly segmented both manually and using the
algorithm after approximately two weeks. All observers were blind to each others contours,
their previous segmentations and patient data. (i) gives a measure of inter-observer
variability and in (ii) intra-observer variability is quantified. Manual intra-observer and
inter-observer variability also provide means of evaluating the accuracy obtained in the
previous analysis.

The ‘average’ manual/semi-automatic contours are the average of the manually/semi-
automatically delineated gland, by each observer, on each slice.

5. Results
The results of each evaluation study are as follows:

5.1. Accuracy
The mean and standard deviation of the absolute percent volume error and volume
difference between pre-modified (segmentation algorithm’s results) and post-modified
contours (expert approved contours used for treatment planning) are calculated for the nine
sectors and the total gland and presented in Fig. 6a and 6b. Whether these errors are
clinically considered large or not will be determined in the following section. Based on these
two tables, a schematic of the modifications made in each sector is drawn in Fig. 6c. From
the sagittal view it appears that on average, the algorithm over-estimates the mid-anterior,
anterior-apex and posterior-base and under-estimates anterior-base, mid-posterior and
posterior-apex. This may be a result of the algorithm not entirely capturing the tilt of the
prostate. The coronal view shows that laterally, the size of the base is increased and the mid
and apex are reduced in size after modifications.
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The average MAD and MAXD between pre- and post-modified semi-automatic contours for
the 40 cases on the mid-gland slice is 0.71±0.75 mm and 2.00±1.87 mm with 11 out of the
40 mid-gland contours requiring absolutely no modifications.

Fig. 7a and 7b show the average and inter-observer standard deviation of the absolute
percent volume error and volume difference between manual and post-modified semi-
automatic contours of 10 cases created by three observers. This comparison measures the
amount of bias in the physicians’ contouring when segmentation is done entirely manually
as opposed to when initial semi-automatic contours are given to be approved. Most of the
difference between manual and post-modified segmentation is seen in the base and apex
where visibility of the gland is low or absent. In these regions, the observer tends to rely
more on the given semi-automatic contours. In the mid-gland region (which consists of over
50% of the prostate volume) the bias is lower and similar to the other computed errors for
this region (pre- vs. post-modified semi-automatic and pre-modified semi-automatic vs.
manual contours). A negative Vdiff in all regions indicates that the prostate volume created
from manual contours tends to be larger than that of post-modified semi-automatic.

Fig. 8a and 8b show the absolute percent volume error and volume difference between
manual and pre-modified semi-automatic contours created on 21 cases. The average MAD
and MAXD between the manual and semi-automatic contours on the mid-gland slice are
respectively 1.38±0.61 mm and 3.49±1.10 mm.

Since the initial boundary points are selected on the mid-gland slice, and the mid-gland
choice is not unique, we measured the sensitivity of the algorithm to the mid-gland slice
selection. For this aim, 11 randomly selected cases were semi-automatically segmented
twice by an experienced individual. In the first round, the mid-gland slice was chosen as the
first candidate, i.e. the largest and most visible image of the gland. In the second round it
was selected as the next best candidate, one slice above or below the selection in the first
round. The whole gland volume error between manually created surfaces and surfaces
created using the best mid-gland candidate was 5.56±1.21% and between manually created
surfaces and surfaces created using the next best mid-gland candidate was 6.96±1.81%.
Finally, the whole gland volume error between the two semi-automatic surfaces with
different mid-gland slices was 6.16± 2.16%.

5.2. Repeatability
The following four figures show the inter- and intra-observer variability for manual and
semi-automatic segmentation. In the presented tables, the mean and standard deviation
(shown by the bars and error bars respectively) of Verr and Vdiff are derived from the average
performance of each observer over all cases (i.e. from the mean value of Verr and Vdiff for
each observer over all cases). It is the standard deviation that determines the observer
variability in segmenting the prostate. Details of Verr and Vdiff for each observer are
displayed in the appendix.

As shown in Fig. 9c and Fig. 10c, the inter-observer variability of semi-automatic
contouring is less than that of manual in most of the sectors. The only sector in which
manual inter-observer variability is less (as seen in both the Verr and the Vdiff bar graphs) is
the posterior-apex sector. Additionally, the relatively small manual Vdiff mean values along
with the large standard deviation values (Fig. 10c) compared to that of semi-automatic,
indicates that most regions of the prostate can be simultaneously over-estimated by some
observers while under-estimated by the others in manual segmentation. Whereas in semi-
automatic segmentation, there is more agreement between observers in under-estimating or
over-estimating different regions of the gland.
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Fig. 11c and Fig. 12c show the intra-observer variability in manual and semi-automatic
contouring. As in inter-observer variability, in most sectors, intra-observer variability is less
in semi-automatic contouring compared to that of manual. The sectors in which manual
intra-observer variability is noticeably better are the anterior-apex and lateral-apex.
However, similar to inter-observer variability, intra-observer variability is less on the entire
gland in semi-automatic segmentation.

A comparison of manual Verr values in Fig. 9c and Fig. 11c with Fig. 6a shows that the error
between the semi-automatic contours and those modified for treatment planning is in the
order of the difference in the segmentations done by different observers or by an individual
at different times. Therefore, based on the above results, it is reasonable to claim that if the
semi-automatic contours were not to be modified by physicians and were to be used directly
for treatment planning, they are just as likely to provide adequate results as manual or
modified contours.

5.3. Performance
The graphical interface used at the Vancouver Cancer Centre for semi-automatic
segmentation gives the opportunity to the user to modify the initial points to best fit a 2D
contour to the mid-gland image. After approval of this contour, the algorithm proceeds to
the 3D shape fitting. This can be repeated until a satisfactory delineation is achieved. The
contours are then exported for further brachytherapy planning to the VariSeed software
(Varian Medical Systems, Palo Alto, CA).

The average duration of the semi-automatic segmentation per case (calculated for the 40
cases used in the accuracy study), from after initialization until the final contours are created
is 14.36 ± 1.39s on a standard PC (Intel Xeon, 2.27 GHz, 3.23 GB RAM). Of this duration,
the most time-consuming sections are the 3D tapered ellipsoid fitting, being an iterative
process (2.72± 0.27s), and the image un-warping of all TRUS images(4.23±0.38s).
However, with further code optimization, these durations can be reduced. The selection of
the initial slices and the 7 initial points requires 32.3 ± 14.0s for one familiar to TRUS
images of the prostate. The physicians using the results of this algorithm have reported an
average modification time of 1–3 minutes. Their modifications are reported to mainly
consist of shifting or changing the overall size of the contour (specially the base and apex)
which is done with ease in the VariSeed software. Based on the above, the total
segmentation duration, including initialization, is less than 1 minute and including contour
modifications for prostate brachytherapy purposes, is expected to fall within the range of 2–
4 minutes.

The time required for manual segmentation varies between users, and depends on their
experience. An experienced radiation oncologist requires approximately 5–10 minutes per
case to perform manual segmentation. Clinical fellows, during training, require up to 30
minutes for manual segmentation, but reach the 5 to 15 minute range after 1–3 months of
brachytherapy training. However, a study to measure manual prostate segmentation time has
not been performed

By visual observation of the pre- and post-modified contours, it was seen that out of the 369
segmented images of the 40 patients, 28% needed absolutely no modification (26%) or very
little modification (2% - contour displacement of 1mm or less).

6. Conclusion
In this paper, we presented a semi-automatic prostate segmentation algorithm on TRUS
images and performed various clinical studies to evaluate the algorithm. Clinical results
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show that the inter-observer and intra-observer variability of the semi-automatic contours
are less than that of manual contours in most sectors. The regions in which the variability is
higher in semi-automatic segmentation is mainly the apical region of the gland. Comparison
of pre- and post-modified contours shows a percent volume error of 5.82±4.15 on the entire
gland which is comparable to both the manual inter-observer (4.65 ± 0.77) and manual intra-
observer (5.95 ± 1.59) variability. Comparison of post-modified semi-automatic and manual
contours, a measure of physician bias when modifying the contours, shows a percent volume
error of 7.25±0.39 for the whole gland. The duration of segmentation after initialization has
been reduced from a few minutes (as seen in the literature) to less than 15 seconds (14.36 ±
1.39s). By including the initialization and possible modification time, the total segmentation
time is less than 4 minutes. With the above results, we conclude that the proposed semi-
automatic prostate segmentation method is accurate and consistent enough to replace manual
segmentation of the gland. By applying slight modifications, such as removing the need for
manual initialization, this method has the potential to be used as a real-time intra-operative
segmentation method in the near future. This will be done in our future work.

The region-based volume measure of physicians’ modifications applied to our semi-
automatic contours (Fig. 6c) suggests that our tapered ellipsoid shape assumption is
reasonable. Other models based on priors, could also be implemented, and may improve
segmentation in terms of accuracy. For example, a statistically obtained prostate model,
which includes possible prostate shape abnormalities (e.g. due to tumors), would be a good
choice. However, in addition to possibly increasing the segmentation time, such a model
will complicate the process of treatment planning and treatment modification, as the plans
may be assumed to change continuously with the parameters describing the prostate shape.
A tapered ellipsoid parameterizes the shape with only a few parameters that are intuitive and
easy to understand.

Since the semi-automatic segmentation algorithm is currently being used in practice (to this
date, more than 150 patients have been treated based on our segmentation method), we will
continue to analyze the growing collection of segmented prostate images. We will specify if
any pattern or bias exists in the modifications and make the appropriate changes to the
algorithm. Finally, we suggest the formation of a complete, randomly selected standard
clinical data set. A comparison of the available segmentation methods on such a data set
may be a suitable topic for further work.
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Appendix
This appendix provides the manual and semi-automatic statistics of Verr and Vdiff for each
observer and each sector calculated over all cases (Tables 1,2,3,4). In all tables, each row of
each sector represents the values obtained from an observer.
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Figure 1.
The main steps of the segmentation algorithm.
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Figure 2.
a) Initialization points, b) Image un-warping, IMMPDA edge detection and tapered ellipse
fitting (dashed), c) Image un-tapering, IMMPDA edge detection and ellipse fitting (dashed).
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Figure 3.
The effect of changing the tapering parameter from −1 (thick dashed line) to 1 (solid line).
A tapering value of zero corresponds to an ellipse (dotted line).
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Figure 4.
a) Final contours on the TRUS B-mode images, b) Final semi-automatic 3D volume (thick
lines) compared to manual segmentation (thin lines).
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Figure 5.
Division of the gland into nine sectors.
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Figure 6.
Comparison of pre- and post-modified semi-automatic prostate sectors.
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Figure 7.
Comparison of post-modified semi-automatic and manual prostate sectors.
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Figure 8.
Comparison of pre-modified semi-automatic and manual prostate sectors.
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Figure 9.
Inter-observer variability in manual and semi-automatic contouring - as characterized by the
volume error Verr.
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Figure 10.
Inter-observer variability in manual and semi-automatic contouring - as characterized by the
volume difference Vdiff.
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Figure 11.
Intra-observer variability in manual and semi-automatic contouring - as characterized by the
volume error Verr.
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Figure 12.
Intra-observer variability in manual and semi-automatic contouring - as characterized by the
volume difference Vdiff.
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Table 1

Verr and Vdiff statistics for each observer over 10 cases in manual contours (inter-observer variability analysis).

(a) Verr

% Base Mid Apex

Ant. 6.35 ± 4.92 3.46 ± 1.91 5.11 ± 2.41

10.35 ± 6.28 4.99 ± 2.83 6.99 ± 5.60

12.17 ± 13.49 4.76 ± 5.86 4.30 ± 1.99

Lat. 5.52 ± 1.97 3.34 ± 1.21 5.06 ± 2.60

6.87 ± 2.48 4.39 ± 1.65 6.44 ± 3.65

4.92 ± 3.18 3.09 ± 0.73 4.58 ± 2.07

Post 7.13 ± 4.11 2.89 ± 0.97 5.44 ± 2.40

7.62 ± 6.03 5.50 ± 2.82 3.91 ± 2.92

5.43 ± 2.93 3.31 ± 1.27 5.44 ± 2.41

Total 4.19 ± 0.72

5.54 ± 0.95

4.23 ± 1.64

(b) Vdiff

% Base Mid Apex

Ant. 7.40 ± 16.18 3.61 ± 6.71 4.09 ± 10.77

13.04 ± 24.50 −0.70 ± 11.60 −8.39 ± 13.19

−18.66 ± 19.49 −4.16 ± 11.66 2.30 ± 8.86

Lat. 6.77 ± 9.09 2.13 ± 5.47 4.83 ± 9.74

−4.74 ± 10.82 −5.40 ± 5.87 −9.28 ± 8.95

−2.05 ± 8.29 2.04 ± 3.46 3.72 ± 8.26

Post 2.40 ± 15.89 4.08 ± 3.28 −5.55 ± 8.42

−7.18 ± 14.80 −9.69 ± 5.22 −3.76 ± 6.60

4.21 ± 11.95 3.55 ± 4.38 8.13 ± 9.15

Total 3.42 ± 4.67

−4.71 ± 6.64

0.35 ± 4.54
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Table 2

Verr and Vdiff statistics for each observer over 5 cases in manual contours (intra-observer variability analysis).

(a) Verr

% Base Mid Apex

Ant. 3.40 ± 0.99 2.86 ± 1.17 6.45 ± 3.99

17.32 ± 14.30 9.23 ± 6.73 9.74 ± 6.50

8.59 ± 5.64 5.94 ± 2.01 7.77 ± 3.31

Lat. 4.20 ± 1.97 2.98 ± 1.00 7.01 ± 3.00

6.66 ± 3.98 5.29 ± 1.93 8.39 ± 5.58

9.10 ± 4.21 5.38 ± 0.89 7.78 ± 0.93

Post 7.94 ± 6.72 3.29 ± 1.05 11.92 ± 8.77

7.47 ± 6.17 5.53 ± 3.25 8.38 ± 5.67

6.18 ± 1.56 2.88 ± 1.05 8.93 ± 4.16

Total 4.24 ± 1.49

7.39 ± 2.98

6.21 ± 0.48

(b) Vdiff

% Base Mid Apex

Ant. 3.12 ± 5.37 2.18 ± 5.00 10.53 ± 11.09

17.47 ± 51.09 11.78 ± 25.01 10.58 ± 25.22

14.18 ± 17.24 10.30 ± 6.20 5.42 ± 17.36

Lat. −2.33 ± 4.88 −0.76 ± 3.57 −5.07 ± 9.98

0.59 ± 11.43 6.42 ± 6.93 10.93 ± 18.29

−10.91 ± 11.03 5.98 ± 9.05 1.91 ± 12.28

Post 1.27 ± 23.31 −2.59 ± 4.07 −10.13 ± 23.58

−6.71 ± 15.43 8.28 ± 10.57 1.92 ± 22.38

−8.35 ± 4.43 2.03 ± 4.54 −7.74 ± 16.14

Total −1.00 ± 2.20

6.35 ± 8.96

1.54 ± 6.65
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Table 3

Verr and Vdiff statistics for each observer over 10 cases in semi-automatic contours (inter-observer variability
analysis).

(a) Verr

% Base Mid Apex

Ant. 3.39 ± 2.28 1.46 ± 0.57 3.58 ± 2.96

2.57 ± 1.48 2.05 ± 0.86 3.11 ± 1.93

4.08 ± 2.45 2.12 ± 1.11 3.16 ± 2.03

3.24 ± 1.77 1.83 ± 1.04 4.49 ± 4.66

Lat. 3.29 ± 1.76 1.73 ± 0.46 4.22 ± 3.30

2.86 ± 1.29 2.61 ± 1.21 4.59 ± 2.50

3.57 ± 1.55 2.72 ± 1.52 4.44 ± 2.66

3.33 ± 0.97 2.72 ± 2.59 5.33 ± 5.93

Post 4.63 ± 2.97 3.31 ± 1.82 5.13 ± 3.75

5.62 ± 4.72 5.46 ± 4.53 8.24 ± 8.84

4.96 ± 3.07 3.76 ± 2.13 5.76 ± 4.29

4.61 ± 3.17 3.33 ± 2.64 5.72 ± 3.60

Total 2.59 ± 0.86

3.22 ± 1.57

3.23 ± 1.22

3.11 ± 1.91

(b) Vdiff

% Base Mid Apex

Ant. 0.59 ± 7.51 −0.14 ± 1.96 0.39 ± 9.40

−0.58 ± 5.18 −2.55 ± 2.88 −1.92 ± 6.35

−6.48 ± 5.60 −2.26 ± 3.22 −0.65 ± 6.06

−1.41 ± 6.51 −2.25 ± 2.75 −6.15 ± 9.11

Lat. 0.37 ± 7.08 −0.81 ± 1.70 −1.32 ± 10.16

−0.86 ± 4.68 −2.65 ± 3.34 −3.52 ± 8.39

−1.44 ± 6.45 1.82 ± 5.36 6.26 ± 7.04

−2.34 ± 5.55 −2.76 ± 5.61 −4.00 ± 12.34

Post −4.16 ± 9.16 −4.26 ± 5.40 −3.53 ± 11.34

−5.97 ± 11.43 −6.22 ± 10.69 −8.86 ± 17.73

3.80 ± 11.26 4.84 ± 7.28 9.74 ± 11.30

1.38 ± 10.82 0.22 ± 8.42 −2.49 ± 12.89

Total −1.10 ± 2.52

−3.02 ± 3.46

1.55 ± 4.12
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(b) Vdiff

% Base Mid Apex

−2.36 ± 4.76
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Table 4

Verr and Vdiff statistics for each observer over 5 cases in semi-automatic contours (intra-observer variability
analysis).

(a) Verr

% Base Mid Apex

Ant. 6.93 ± 5.52 2.14 ± 1.35 6.91 ± 6.35

2.05 ± 0.98 1.63 ± 0.31 2.50 ± 0.98

4.22 ± 3.23 2.29 ± 0.90 3.86 ± 2.03

4.00 ± 1.60 2.60 ± 1.32 7.52 ± 7.47

Lat. 4.55 ± 2.95 2.56 ± 1.60 6.15 ± 5.18

2.73 ± 0.68 2.40 ± 0.46 3.55 ± 1.50

5.20 ± 2.49 3.71 ± 2.41 5.35 ± 2.96

3.81 ± 1.69 4.15 ± 3.51 9.68 ± 11.66

Post 4.26 ± 3.12 1.84 ± 0.79 6.45 ± 4.39

2.76 ± 2.06 1.56 ± 0.77 3.48 ± 0.34

5.18 ± 4.63 2.97 ± 1.61 5.40 ± 2.97

4.72 ± 3.01 3.46 ± 2.15 8.82 ± 4.70

Total 3.39 ± 1.83

2.24 ± 0.42

3.76 ± 1.85

4.52 ± 2.96

(b) Vdiff

% Base Mid Apex

Ant. 14.11 ± 13.81 2.17 ± 3.70 −8.75 ± 13.90

−2.03 ± 3.20 0.97 ± 1.71 1.13 ± 4.62

1.44 ± 10.46 0.36 ± 4.34 0.52 ± 5.71

0.68 ± 6.73 2.87 ± 3.82 10.99 ± 24.11

Lat. 7.65 ± 7.41 3.18 ± 2.80 −2.76 ± 10.20

−0.19 ± 5.16 −0.68 ± 3.38 −3.62 ± 5.29

−5.42 ± 7.72 −2.89 ± 7.99 1.54 ± 9.62

2.74 ± 3.52 6.06 ± 8.65 17.28 ± 38.72

Post 8.49 ± 7.24 0.09 ± 3.95 −7.17 ± 12.41

−0.10 ± 7.04 1.18 ± 3.06 −1.29 ± 7.19

−7.44 ± 9.70 −3.09 ± 5.32 −1.42 ± 9.82

−3.92 ± 8.56 −2.64 ± 6.87 −1.17 ± 21.99

Total 2.58 ± 2.39

−0.53 ± 2.96

−2.31 ± 4.34
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(b) Vdiff

% Base Mid Apex

3.87 ± 7.94
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