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Abstract
Data analysis sometimes requires the relaxation of parametric assumptions in order to gain modeling
flexibility and robustness against mis-specification of the probability model. In the Bayesian context,
this is accomplished by placing a prior distribution on a function space, such as the space of all
probability distributions or the space of all regression functions. Unfortunately, posterior
distributions ranging over function spaces are highly complex and hence sampling methods play a
key role. This paper provides an introduction to a simple, yet comprehensive, set of programs for the
implementation of some Bayesian non- and semi-parametric models in R, DPpackage. Currently
DPpackage includes models for marginal and conditional density estimation, ROC curve analysis,
interval-censored data, binary regression data, item response data, longitudinal and clustered data
using generalized linear mixed models, and regression data using generalized additive models. The
package also contains functions to compute pseudo-Bayes factors for model comparison, and for
eliciting the precision parameter of the Dirichlet process prior. To maximize computational
efficiency, the actual sampling for each model is carried out using compiled FORTRAN.
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1. Introduction
In many practical situations, a parametric model cannot be expected to coherently describe the
chance mechanism generating an observed dataset. Unrealistic features of some common
models (e.g., the thin tails of the normal distribution when compared to the distribution of the
observed data) can lead to unsatisfactory inferences. Constraining the analysis to a specific
parametric form may limit the scope and type of inferences that can be drawn from such models.
In these situations, we would like to relax parametric assumptions in order to gain modeling
flexibility and robustness against mis-specification of a parametric statistical model. In the
Bayesian context such flexible inference is typically achieved by placing a prior distribution
on infinite-dimensional spaces, such as the space of all probability distributions for a random
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variable of interest. These models are usually referred to as Bayesian nonparametric (BNP) or
semiparametric (BSP) models depending on whether all or at least one of the parameters is
infinite dimensional (see, e.g. Dey, Müller, and Sinha, 1998; Walker, Damien, Laud, and Smith,
1999; Ghosh and Ramamoorthi, 2003; Müller and Quintana, 2004; Hanson, Branscum, and
Johnson, 2005).

BNP is a relatively young research area in statistics. First advances were made in the sixties
and seventies, and were primarily mathematical formulations. It was only in the early nineties
with the advent of sampling based methods, in particular Markov Chain Monte Carlo (MCMC)
methods, that substantial progress has been made. Posterior distributions ranging over function
spaces are highly complex and hence sampling methods play a key role. The introduction of
MCMC methods in the area began with the work of Escobar (1994) for Dirichlet process
mixtures. A number of themes are still undergoing development, including issues in theory,
methodology and applications. We refer to Walker et al. (1999), Müller and Quintana
(2004) and Hanson et al. (2005) for recent overviews.

While BNP and BSP are extremely powerful and have a wide range of applicability, they are
not as widely used as one might expect. One reason for this has been the gap between the type
of software that many applied users would like to have for fitting models and the software that
is currently available. The most general programs currently available for Bayesian inference
are BUGS (see, e.g. Gilks, Thomas, and Spiegelhalter, 1994) and OpenBugs (Thomas, O'Hara,
Ligges, and Sibylle, 2006). BUGS can be accessed from the publicly available R program (R
Development Core Team, 2009), using the R2WinBUGS package (Strurtz, Ligges, and
Gelman, 2005). OpenBugs can run on Windows and Linux, as well as from inside R. In addition,
various R packages exist that directly fit particular Bayesian models. We refer to Appendix C
in Carlin and Louis (2008), for an extensive list of software for Bayesian modeling. Although
the number of fully Bayesian programs continues to burgeon, with many available at little or
no cost, they generally do not include semiparametric models. An exception to this rule is the
R package bayesm (Rossi, Allenby, and McCulloch, 2005; Rossi and McCulloch, 2008),
including functions for some models based on Dirichlet process priors (Ferguson, 1973). The
range of different Bayesian semiparametric models is huge. It is practically impossible to build
flexible and efficient software for the generality of such models.

In this paper we present an up to date introduction to a publicly available R (R Development
Core Team, 2009) package designed to help bridging the previously mentioned gap, the
DPpackage, originally presented in Jara (2007). Although the name of the package is due to
the most widely used prior on the space of the probability distributions, the Dirichlet Process
(DP) (Ferguson, 1973), the package includes many other priors on function spaces. Currently,
DPpackage includes models considering DP (Ferguson, 1973), mixtures of DP (MDP)
(Antoniak, 1974), DP mixtures (DPM) (Lo, 1984; Escobar and West, 1995), linear dependent
DP (LDDP) (De Iorio, Müller, Rosner, and MacEachern, 2004; De Iorio, Johnson, Müller, and
Rosner, 2009), weight dependent DP (WDDP) (Müller, Erkanli, and West, 1996), hierarchical
mixture of DPM of normals (HDPM) (Müller, Quintana, and Rosner, 2004), centrally
standardized DP (CSDP) (Newton, Czado, and Chapell, 1996), Polya Trees (PT) (Ferguson,
1974; Mauldin, Sudderth, and Williams, 1992; Lavine, 1992, 1994), mixtures of Polya trees
(MPT) (Lavine, 1992, 1994; Hanson and Johnson, 2002; Hanson, 2006; Christensen, Hanson,
and Jara, 2008), mixtures of triangular distributions (Perron and Mengersen, 2001), and random
Bernstein polynomials (Petrone, 1999a,b; Petrone and Wasserman, 2002). The package also
includes models considering Penalized B-Splines (Lang and Brezger, 2004).

The article is organized as follows. Section 2 reviews the general syntax and design philosophy.
Although the material in this section was presented in Jara (2007), its inclusion here is necessary
in order to make the paper self-contained. In Section 3 the available functions are described in
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detail. In Section 4 the main features and usages of DPpackage are illustrated by means of
simulated and real life data analyses. We conclude with additional comments and discussion
in Section 5.

2. Design philosophy and general syntax
The design philosophy behind DPpackage is quite different from the one of a general purpose
language. The most important design goal has been the implementation of model-specific
MCMC algorithms. A direct benefit of this approach is that the sampling algorithms can be
made dramatically more efficient than in a generic environment.

Fitting a model in DPpackage begins with a call to an R function, for instance, DPmodel, or
PTmodel. Here “model” denotes a descriptive name for the model being fitted. Typically, the
model function will take a number of arguments that control the specific MCMC sampling
strategy adopted. In addition, the model(s) formula(s), data, and prior parameters are passed
to the model function as arguments. The common elements in any model function are:

i. prior: an object list which includes the values of the prior hyper-parameters.

ii. mcmc: an object list which must include the integers nburn giving the number of burn-
in scans, nskip giving the thinning interval, nsave giving the total number of scans
to be saved, and ndisplay giving the number of saved scans to be displayed on
screen: the function reports on the screen when every ndisplay iterations have been
carried out and returns the process's runtime in seconds. For some specific models,
one or more tuning parameters for Metropolis steps may be needed and must be
included in this list. The names of these tuning parameters are explained in each
specific model description in the associated help files.

iii. state: an object list giving the current value of the parameters, when the analysis is
the continuation of a previous analysis, or giving the starting values for a new Markov
chain, which is useful to run multiple chains starting from different points.

iv. status: a logical variable indicating whether it is a new run (TRUE) or the
continuation of a previous analysis (FALSE). In the latter case the current value of
the parameters must be specified in the object state.

Inside the R model function the inputs are organized in a more useable form, the MCMC
sampling is performed by calling a shared library written in a compiled language, and the
posterior sample is summarized, labeled, assigned into an output list, and returned. The output
list includes:

i. state: a list of objects containing the current value of the parameters.

ii. save.state: a list of objects containing the MCMC samples for the parameters. This
list contains two matrices randsave and thetasave which contain the MCMC
samples of the variables with random distribution (errors, random effects, etc.) and
the parametric part of the model, respectively.

In order to exemplify the extraction of the output elements, consider the abstract model fit:

fit <– DPmodel (…, prior, mcmc,
state, status, ….)

The lists can be extracted using the following code:
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fit$state
fit$save.state$randsave
fit$save.state$thetasave

Based on these output objects, it is possible to use, for instance, the boa (Smith, 2007) or the
coda (Plummer, Best, Cowles, and Vines, 2006) R packages to perform convergence
diagnostics. For illustration, we consider the coda package here. It requires a matrix of posterior
draws for relevant parameters to be saved as a mcmc object. Assume that we have obtained
fit1, fit2, and fit3, by independently running a model function three times, specifying
different starting values each. To compute the Gelman-Rubin convergence diagnostic statistic
for the first parameter stored in the thetasave object, the following commands may be used:

library(coda)
coda.obj <– mcmc.list(
chain1=mcmc(fit1$save.state$thetasave[,1]),
chain2=mcmc(fit2$save.state$thetasave[,1]),
chain3=mcmc(fit3$save.state$thetasave[,1]))
gelman.diag(coda.obj, transform = TRUE)

Note that the second command line saves the results as a mcmc.list object of class and the
third command line computes the Gelman-Rubin statistic from these three chains.

Generic R functions such as print, plot, summary, and anova have methods to display
the results of the DPpackage model fit. The function print displays the posterior means of
the parameters in the model, and summary displays posterior summary statistics (mean,
median, standard deviation, naive standard errors, and credibility intervals). By default, the
function summary computes the 95% HPD intervals using the Monte Carlo method proposed
by Chen and Shao (1999). The user can display the order statistic estimator of the 95% credible
interval by using the following code,

summary(fit, hpd=FALSE)

The plot function displays the trace plots and a kernel-based estimate of the posterior
distribution for the parameters of the model. Similarly to summary, the plot function displays
the 95% HPD regions in the density plot and the posterior mean. The same plot but considering
the the 95% credible region can be obtained by using,

plot(fit, hpd=FALSE)

The anova function computes simultaneous credible regions for a vector of parameters from
the MCMC sample using the method described by Besag, Green, Higdon, and Mengersen
(1995). The output of the anova function is an anova-like table containing the pseudo-contour
probabilities for each of the factors included in the linear part of the model.

3. Implemented Models
In this section we describe in detail the functions available in version 1.0-8 of DPpackage.
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3.1. Marginal density estimation
DPdensity, PTdensity, TDPdensity, and BDPdensity functions implement models
for marginal density estimation using DPM of normals, MPT, triangular-Dirichlet, and a
Bernstein-Dirichlet prior, respectively. The first two functions allow the user to fit uni- and
multi-variate models. We next introduce the notation used for each model along with the
associated computational approaches used to fit the models.

Dirichlet Process Mixtures of Normals—The DPdensity function considers the
multivariate extension of the univariate DPM of normals model presented in Escobar and West
(1995). Let yi be a k-dimensional vector of measurements for the ith subject, i = 1,…, n. The
model assumes

and

where, the baseline distribution, Go, corresponds to the conjugate normal-inverted-Wishart
distribution

To complete the model specification, the following independent hyper-priors are assumed,

and

Note that the inverted-Wishart prior, W | ν, Ψ ~ IWk (ν, Ψ), is parameterized such that

.

The computation implementation is based on the marginalized version of the model where the
random probability measure G is integrated out. Although the baseline distribution, G0, is a
conjugate prior in this model specification, the algorithms with auxiliary parameters described
in MacEachern and Müller (1998) and Neal (2000) are adopted. Specifically, the no-gaps
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algorithm of MacEachern and Müller (1998) and algorithm 8 of Neal (2000), with m = 1, are
considered. The default method is algorithm 8 of Neal (2000).

Mixtures of Polya trees—The current implementation of the PTdensity function
considers a MPT model as in Hanson (2006). As in the previous section, let yi be a k-
dimensional vector of measurements for the ith subject, i = 1,…, n. The model assumes

and

where M is the maximum level of the partition to be updated (the default value is M = ∞),
Πμ,Σ = {πj}j≥0 is a set of partitions of ℝk, indexed by μ and Σ, and Aα is a family of non-
negative vectors controlling the variability of the process indexed by α. Following Hanson
(2006), the PT is centered around the Nk (μ, Σ) distribution by taking

with γα(j, r) = αj21k, and further taking each level j of the sequence of partitions in Πμ,Σ, as
the sets arising from a location-scale transformation μ + Σ1/2z of the Cartesian products of
intervals obtained as quantiles from the standard univariate normal distribution, where Σ1/2 is
the Cholesky decomposition of Σ. Notice that we consider a different parameterization than
the one considered by Hanson (2006), were Σ1/2 is taken to be the unique symmetric square
root of Σ. The base sets for level j are given by

for vectors p = (p1,…,pk) with pi ∈ {1,…, 2j}, i = 1,…, k. The location-scale transformation
applied to each base set yields the final sets B(j, p) = {μ + Σ1/2z : z ∈ B0(j, p}, such that πj =
{B(j,p) : p ∈ {1,…, 2j}k}.

The model specification is completed by assuming the following hyper-priors

and

As noticed by Jara, Hanson, and Lesaffre (2009), the PT prior specification is dependent on
the square root of the centering covariance matrix considered to define the partitions sets.
Indeed, in the Nk (μ, Σ)-centered multivariate extension considered by Hanson (2006), the
direction of the sets are completely defined through the decomposition of the covariance matrix
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by the unique symmetric square root. In the context of multivariate random effects
distributions, Jara et al. (2009) proposed a novel mixture of PT priors where the effect of the
partitions is smoothed over by mixing over the decomposition of the centering covariance
matrix (see, Section 3.2). This option will be considered in future version of the package.

For univariate analyses using a finite (M < ∞) PT, a full version of the model is considered
where the Dirichlet vectors are updated during the MCMC scheme. For univariate analysis
with a fully specified PT (M = ∞) and for multivariate analyses, a marginalized version of the
model is considered, where the random probability measure G is integrated out. The baseline
parameters μ and Σ, and the precision parameter α are updated using Metropolis-Hastings
(MH) steps (Tierney, 1994).

Bernstein-Dirichlet prior—The function BDPdensity consider density estimation using
a Bernstein-Dirichlet prior (BDP) proposed by Petrone (1999a,b). For a continuous cdf G on
(0,1], the associated Bernstein polynomial (BP) is defined as

which is a mixture of beta distributions. Its density is given by

where β(x | j,k − j +1) stands for a beta density with parameters j and k − j + 1. Petrone
(1999a,b) proposed a hierarchical prior, called the Bernstein polynomial prior (BPP), where
the random density f(·) is given by the following mixture of beta densities,

(1)

where wj,k = G(j/k) − G((j − 1)/k), k as probability mass function ρ(·), and given k, wk =
(w1,k,…,wk,k) has distribution Hk(·) on the k-dimensional simplex

Petrone (1999a,b) called expression (1) the Bernstein polynomial density with parameters k
and wk, and shows that to assume wk = (w1,k, … ,wk,k) ~ Dirichlet(ζ1,k,… ,ζk,k), with ζj,k = α
(G0(j/k) − G0((j − 1)/k)), j = 1,…, k, G0 a probability distribution on (0,1] and α a positive
constant, is equivalent to assume that G | α, G0 ~ DP(αG0). Petrone (1999a,b) refers to this
as the Bernstein-Dirichlet prior (BDP) and discussed MCMC algorithms to scan the posterior
distribution.

Our MCMC implementation is similar to the one described by Petrone (1999a,b) but adds the
resampling step described by Bush and MacEachern (1996) for Dirichlet process mixture
models. The function BDPdensity considers
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and

where yi is the data transformed to lie in (0,1] and G0 = Beta(a0, b0). It is further assumed that

and

where DU(A) refers to the discrete uniform distribution on the set A. Although BDP are
naturally defined as probability models for distributions on the unit interval (0,1], different
measurable mappings could be considered to transform the data when the support is not the
unit interval. With this aim we consider the uniform CDF on the range of the data.

Mixtures of triangular distributions—The TDPdensity function considers a triangular-
Dirichlet prior (TDP) for univariate density estimation. The logic behind the TDP is similar to
the BDP construction but replaces the beta kernels in the mixture model by triangular
distributions as proposed by Perron and Mengersen (2001). The model is given by

and

and

where yi is the data transformed to lie in (0,1], kmax is the upper limit of the discrete uniform
prior or the number of components in the mixture of Triangular distributions, α is the total
mass parameter of the Dirichlet process component, and G0 is the centering distribution of the
DP. The centering distribution corresponds to a G0 = Beta(a0, b0) distribution.

Our representation is equivalent to the mixture of triangular distributions proposed by Perron
and Mengersen (2001), with random weights following a Dirichlet prior. However, in this
function we exploit the underlying DP structure, thus avoiding the use of Reversible-Jump
algorithms (Green, 1995). In fact, the same MCMC algorithm considered for the BDP prior is
implemented in the TDPdensity function.
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3.2. Nonparametric random effects distributions in mixed effects models
Assume that for each of m experimental units the regression data (Yij, xij, zij), 1 ≤ i ≤ m, 1 ≤ j
≤ ni, is recorded, where Yij is a response variable, and xij ∈ ℝp and zij ∈ ℝq are vectors of p
and q explanatory variables, respectively. Let Y i = (Yn1, …, Yini)

T, Xi = (xi1, …, xini)
T, and

Zi = (zi1, …, zini)
T, i = 1, …, m. The observations are assumed to be conditionally independent

with exponential family distribution,

The means μij = E (Yij | ϑij, τ) and variances  are related to the canonical

ϑij and dispersion parameter τ via μij = b′ (ϑij) and , respectively. The means
μij are related to the p-dimensional and q-dimensional “fixed” effects vectors βF and βR,
respectively, and the q-dimensional “random” effects vector bi via the link relation

(2)

where, h(·) is a known monotonic differentiable link function, and ηij is called the linear
predictor. Due to software limitations, the analyses are often restricted to the setting in which

the random effects follow a multivariate normal distribution, . In this
context, Bayesian nonparametric extensions incorporate a probability model for the random
effects distribution in order to better represent the distributional uncertainty and to avoid the
effects of the miss-specification of an arbitrary parametric random effects distribution. Bush
and MacEachern (1996) and Kleinman and Ibrahim (1998b) describe Bayesian semiparametric
versions of the linear mixed model considering DP prior for the random effects distribution.
Under this approach the DP prior is centered at a normal base mesure with zero mean. Similar
approaches were considered by Mukhopadhyay and Gelfand (1997) and Kleinman and Ibrahim
(1998a) in the context of GLMM. In order to avoid the discrete nature of the DP realizations,
Müller and Rosner (1997) consider a DPM of normals model in the context of a normal
nonlinear mixed model. Alternatively, Walker and Mallick (1997) and Hanson (2006) consider
PT and mixtures of PT priors in random intercept models. Jara et al. (2009) propose a novel
mixture of multivariate PT priors to define flexible nonparametric models for multivariate
distributions that reduces the undesirable sensitivity to the choice of the partitions associated
with the PT constructions. Under these approaches, the parametric assumption is relaxed by
considering

and

where H is one of the previously mentioned probability models for probability distributions.
We will specify the nonparametric priors in more detail next, but first it is necessary to discuss
some important issues regarding the specification of the semiparametric model. Specifically,
it is important to stress that under parametrization (2), βR represents the mean of random effects,
and bi represents the subject-specific deviation from the mean. It follows that fixing the mean
of the normal prior distribution for the random effects b at zero in the parametric context
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corresponds to an identification restriction for the model parameters (see e.g., Newton, 1994;
San Martín, Jara, Rolin, and Mouchart, 2007). Equivalently, the random probability measure
must be appropriately restricted in a semiparametric GLMM specification. In our settings, the
location of G is “confounded” with the parameters βR. Although such identification issues
present no difficulties to a Bayesian analysis in the sense that a prior is transformed into a
posterior using the sampling model and the probability calculus, if the interest focuses on a
“confounded” parameter then such formal assurances have little practical value. Furthermore,
as more data become available, the posterior mass will not concentrate on a point in the model,
making asymptotic analysis difficult. As pointed out by Newton (1994), from a computational
point of view, identification problems imply ridges in the posterior distribution and MCMC
methods can be difficult to implement in these situations.

Following Jara et al. (2009), we consider the following re-parameterization of the model

and

where β = βF, and θi = βR + bi, and we center the nonparametric priors for G at a Nq (μ, Σ)
distribution. Notice that samples under the original parameterization can be obtained in a
straightforward manner from MCMC samples as explained in Jara et al. (2009) for PT priors.
For DP or DPM priors the ∊–DP approximation proposed by Muliere and Tardella (1998) is
considered, with ∊ = 0.01. The latter is similar to the approach proposed by Gelfand and Kottas
(2002) who considered a fixed truncation to the DP. When a DP or DPM prior is used to model
the random effects distribution, Dunson, Yang, and Baird (2007a) and Li, Müller, and Lin
(2007) proposed alternative strategies to avoid the identifiability problem described above but
these approaches are not implemented in the current version of DPpackage.

The functions DPlmm, DPglmm, and DPolmm implement mixed effects models using a DP prior
for G such that

The functions DPMlmm, DPMglmm, and DPolmm consider a DPM of normals prior for G such
that

and
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The functions PTlmm, PTglmm, and PTolmm consider a multivariate PT prior for G such that

where O is a q × q orthogonal matrix defining the “direction” of the partition sets. The models
are completed by assuming the following prior distributions:

and

where Γ and IW refers to the Gamma and inverted Wishart distributions, respectively. As
before, the inverted Wishart prior is parameterized such that E(Σ) = T−1/(ν0 − q − 1).

The DPlmm, DPMlmm and PTlmm functions consider the normal sampling distribution with an
identity link. The DPglmm, DPMglmm, and PTglmm functions include the following sampling
distributions (link): binomial (logit and probit), Poisson (log) and gamma (log). The DPolmm,
DPMolmm and PTolmm consider a multinomial sampling distribution and an ordered-probit link
function.

In all functions, a marginalized version of the semiparametric GLMM is considered where the
random probability distribution G is integrated out. For the multinomial and probit-binomial
models, the latent variable approach of Albert and Chib (1993) is considered.

The computational implementation associated to the functions DPMlmm and DPMolmm, and to
the probit-Bernoulli model included in the DPMglmm function, is based on the use of MCMC
methods for conjugate priors for a collapsed state of MacEachern (1998). For the poisson,
Gamma, and logit-binomial models included in the DPglmm and DPMglmm functions, MCMC
methods for non-conjugate priors are used. Specifically, algorithm 8 of Neal (2000), with m =
1, is considered. In this case, a MH step with the iterative weighted least square (IWLS) normal
proposal of Gamerman (1997) is used to update fixed and random effects.
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For the functions DPlmm and DPolmm, and the probit-Bernoulli model included in DPglmm, the
MCMC strategy described by Bush and MacEachern (1996) is employed. Finally, for the
PTlmm, PTgmm and PTomm the modified IWLS proposal normal proposal described by Jara et
al. (2009) is considered for sampling the random effects. In these functions, IWLS normal
proposal of Gamerman (1997) is used to update the fixed effects in the nonconjugate case. The
PT centering and precision parameters are updated using adaptive MCMC algorithms as
described by Jara et al. (2009).

3.3. Semiparametric IRT-type models
Item response theory (IRT) models are widely used in educational measurement (see e.g., De
Boeck and Wilson, 2004). Rasch-type models (Rasch, 1960) are typical examples of this class
and can be viewed as a particular case of GLMM (see e.g., De Boeck and Wilson, 2004). In
Rasch-type models, the linear predictor ηij depends on two parameters in an additive way ηij
= θi − βj, where θi ∈ ℝ corresponds to the ability of subject i, i = 1, …, m, and βj ∈ ℝ corresponds
to the difficulty of probe/item j, j = 1, …, p. The difficulty and ability parameters are interpreted
as “fixed” and “random” effects, respectively. Two versions of the model are considered here:
the Rasch model (RM) and the Rasch Poisson count model (RPCM). In the RM, Yij represents
a binary variable coding the correct answer of individual i to the item j, such that

where Ψ(x) = exp(x)/(1 + exp(x)). In the RPCM the sampling distribution is given by

where Yij is an “unbounded” count variable, typically representing the number of miss-reading /
miss-copying for the subject i in the text j. We consider semiparametric versions of the models
where the abilities distribution G is modeled using DP, PT and DPM priors. To avoid
identification problems in the semiparametric specification of the model (see, San Martín et
al., 2007), we fixed the first difficulty parameter at 0 and consider a normal prior for the
remaining elements in the vector

The functions DPrasch and DPraschpoisson implement semiparametric versions of the RM
and RPCM, respectively, where

and

In a similar way, the functions FPTrasch and FPTraschpoisson implement semiparametric
versions of the RM and RPCM, respectively, using a finite PT prior,
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where, the PT is centered around a N(μ, σ2) distribution, by taking each m level of the partition
Πμ, σ2

 to coincide with the k/2m, k = 0, …, 2m quantiles of the N(μ, σ2) distribution. The

family α = {α∊ : ∊ ∈ E*}, where  and Em is the m-fold product of E = {0,1},
was specified as α∊1 … ∊m = αm2. For the DP and PT priors, the model is completed by assuming

and

The functions DPMrasch and DPMraschpoisson consider DPM of normals priors for the
abilities distribution in a RM and RPCM, respectively, given by

and

where . We further assume that

and

In all functions, the difficulty and ability parameters are updated using a MH step with the
IWLS normal proposal of Gamerman (1997). The computational implementation in the
DPrasch and DPraschpoisson functions is based on the marginalization of the DP and on
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the use of algorithm 8 of Neal (2000), with m = 1. The DPM implementations of functions
DPMrasch and DPMraschpoisson are based on the finite approximation for DP proposed by
Ishwaran and James (2002). Finally, the functions using finite PT priors for the abilities
distribution, FPTrasch and FPTraschpoisson, fit a full version of the models where the PT
conditional probabilities are updated during the MCMC scheme. In this case, the abilities,
centering and precision parameters are updated using slice sampling (Neal, 2003).

3.4. Semiparametric meta-analysis models
The DPmeta, DPMmeta and PTmeta functions implement random (mixed) effects univariate
metaanalysis models using a MDP, DPM of normals, and MPT prior for the random effects,
respectively. In this case, the conditional model is given by

where the variances  are known, Xi is a p-dimensional design vector, excluding an intercept
term, and

The DPmeta function assumes that

and

The PTmeta function, replaces the latter assumption by a PT prior,

where the PT prior is centered around a N(μ, σ2) distribution. The PTmeta function can also
center the PT prior around a N(0, σ2) distribution for the median-0 model described by
Branscum and Hanson (2008). This model is fitted if the option frstlprob is set equal to
TRUE in the model prior object. In this case, the design vector xi includes an intercept term
and the associated regression coefficient represents the median effect. The computational
implementation of the DPmeta and PTmeta functions are based on the marginalization of the
DP and PT, respectively. In both cases, the model specification is completed by assuming
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and

The the average effect in the DPmeta function is sampled using the method of composition
and the ∊–DP approximation proposed by Muliere and Tardella (1998), with ∊ = 0.01. For the
PTmeta function, the mean effect is sampled using the finite PT approximation described by
Jara et al. (2009).

The DPMmeta function considers a location DPM of normals priors for the study effects

and

where . This function further assumes that

and

The computational implementation of the model is based on the marginalization of the DP and
on the use of MCMC methods for conjugate priors for a collapsed state, as presented in
MacEachern (1998). The average effect is also sampled using the method of composition and
the ∊–DP approximation proposed by Muliere and Tardella (1998), with ∊ = 0.01.

The function DPmultmeta implements a multivariate extension of the no-covariate model
considered in the DPmeta function, given by
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and

where the covariance matrices Σi are known. To complete the model specification, independent
hyperpriors are assumed,

and

The computational implementation is similar to the one employed for the DPmeta function.

3.5. Accelerated failure time modeling for interval-censored data
The DPsurvint function implements the algorithm described by Hanson and Johnson
(2004) for semiparametric accelerated failure time (AFT) models. The AFT regression model
is given by

and

where LN (v| μ, σ2) refers to a log-normal distribution with location and scale parameter μ
and σ2, respectively. The model is completed by assuming independent hyperpriors,
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and

The likelihood in the AFT model for interval censored data involves the product of indicator

functions , where Ai is an interval in the sample space. This fact gives rise to
algorithmic possibilities which are unavailable or very difficult to implement under standard
hierarchical models with uncensored data. As described in Hanson and Johnson (2004), the
DPsurvint function partially sample G, in order to sample (V1, …, Vn, Vn+1, β, α) with perfect
accuracy. This can be performed by using the properties of DP. Specifically, the following
representation of the process is considered

where j indexes the intervals that define a finite partition of the sample space {B1, …, Bm},
Gj = G(Bj), and Gj(·) = G(· | Bj), with the Gj's being Dirichlet distributed random variables and
the Gj's being independent Dirichlet processes. Therefore, G can be updated by first updating
{Gj} using Ferguson's definition of DP and then by updating each Gj | {Gj}, … using the
Sethuraman (1994) stick-breaking representation of DP (see, e.g. Doss, 1994; Hanson and
Johnson, 2004). Based on this, a MH step is used to update the regression coefficients, followed
by updates of V1, …, Vn+1.

The function predict.DPsurvint can be used to extract posterior information about the
survival curve based on the MCMC output. Given a sample of the parameters of size J, a sample
of the survival curve for a given x is drawn as follows. For the jth MCMC scan of the posterior
distribution, j = 1, …, J, the survival function evaluated at t is sampled from where

where

and b(j) (t) = α(j) + n − a(j) (t).

3.6. Binary regression with nonparametric link
Consider binary regression data, (Yi, xi), 1 ≤ i ≤ n, where Yi is a binary response variable (Yi
∈ {0,1}) and xi ∈ ℝp is a vector of p explanatory variables. Parametric versions of this model
are characterized by the following assumption
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where Fφ is a distribution function on ℝ, called the inverse link function in the context of
generalized linear models, known up to a Euclidean parameter φ, and m(·) is a known function,
called the index function, parameterized by β. Popular parametric versions include a linear

index function, , and where Fφ is considered to be a known cumulative
distribution function, i.e. with φ = φ0, thus allowing relatively simple treatment of the finite
regression parameters, θ = β. The function Pbinary implements parametric versions of this
model considering the logit, probit, cloglog, and Cauchy link functions.

The DPbinary, FPTbinary, and CSDPbinary functions replace the parametric inverse link
function Fφ by a general distribution G and placing a DP prior,

a finite PT where the first and second quartiles are fixed (Hanson, 2006),

and a CSDP (Newton et al., 1996),

on G, respectively. Newton et al. (1996) described the CSDP as a prior distribution on the
space of the probability distribution with fixed location and scale in order to assure sampling
identification. The reasoning behind their construction is presented here for completeness. The
following definition is a slight modification of the one given by Newton et al. (1996). Let
G0 and H be two probability measures on ℝ and (0, d), respectively, such that for all d > 0,
G0 ((−∞, −d)) > 0 and G0 ((d, ∞)) > 0. Let θ ~ h, where h is the density of H with respect to
Lebesgue measure. Given θ, define the following partition of the real line, A1(θ) = (−∞, θ
− d], A2(θ) = (θ − d, 0], A3(θ) = (0, θ], and A1(θ) = (θ, ∞). Finally, suppose that for each
θ ∈ (0, d), the random probability measures φ1, φ2, φ3, and φ4 follow conditionally

independent DP priors, , i = 1, …, 4. The random probability
measure G on (ℝ, ℬ) is said to follow CSDP prior with parameter (α, G0, p, d, h), written G
~ CSDP(αG0, p, d, h), if,

In all cases, the functions allows for misclassified binary responses with known
misclassification parameters and the model specification is completed by assuming

and
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The DPbinary function allows the user to center the DP around a logistic, normal or Cauchy
distribution. The CSDPbinary function takes H ≡ U(0, d) distribution and G0 as the standard
logistic distribution. In both functions, a latent variable representation

and

is used, along with a MH step to update the regression coefficients. In the computational
implementation of this model, G is considered as latent data and sampled partially with
sufficient accuracy to be able to generate V1, …, Vn+1 such that are exactly iid random variables
from G, as proposed by Doss (1994). Both Ferguson's definition of DP and the Sethuraman
(1994)'s representation of the process are used. As in Bush and MacEachern (1996), an extra
step which moves the clusters in such a way that the posterior distribution is still the stationary
distribution, is performed in order to improve the mixing of the chain.

The FPTbinary function creates the partition sets based on the logistic distribution. In the
computational implementation of the model, MH steps are used to update the regression
coefficients and the precision parameter, as described in Hanson (2006).

3.7. ROC curve estimation
The DProc function performs a ROC curve analysis based on DPM of normals models for
density estimation. Let x1, …, xn and y1, …, ym be the diagnostic marker measurements for the
healthy and diseased subjects, respectively. The model is given by

and

where, the baseline distributions, Gz0, z = {x, y}, correspond to the conjugate normal-inverted-
Wishart distribution
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To complete the model specification, the model is extended by assuming independent hyper-
priors,

The survival and ROC curves are estimated by using a Monte Carlo approximation to the
posterior means E(Gx|x1, …, xn) and E(Gy|y1 …, ym), which is based on MCMC samples from
posterior predictive distribution for a future observation. The optimal cut-off point is based on
the efficiency of the test and is built on Cohen's kappa as defined in Kraemer (1992).

3.8. Median regression modeling
Consider regression data (yi, xi), i = 1, …, n, where yi is the response and xi is a p-dimensional
vector of predictors. By default, the PTlm function fits a median regression model using a scale
MPT prior for the distribution of the errors (Hanson and Johnson, 2002),

and

where, the PT is centered around a N(0, σ2) distribution, by taking each m level of the partition
Πσ2

 to coincide with the k/2m, k = 0, …, 2m quantiles of the N(0, σ2) distribution. The family
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α = {α∊ : ∊ ∈ E*}, where  and Em is the m-fold product of E = {0,1}, was
specified as α∊1 … ∊m = αm2. To complete the model specification, independent hyperpriors
are assumed,

Optionally, if frstlprob=FALSE (the default value is TRUE) is specified, a mean regression
model is considered. In this case, the following PT prior is considered

where, the PT is centered around a N(μ, σ2) distribution. In this case, the intercept term is
automatically excluded from the model and the hyperparameters for the normal prior for μ
must be specified. The normal prior is given by

In the computational implementation of the model, random-walk Metropolis steps are used to
update the regression coefficients and hyperparameters.

3.9. Models for related distributions
The current version of DPpackage considers models for related random probability
distributions based on particular implementations of the dependent DP (DDP) proposed by
MacEachern (1999, 2000), a natural generalization of the approach discussed by Müller et
al. (1996) for nonparametric regression to the context of conditional density estimation, and
the hierarchical mixture of DPM models (HDPM) proposed by Müller et al. (2004). These
approaches and the associated functions are described next.

Linear dependent Dirichlet process—MacEachern (1999, 2000), proposes the DDP as
an approach to define a prior model for an uncountable set of random measures indexed by a
single continuous covariate, say x, {Gx : x ∈ χ ⊂ ℝ}. The key idea behind the DDP is to create
an uncountable set of DPs (Ferguson, 1973) and to introduce dependence by modifying the
Sethuraman (1994)'s stick-breaking representation of each element in the set. If G follows a
DP prior with precision parameter α and base measure G0, denoted by G ~ DP(αG0), then the
stick-breaking representation of G is

(3)

where B is a measurable set, δa(·) is the Dirac measure at  and ωl = Vl Πj<l(1 −

Vj), with . MacEachern (1999, 2000) generalizes (3) by assuming the point
masses θ(x)l, l = 1, …, to be dependent across different levels of x, but independent across l.
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De Iorio et al. (2004) and De Iorio et al. (2009) proposed a particular version of the DDP where
the component of the atoms defining the location in a DDP mixture model follows a linear

regression model , where x is a p-dimensional design vector. An advantage
of this model for related random probability measures, referred to as the Linear DDP (LDDP),
is that it can be represented as DPM of linear (in the coefficients) regression models. This
approach is implemented in the LDDPdensity function, where for the regression data (yi, xi),
i = 1, …, n, the following model is considered

and

where G0 ≡Np(β|μb, Sb) Γ (σ−2|τ1/2, τ2/2). The LDDP model specification is completed
with the following hyper-priors

and

The LDDPsurvival function implements this model in the context of survival data. Now let
yi the time to event for the ith subject. The LDDP mixture of survival models is given by

with the same hierarchical specification given above for the LDDPdensity function. Note that
this function can deal with censored observations by using a data-augmented approach.

Finally, the LDDPrach and LDDPrachpoisson functions consider this modeling strategy in
a Rasch and Rasch Poisson model context, respectively, as in Fariña, Quintana, San Martín,
and Jara (2009). Here the linear predictor is given by ηij = θi − βj, where the abilities follow a
LDDP mixture of normals model based on subject-specific covariates included in xi,
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These functions fit a marginalized version of the models where the random probability measure
G is integrated out. Full inference on the conditional density, and survival and hazard functions
in the case of the LDDPsurvival function, at covariate level are obtained using the ∊–DP
approximation proposed by Muliere and Tardella (1998), with ∊ = 0.01.

Weight dependent Dirichlet process—Let , where zi is a p-dimensional vector
of continuous predictors. The LDDP of the previous section defines a mixture model where
the weights are independent of the predictors z, given by

where the weights ωl follow a stick-breaking construction and . Motivated by
regression problems with continuous predictors different extensions have been proposed by
making the weights dependent on covariates (see, e.g. Griffin and Steel, 2006; Duan, Guindani,
and Gelfand, 2007; Dunson, Pillai, and Park, 2007b; Dunson and Park, 2008), such that

(4)

An earlier approach that is related to the latter references and that also induces a weight-
dependent DP model, as in expression (4), was discussed by Müller et al. (1996). These authors
fitted a “standard” DPM of multivariate Gaussian distributions to the complete data di = (yi,
zi)′, i = 1, …, n, and looked at the induced conditional distributions. Although Müller et al.
(1996) focused on the mean function only, m(z) = E(y|z), their method can be easily extended
to provide inferences for the conditional density at covariate level z, i.e. a “density regression”
model in the spirit of Dunson et al. (2007b). The extension of the approach of Müller et al.
(1996) for related probability measures is implemented in the DPcdensity function, where the
model is given by

and

where k = p + 1 is the dimension of the vector of complete data di, the baseline distribution

G0 is the conjugate normal-inverted-Wishart (IW) distribution . To
complete the model specification, the following hyper-priors are assumed
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and

This model induce a weight dependent mixture models, as in expression (4), where the
components are given by

and

where the weights ωl follow a DP stick-breaking construction and the remaining elements arise
from the standard partition of the vectors of means and (co)variance matrices given by

respectively.

The DPcdensity function fits a marginalized version of the model where the random
probability measure G is integrated out. Full inference on the conditional density at covariate
level z is obtained using the ∊–DP approximation proposed by Muliere and Tardella (1998),
with ∊ = 0.01.

Hierarchical mixture of Dirichlet process mixture of normals—The
HDPMdensity function considers the hierarchical mixture of DPM of normal models for
density estimation presented in Müller et al. (2004). Let yij be the q-dimensional vector of
responses for the jth observation, j = 1, …, ni, for the ith group, i = 1, …, I. The model assumes
that
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where Fi is assumed to arise as a mixture model Fi = ∊H0 + (1 − ∊)Hi of one common distribution
H0 and a distribution Hi that is specific or idiosyncratic to the ith group. The random probability
measures Hi, i = 0,1, …, I in turn are given a DPM of normal prior,

with

The model specification is completed by assuming the following hyper-priors,

and

where δc represents the Dirac measure at c, and β(a, b) represents the beta distribution with
parameters a and b.

The HDPMcdensity function considers the extension of the previously described approach to
the inclusion of continuos predictors z. This functions fits the HDPM model to the complete
data di = (yi, zi)′, i = 1, …, n, and reports the induced conditional distributions.

3.10. Generalized additive models
The PSgam function fits a generalized additive model (see, e.g. Hastie and Tibshirani, 1990)
using Penalized splines (see e.g., Eilers and Marx, 1996; Lang and Brezger, 2004). The linear
predictors ηi, i = 1, …, n, are modeled in an additive way. Let xi be a p-dimensional design
vector and zi be a q-dimensional vector of continuous predictors. Then, the model is given by

where the effect fj of the a covariate zj is approximated by a polynomial spline with equally
spaced knots, written in terms of a linear combination of B-spline basis functions. Specifically,
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the function fj is aproximated by a spline of degree l with r equally spaced knots within the
domain of zj,

where  are B-spline basis function of degree l, and bjm represents the associated B-spline
coefficients. For the parametric component of the model, a normal prior distribution is assumed,

For the vector of basis coefficients bj = (bj1, …, bj(l+r))
T, independent Gaussian smoothness

priors (Lang and Brezger, 2004) are assumed

The precision matrix acts as a penalty matrix to enforce smoothness and is defined through

, where Dj is a first or second order difference matrix for adjacent B-spline

coefficients. The variance (or inverse smoothing) parameter  controls the amount of
smoothness. Note that the log-penalty corresponds exactly to the penalty term introduced by
Eilers and Marx (1996) in a frequentist penalized likelihood setting. For the variance
parameters, we assume independent inverse gamma priors

Finally, for the gamma and Gaussian models, an inverse gamma prior is assumed for the
dispersion parameter σ2,

The computational implementation of the model is model-specific. For the Poisson, gamma,
and binomial (logit) models, fixed and random effects are updated using MH steps with a IWLS
normal proposal (see, West, 1985; Gamerman, 1997). For the probit-Bernoulli model, the latent
variable representation of the binary responses is used, leading to conjugate normal updates.

3.11. Additional tools
Additional functions included in the package are DPelicit and PsBF. The DPelicit function
implements methods for eliciting the DP prior using exact and approximated formulas for the
mean and variance of the number of clusters given the total mass parameter and the number
of subjects (see, e.g. Jara, García-Zattera, and Lesaffre, 2007). The PsBF function computes
pseudo-Bayes factors for model comparison.

The practical implementation of models based on DP priors with a random precision parameter
requires adopting values for the hyperparameters a0 and b0. The discrete nature of the DP
realizations leads to their well-known clustering properties. The choice of a0 and b0 needs some
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careful thoughts, as the parameter α directly controls the number of distinct components.
Kottas, Müller, and Quintana (2005), referred to as the KMQ approach, and Jara et al.
(2007), referred to as the JGL approach, proposed strategies for the specification of these
hyperparameters.

The KMQ approach is based on approximations of the conditional mean and conditional
variance of the number of clusters, given the precision parameter α (see e.g., Liu, 1996).
Specifically, denoting by n the number of elements associated to the DP prior, and n* the
number of resulting clusters, their approach relies on

(5)

(6)

Using the fact that a priori  and , the resulting expressions for
the prior mean and variance of n* are

(7)

and

(8)

On the other hand, the JGL approach is based on the exact value of conditional mean and
conditional variance of the number of clusters given the precision parameter α. They noted
that the approximations given by the expression (5) and expression (6) may be dangerous when

α is considered a function of n. For instance, (5) gives 0 instead of 1 with . Better
approximations may be obtained by noticing that

and

where ψ0(·) and ψi(·) represents the digamma and trigamma function, respectively. Using these
results, an approximation based on a first-order Taylor series expansion, and the fact that a

priori  and  we get
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and

These expressions could be used in order to evaluate the robustness of the model to the
specification of prior distribution for the precision parameter. The function DPelicit
computes either the expected value and the standard deviation of the number of clusters, given
the values of the parameters of the Gamma prior for the precision parameter, a0 and b0, or the
value of the parameters a0 and b0 of the Gamma prior distribution for the precision parameter,
α, given the prior judgement for the expected number and the standard deviation of the number
of clusters. With this objective in mind, the Newton-Raphson algorithm and the forward-
difference approximation to Jacobian are used.

4. Examples
In this section we consider the analyses of simulated and real-life data in order to illustrate the
usage of DPpackage.

4.1. Bayesian density regression
We illustrate the DPcdensity and LDDPdensity functions by means of simulated data. We
replicate the results reported by Dunson et al. (2007b), where a different approach is proposed.
Following Dunson et al. (2007b), we simulate n = 500 observations from from a mixture of
two normal linear regression models, with the mixture weights depending on the predictor,
with different error variances and with a non-linear mean function for the second component,

where the predictor values xi are simulated from a uniform distribution, . The data
was simulated using the following piece of code

################################################
# true conditional densities,
# mean function and
# simulation of the data.
################################################
dtrue <– function(grid,x)
{
exp(−2*x)*dnorm(grid,mean=x,sd=sqrt(0.01))+
(1–exp(−2 *x))*dnorm(grid,mean=x^4,sd=sqrt(0.04))
}
mtrue <– function(x)
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{
exp(−2*x)*x+(1–exp(−2*x))*x^4
}
set.seed(0)
nrec <– 500
x <– runif(nrec)
y1 <– x + rnorm(nrec, 0, sqrt(0.01))
y2 <– x^4 + rnorm(nrec, 0, sqrt(0.04))
u <– runif(nrec)
prob <- exp(−2*x)
y <– ifelse(u<prob,y1,y2)

The extension of the DPM of normals approach of Müller et al. (1996) considered by the
DPcdensity function, was fitted using the following hyper-parameters: a0 = 10, b0 = 1, ν1 =

ν2 = 4, m2 = (ȳ,x̄)′, τ1 = 6.01, τ2 = 3.01, and , where S is the sample covariance
matrix for the response and predictor. A total number of 25,000 scans of the Markov chain
cycle implemented in the DPcdensity function were completed. A burn-in period of 5,000
samples was considered and the chain was subsampled every 4 iterates to get a final sample
size of 5,000. The following commands were used to fit the model, where the conditional
density estimates were evaluated on a grid of 100 points on the range of the response,

################################################
# prior information
################################################
w <– cbind(y,x)
wbar <– apply(w,2,mean)
wcov <– var(w)
prior <– list(a0=10,
b0=1,
nu1=4,
nu2=4,
s2=0.5*wcov,
m2=wbar,
psiinv2=2*solve(wcov),
tau1=6.01,
tau2=3.01)
################################################
# mcmc specification
################################################
mcmc <– list(nburn=5000,
nsave=5000,
nskip=3,
ndisplay=1000)
################################################
# covariate values where the density
# and mean function is evaluated
################################################
xpred <– seq(0,1,0.02)
################################################
# fitting the model
################################################
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fitWDDP <– DPcdensity(y=y,x=x,
xpred=xpred,
ngrid=100,
prior=prior,
mcmc=mcmc,
state=NULL,
status=TRUE)

Using the same MCMC specification, the LDDP model was also fitted to the data. The
LDDPdensity function was used to fit a a mixture of B-splines models with

, where ψk(x) corresponds to the kth B-spline basis function evaluated at
x as implemented in the bs function of the splines R package. The LDDP model was fitted
using Zellner's g-prior (Zellner, 1983), with g = 103. The following values for the hyper-
parameters were considered: a0 = 10, b0 = 1, m0 = (X′X)−1X′y, S0 = g(X′ X)−1, τ1 = 6.01,
τs1 = 6.01, τs2 = 2.01, ν = 9, and Ψ−1 = S0. The following piece of code was used to fit the
model:

################################################
# prior information
################################################
library(splines)
W <– cbind(rep(1,nrec),bs(x,df=6))
S0 <– 1000*solve(t(W)%*%W)
m0 <– solve(t(W)%*%W)%*%t(W)%*%y
prior<–list(a0=10,
b0=1,
m0=m0,
S0=S0,
tau1=6.01,
taus1=6.01,
taus2=2.01,
nu=9,
psiinv=solve(S0))
################################################
# covariate values where the density
# and mean function is evaluated
################################################
xpred <– seq(0,1,0.02)
Wpred <– cbind(rep(1,length(xpred)),bs(xpred,df=6))
################################################
# fitting the model
################################################
fitLDDP <– LDDPdensity(formula=y~W-1,zpred=Wpred,
ngrid=100,
prior=prior,
mcmc=mcmc,
state=NULL,
status=TRUE)

Figures 1 and 2 show the true density, the estimated density and point-wise 95% HPD intervals
for a range of values of the predictor for the WDDP and LDDP model, respectively. The
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estimates correspond approximately to the true densities in each case. The figures also display
the plot of the data along with the estimated mean function, which is very close to the true one
under both models.

In both functions, the posterior mean estimates and the limits of point-wise 95% HPD intervals
for the conditional density for each value of the predictors are stored in the model objects
densp.m, and densp.l and densp.h, respectively. The following piece of code illustrates
how these objects can be used in order to get the posterior estimates for x = 0.1 in the LDDP
model. This code was used to draw the plots displayed in Figures 1 and 2.

par(cex=1.5,mar=c(4.1, 4.1, 1, 1))
plot(fitLDDP$grid,fitLDDP$densp.h[6,],lwd=3,type=“l”,lty=2,
main=“”,xlab=“y”,ylab=“f(y|x)”,ylim=c(0,4))
lines(fitLDDP$grid,fitLDDP$densp.l[6,],lwd=3,type=“l”,lty=2)
lines(fitLDDP$grid,fitLDDP$densp.m[6,],lwd=3,type=“l”,lty=1)
lines(fitLDDP$grid,dtrue(fitLDDP$grid,xpred[6]),lwd=3,
type=“l”,lty=1,col=“red”)

Finally, both functions return the posterior mean estimates and the limits of point-wise 95%
HPD intervals for the mean function in the model objects meanfp.m, and meanfp.l and
meanfp.h, respectively. The following pice of code was used to obtain the estimated mean
function under the LDDP model along with the true function.

par(cex=1.5,mar=c(4.1, 4.1, 1, 1))
plot(x,y,xlab=“x”,ylab=“y”,main=“”)
lines(xpred,fitLDDP$meanfp.m,type=“l”,lwd=3,lty=1)
lines(xpred,fitLDDP$meanfp.l,type=“l”,lwd=3,lty=2)
lines(xpred,fitLDDP$meanfp.h,type=“l”,lwd=3,lty=2)
lines(xpred,mtrue(xpred),col=“red”,lwd=3)

4.2. Dependent random effects distributions
We consider data from the Chilean system for educational quality measurement (Sistema de
Medi-cición de la Calidad de la Educación, SIMCE). The Chilean education system is subject
to several performance evaluations regularly at the school, teacher and student level. In the last
case, SIMCE has developed mandatory census-type tests to regularly assess the educational
progress at three stages: 4th and 8th grades in primary school (9 and 13 years old children,
respectively), and 2nd grade in secondary school (16 years old children). The SIMCE
instruments are designed to assess the achievement of fundamental goals and minimal contents
of the curricular frame in different areas of knowledge, currently Spanish, mathematics and
science. Here we focus on data from the math test applied in 2004 to 8 grader examinees in
primary school. The test consists of 45 multiple choice items questions with 4 alternatives. The
response yij ∈ {0,1} is a binary variable indicating whether the individual i answers item j
correctly.

The main purpose of collecting these data is to monitor standards and progress of educational
systems, focusing on characterizing the population (and its evolution) rather than individual
examinees. It is of particular interest to understand the way in which some factors at individual
and/or school level could explain systematic differences in the performance of students in order
to establish policies to improve the education system. For instance, a significant characteristic
of the Chilean elementary and secondary education system is a variety of different school types.
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These are grouped as Public I, financed by the state and administered by county governments;
Public II, financed by the state and administered by county corporations; Private I, financed
by the state and administered by the private sector; Private II, fee-paying schools that operate
solely on payments from parents and administered by the private sector.

In order to evaluate the effect of the type of school and gender on the student performance we
consider the LDDP mixture of normals prior for the ablities in a Rasch model as in Fariña et
al. (2009). For illustration purposes, we consider a subset of 500 children. We refer to Fariña
et al. (2009) for a full analysis of the complete data. The model is given by

Here, xi includes an intercept term, three dummy variables for the type of school and the gender
indicator. The LDDP Rasch model was fitted using the LDDPrasch function and assuming β
~ N44(0,103 I44), a = 1, μ0 = 05, S0 = 100I5, τ1 = 6.01, τs1 = 6.01, τs2 = 2.01, ν = 8, Ψ
= I5. A single Markov chain cycle of length 25, 000 was completed. The full chain was sub-
sampled every 4 steps after a burn in period of 5,000 samples, to give a reduced chain of length
5,000. For each gender and type of school the density of the abilities distribution was evaluated
on a grid of 100 equally spaced points in the range (−3, 8). The following commands were
used to fit the model,

################################################
# prediction's design matrix.
# columns: – intercept term.
# – 3 dummies for type of school.
# – gender indicator (1 = girl).
################################################
zpred <– matrix(c(1,0,0,0,0,
1,1,0,0,0,
1,0,1,0,0,
1,0,0,1,0,
1,0,0,0,1,
1,1,0,0,1,
1,0,1,0,1,
1,0,0,1,1),
nrow=8,ncol=5,byrow=T)
################################################
# prior information
################################################
prior <– list(alpha=1,
beta0=rep(0,44),
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Sbeta0=diag(1000,44),
mu0=rep(0,5),
S0=diag(100,5),
tau1=6.01,
taus1=6.01,
taus2=2.01,
nu=8,
psiinv=diag(1,5))
################################################
# mcmc
################################################
mcmc <– list(nburn=5000,
nskip=3,
ndisplay=1000,
nsave=5000)
################################################
# fitting the model
################################################
fitLDDP <– LDDPrasch(formula=y ~ types+gender,
prior=prior,
mcmc=mcmc,
state=NULL,
status=TRUE,
zpred=zpred,
grid=seq(-3,8,len=100),
compute.band=TRUE)

Different shapes in the resulting posterior densities were observed. Figure 3 displays the
posterior mean and point wise 95%HPD interval for the random effects distribution for
different combinations of the predictors. The density estimates show a clear departure from
the commonly assumed normality of the random effects distributions. We found no important
differences in the behavior of boys and girls. Children in Public I and II schools showed a
similar skewed to the right random effects distribution. The estimated abilities distributions
for children in private schools were shifted to the right in comparison with the distribution
observed for children from public schools. This shift was more pronounced for children in fee-
paying schools that operate solely on payments from parents and administered by the private
sector (Private II) than those from schools financed by the state and administered by the private
sector (Private I). A bimodal random effects distribution was observed in the abilities
distributions from private schools.

4.3. Proportional hazards regression with nonparametric frailties
Consider right censored survival data where failure times are repeatedly observed within a
group or subject. Let i = 1,…, n denote the strata over which repeated times-to-event are
recorded, and j = 1,…, ni denote the repeated observations within stratum i. The data are denoted
{(wij, tij, δij) : i = 1,…, n; j = 1,…, ni} where tij is the recorded event time, δi = 1 if tij is an
observed failure time and δij = 0 if the failure time is right censored at tij, and wij is a p-
dimensional vector of covariates.

Functions fitting generalized linear mixed models (PTglmm, DPglmm, and DPMglmm) can be
used to fit the Cox proportional hazards model (Cox, 1972) with nonparametric, multivariate
frailties. Briefly, the baseline hazard function λ0 (t) corresponds to an individual with
covariates w = 0 and survival time T0. Given that the baseline individual has made it up to t,
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T0 ≥ t, the baseline hazard is how the probability of expiring in the next instant is changing. In
terms of the baseline survival function S0(t) = P(T0 > t) and density f0(t), this is given by

The conditionally proportional hazards assumption stipulates that

where θ = (θ1,…, θn)′ are random effects, termed frailties in the survival literature. Often the
frailties θi, or exponentiated frailties eθi, are assumed to arise iid from some parametric
distribution such as N(0, σ2), gamma, positive stable, etc. We consider a nonparametric MPT
prior on the frailties below.

The specification is conditional because proportionality only holds for survival times within a
given strata i, not across strata unless the distribution of θi is positive stable (see, e.g. Qiou,
Ravishanker, and Dey, 1999). Precisely, for individuals j1 and j2 within strata i,

Often the baseline hazard is assumed to be piecewise constant on a partition of R+ comprised
of K intervals, yielding the piecewise exponential model. References are too numerous to list;
but see Walker and Mallick (1997), Aslanidou, Dey, and Sinha (1998), and Qiou et al.
(1999). Assume

where a0 = 0 and aK = ∞, although in practice aK = max{tij} is sufficient. The prior hazard is

specified by cutpoints  and hazard values λ = (λ1,…, λK)′. If the prior on λ is taken
to be independent gamma distributions, the model can approximate the gamma process on a
fine mesh (Kalbfleisch, 1978). Regardless, the resulting model implies a Poisson likelihood
for “data” yijk taking values yijk = 0 when tij ∉ (ak−1, ak] or δij = 0, and yijk = 1 when tij ∈
(ak−1, ak] and δij = 1, for k = 1,…, K(tij), where K(t) = max{k : ak ≤ t}. The likelihood for (β,
λ, γ) is

where p(y|μ) is the probability mass function for a Poisson(μ) random variable,

, and Δijk = min{ak,tij} − ak−1. Thus, the Cox model assuming
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a piecewise constant baseline hazard can be fitted in any software allowing for Poisson
regression. Note that if covariates are time dependent as well, and change only at values

included in , the likelihood is trivially extended to include wijk above for k = 1,…, K
(tij) rather than wij.

We consider data on n = 38 kidney patients discussed by McGilchrist and Aisbett (1991). Each
of the patients provides ni = 2 infection times, some of which are right censored. McGilchrist
and Aisbett (1991) found that only gender was significant, and so we follow Aslanidou et al.
(1998), Walker and Mallick (1997), Qiou et al. (1999), and Hemming and Shaw (2005) in
considering only this covariate in what follows. We fitted the semiparametric proportional
hazards regression model using a nonparametric prior for the frailties distribution. The
following commands were used to prepare the data to fit the model. The original dataset, d[i,
j], is a 38 by 6 matrix, which for each row (from left to right) contains the subject indicator,
ti1, δi1, ti2, δi2, and the gender indicator. Ten intervals were considered with cutpoints {a1,…,
a10} taken from the empirical distribution of the data.

################################################
# function to make a row with ‘1’ at ind
################################################
onv <– function(ind,len)
{
onv <– rep(0,len)
onv[ind] <– 1
return(onv)
}
################################################
# Create data to fit Cox model using
# Poisson likelihood for piecewise
# exponential model.
################################################
newdat <– matrix(1:(38*2*2),nrow=38*2,ncol=2)
tt <– rep(0,38*2)
delta <– tt
for(i in 1:38)
{
newdat[i*2-1,1] <– d[i,1]
newdat[i*2-1,2] <– d[i,6]
newdat[i*2 ,1] <– d[i,1]
newdat[i*2 ,2] <– d[i,6]
tt[i*2-1] <– d[i,2]
delta[i*2-1] <– d[i,3]
tt[i*2] <– d[i,4]
delta[i*2] <– d[i,5]
}
y <– NULL
mat <– NULL
tot <– 0
p <– ncol(newdat)
off <– NULL
n <– length(tt)
intervals <– 10
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cutpoint <– quantile(tt,(1:intervals)/intervals,names=FALSE)
for(i in 1:n)
{
tot <– tot+1
mat <– matrix(append(mat,c(newdat[i,1:p],onv(1,intervals))),
c(p+intervals,tot))
off <– append(off,min(cutpoint[1],tt[i]))
if(tt[i]<=cutpoint[1] && delta[i]==1)
{
y <– append(y,1)
}
else
{
y <– append(y,0)
}
for(j in 1:(intervals-1))
{
if(tt[i]>cutpoint[j])
{
off <– append(off,min(cutpoint[j+1],
tt[i])-cutpoint[j])
tot <– tot+1
mat <– matrix(append(mat,c(newdat[i,1:p],
onv(j+1,intervals))),
c(p+intervals,tot))
if(tt[i] <= cutpoint[j+1] && delta[i]==1)
{
y <– append(y,1)
}
else
{
y <– append(y,0)
}
}
}
}
mat <– t(mat)
id <– mat[,1]
gender <– mat[,2]
loghazard <– mat[,3:12]

We performed the analysis using the PTglmm function to the responses

and where xij is a 11-dimensional design vector containing the gender indicator and the
indicator for the interval associated to the corresponding response. Finally, we set β = (γ′, λ
′)′, and assume
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and

We consider a M = 5 finite PT prior which was centered around a N(0, σ2) distribution and
constrained to have median-0 (frstlprob=TRUE in the prior object below). The values for the
hyper-parameters β0 and Sβ0 were obtained from a penalized quasi-likelihood (PQL) fit using
the glmmPQL function available from the MASS pakage (Venables and Ripley, 2002). The
matrix Sβ0 was inflated by a factor of 100. The remaining hyper-parameters were a0 = b0 = 1,
ν0 = 3, and T = I1. Starting values for the model parameters were obtained from the PQL fit.
A single Markov chain cycle of length 25,000 was completed. The full chain was sub-sampled
every 4 steps after a burn in period of 5,000 samples, to give a reduced chain of length 5,000.
The code for fitting the model using PTglmm was

################################################
# PQL estimation
################################################
library(MASS)
fit0 <– glmmPQL(fixed=y~gender+loghazard−1+
offset(log(off)),
random=~1|id,family=poisson(log))
################################################
# prior
################################################
beta0 <– fit0$coefficients$fixed
Sbeta0 <– vcov(fit0)
prior <– list(M=5,
a0=1,
b0=1,
nu0=3,
tinv=diag(1,1),
mu=rep(0,1),
beta0=beta0,
Sbeta0=Sbeta0,
frstlprob=TRUE)
################################################
# starting values from PQL estimation
################################################
beta <– fit0$coefficients$fixed
b <– as.vector(fit0$coefficients$random$id)
mu <– rep(0,1)
sigma <– getVarCov(fit0)[1,1]
state <– list(alpha=1,
beta=beta,
b=b,
mu=mu,
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sigma=sigma)
################################################
# mcmc
################################################
mcmc <– list(nburn=5000,
nsave=5000,
nskip=19,
ndisplay=1000,
tune3=1.5)
################################################
# fitting the model
################################################
fitPT <– PTglmm(fixed=y~gender+loghazard,
offset=log(off),
random=~1|id,
family=poisson(log),
prior=prior,
mcmc=mcmc,
state=state,
status=FALSE)
################################################
# posterior inferences
################################################
summary(fitPT)
################################################
# frailties density estimate
################################################
predPT <– PTrandom(fitPT,predictive=TRUE,
gridl=c(-2.3,2.3))
plot(predPT)

The abridged output is given below. The output lists the estimated effect for gender β̂1 = −1.13
followed by K = 10 estimated log-hazard values. Notice that the intercept term in the posterior
information for the “fixed” effects (regression coefficients in the output), corresponds to the
mean of the frailties distribution G. The posterior median estimate of the centering variance
was σ̂2 = 0.35 and close to the posterior median of the frailties variance (0.33). Further, the
posterior median (95% credible interval) for α was 0.75 (0.04; 3.77). The trace plots of the
parameters (not shown) indicate a good mixing of the chain. The acceptance rates for the MH
steps associated to the regression coefficients, frailties, centering variance and precision
parameter was 36, 61, 43 and 0.46%, respectively. Notice that the 0 values for the acceptance
rates in the output corresponds to the centering mean, which is sampled, and the decomposition
of the centering covariance matrix. The latter is only sampled for dimensions greater than or
equal to 2.

Walker and Mallick (1997) analyzed these data with piecewise exponential model and frailties
following a Polya tree with fixed centering variance, PT8(Π100, A0.1) and find β̂1 = −1.0.
McGilchrist and Aisbett (1991) obtain β̂1 = −1.8, but with other nonsignificant covariates
included. Aslanidou et al. (1998) also reportes β̂ = −1.0. Hemming and Shaw (2005) obtain
β̂ = −1.7 and Qiou et al. (1999) obtain β̂ = −1.1 under the positive stable and β̂ = −1.6 under
gamma frailties, respectively. The the deviance information criterion (DIC), as presented by
Spiegelhalter, Best, Carlin, and Van der Linde (2002), was 398 for either PT or normal model
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(not shown), so the normal model does about the same from a predictive standpoint based on
the DIC.

Bayesian semiparametric generalized linear mixed effect model
Call:
PTglmm.default(fixed = y ~ gender + loghazard, random = ~1 |
id, family = poisson(log), offset = log(off), prior = prior,
mcmc = mcmc, state = state, status = FALSE)
Posterior Predictive Distributions (log):
Min. 1st Qu. Median Mean 3rd Qu. Max.
−5.99200 −0.22250 −0.10970 −0.48500 −0.05714 −0.01381
Model's performance:
Dbar Dhat pD DIC LPML
379.21 360.63 18.58 397.79 −200.29
Regression coefficients:
Mean Median Std. Dev. Naive Std.Error 95%CI-Low 95%CI-Upp
(Intercept) −0.0004443 0.0015210 0.0960076 0.0013578 −0.2066125 0.2021371
gender −1.1321281 −1.1296717 0.3219508 0.0045531 −1.7762785 −0.5117994
loghazard1 −4.2608268 −4.2375512 0.4412274 0.0062399 −5.1598904 −3.4611046
loghazard2 −3.7898628 −3.7638395 0.5018976 0.0070979 −4.8383288 −2.8794989
loghazard3 −3.9792281 −3.9691425 0.4556631 0.0064440 −4.9028932 −3.1213276
loghazard4 −3.0627136 −3.0526713 0.4526581 0.0064016 −4.0124879 −2.2353213
loghazard5 −3.2581084 −3.2477986 0.4219626 0.0059675 −4.1039312 −2.4603991
loghazard6 −3.9951390 −3.9805448 0.4544001 0.0064262 −4.9103962 −3.1403702
loghazard7 −4.9343777 −4.9183270 0.5365962 0.0075886 −6.0496817 −3.9150135
loghazard8 −3.6883152 −3.6845014 0.4479935 0.0063356 −4.5692123 −2.8232222
loghazard9 −3.6723423 −3.6673231 0.4810002 0.0068024 −4.6112294 −2.7315973
loghazard10 −4.1246955 −4.1272752 0.4966618 0.0070239 −5.0749243 −3.1886274
Baseline distribution:
Mean Median Std. Dev. Naive Std.Error 95%CI-Low 95%CI-Upp
mu-(Intercept) 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
sigma-(Intercept) 0.430385 0.354618 0.294752 0.004168 0.119319 1.212674
Precision parameter:
Mean Median Std. Dev. Naive Std.Error 95%CI-Low 95%CI-Upp
alpha 1.05875 0.75117 1.02204 0.01445 0.04448 3.76967
Random effects variance:
Mean Median Std. Dev. Naive Std.Error 95%CI-Low 95%CI-Upp
R.E.Cov-(Intercept) 0.378637 0.331281 0.222121 0.003141 0.096121 0.948495
Acceptance Rate for Metropolis Steps = 0.3570935 0.6072718 0 0.428972 0.463486 
0
Number of Observations: 413
Number of Groups: 38

Figure 4 shows the estimated frailty distribution from these data along with the posterior mean
of the frailty term for each patient. The distribution is remarkably Gaussian-shaped, in contrast
to the analysis presented in Walker and Mallick (1997), which showed two well defined density
modes corresponding to men and women. We were unable to duplicate this result across several
sets of hyper-prior values, including the consideration of PT8 (Π100, A0.1). In retrospect, this
is not surprising. Two well separated modes would typically indicate an omitted covariate, yet
gender was included as a risk factor in the model.
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Finally, Figure 5 show the posterior median and 95% credible interval for survival curves for
males and females, taking the individual-level heterogeneity modeled through the frailty
distribution into account.

5. Concluding remarks
Because the main obstacle for the practical use of BSP and BNP methods has been the lack of
estimation tools, we presented an R package for fitting some frequently used models. Until the
release of DPpackage, the two options for researchers who wished to fit a BSP or BNP model
were to write their own code or to rely heavily on particular parametric approximations to some
specific processes using the BUGS code given in Peter Congdon's books (see e.g., Congdon,
2001). DPpackage is geared primarily towards users who are not willing to bear the costs
associated with both of these options.

Chambers (2000) conceptualized statistical software as a set of tools to organize, analyze and
visualize data. Data organization and visualization of results is based on R capabilities.
Chambers (2000) also proposed requirements and guidelines for developing and assessing
statistical softwares. These requirements may be discussed with respect to DPpackage:

1. Easy specification of simple tasks: The documentation contains
examples, and similar problems can be analyzed by moderate modifications of the
model description files. The examples have been chosen so that they demonstrate the
functionality of DPpackage with well-known data sets.

2. Gradual refinement of the tasks: The user can enhance a nonparametric
model by adding covariates, and by fixing part of the baseline distributions and the
precision parameters.

3. Arbitrarily extensive programming: DPpackage has a programming
environment for implementing sophisticated proposal distributions, if the default
proposals are not sufficient.

4. Implementing high-quality computations: Also, because the source code in
a compiled language is available, new procedures can be added and the old ones
modified to improve performance and flexibility.

5. Embedding the results of items 2–4 as new simple tools:
DPpackage has the capability of continuing a Markov chain from the last value of
the parameters of a previous analysis. As the MCMC samples are saved in matrix
objects, both parts of the Markov chain can be easily merged.

Many improvements to the current status of the package can be made. For example, all
DPpackage modeling functions compute CPOs for model comparison. However, only some
of them compute the effective number of parameters pD and DIC, as presented by Spiegelhalter
et al. (2002). These and other model comparison criterion will be included for all functions in
future versions of DPpackage.

The implementation of more models, the development of general-purpose sampling functions,
realtime visualization of simulation progress, and the ability to handle large dataset problems,
through the use of sparse matrix techniques (George and Liu, 1981), are the topic of further
improvements.
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Figure 1.
Simulated data - WDDP model: True conditional densities of y|x (in red), posterior mean
estimates (black continuos line) and point-wise 95% HPD intervals (black dashed lines) for:
(a) x = 0.1, (b) x = 0.25, (c) x = 0.48, (d) x = 0.76, and (e) x = 0.88. Panel (f) shows the data,
along with the true and estimated mean regression curves.
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Figure 2.
Simulated data - LDDP model: True conditional densities of y|x (in red), posterior mean
estimates (black continuos line) and point-wise 95% HPD intervals (black dashed lines) for:
(a) x = 0.1, (b) x = 0.25, (c) x = 0.48, (d) x = 0.76, and (e) x = 0.88. Panel (f) shows the data,
along with the true and estimated mean regression curves.
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Figure 3.
SIMCE data: Posterior estimates (mean and point-wise 95% HPD intervals) for the ability
distribution for type of school and gender. The results for boys are shown in panels (a), (c), (e)
and (g) for type of school Public I, Public II, Private I, and Private II, respectively. The results
for girls are shown in panels (b), (d), (f) and (h) for type of school Public I, Public II, Private
I, and Private II, respectively.
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Figure 4.
Kidney data: Posterior mean of the frailty distribution. The density is overlaid on a plot of the
posterior mean of the individuals frailty terms.
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Figure 5.
Kidney data: Posterior estimates (median and point-wise 95% credible intervals) for the
survival function for time to infection. The results for males and females are shown in panels
(a) and (b), respectively.
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