
Phase transitions in contagion processes mediated by recurrent 
mobility patterns

Duygu Balcan1,2 and Alessandro Vespignani1,2,3,*

1Center for Complex Networks and Systems Research (CNetS), School of Informatics and 
Computing, Indiana University, Bloomington, IN 47408, USA

2Pervasive Technology Institute, Indiana University, Bloomington, IN 47406, USA

3Institute for Scientific Interchange (ISI), Torino, Italy

Abstract

Human mobility and activity patterns mediate contagion on many levels, including: spatial spread 

of infectious diseases, diffusion of rumors, and emergence of consensus. These patterns however 

are often dominated by specific locations and recurrent flows and poorly modeled by the random 

diffusive dynamics generally used to study them. Here we develop a theoretical framework to 

analyze contagion within a network of locations where individuals recall their geographic origins. 

We find a phase transition between a regime in which the contagion affects a large fraction of the 

system and one in which only a small fraction is affected. This transition cannot be uncovered by 

continuous models due to the stochastic features of the contagion process and defines an invasion 

threshold that depends on mobility parameters, providing guidance for controlling contagion 

spread by constraining mobility processes. We recover the threshold behavior by analyzing 

diffusion processes mediated by real human commuting data.

In recent years, reaction-diffusion processes have been used as a successful modeling 

framework to approach a wide array of systems that along with the usual chemical and 

physical phenomena1,2 includes epidemic spread3–9, human mobility5–8, information, and 

social contagion processes10–15. This has stimulated the broadening of reaction-diffusion 

models in order to deal with complex network substrates and complex mobility 

schemes16–20. This success has allowed for the theoretical characterization of new and 

interesting dynamical behaviors and provide a rationale for the understanding of the 

emerging critical points that underpin some of the most interesting characteristics of techno-

social systems. Those studies however are all focused on mobility processes modeled 

through simple memoryless diffusive processes. The recent accumulation of large amounts 

of data on human mobility21–26 from the scale of single individuals to the scale of entire 

populations presents us with new challenges related to the high level of predictability and 
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recurrence27–29 found in mobility and diffusion patterns from real data. For instance, 

commuting mobility denoted by recurrent bidirectional flows among locations dominates by 

an order of magnitude the human mobility network at the scale of census areas defined by 

major urban areas30. The effect of highly-predictable or recurrent features of particles/agents 

mobility in the large-scale behavior of contagion processes however cannot be studied by a 

simple adaptation of previous theoretical frameworks31–36 and call for specific 

methodologies and approximations capable of coping with non-markovian diffusive 

processes in complex networks.

Modeling commuting networks

In order to start investigating the effect of regular mobility patterns in reaction-diffusion 

systems we have considered the prototypical example of the spread of biological agents and 

information processes in populations characterized by bidirectional commuting patterns. In 

this case we consider a system made of V distinct subpopulations. The V subpopulations 

form a network in which each subpopulation i has a population made of Ni individuals and is 

connected to a set of other subpopulations υ(i). The edge connecting two subpopulations i 

and j indicates the presence of a flux of commuters. We assume that individuals in the 

subpopulation i will visit anyone of the connected subpopulations with a per capita diffusion 

rate σi. As we aim at modeling commuting processes in which individuals have a memory of 

their location of origin, displaced individuals return to their original subpopulation with rate 

τ−1.

Real data from commuting networks add an extra layer of complexity to the problem. In Fig. 

1 we display the cumulative distributions of the number of commuting connections per 

administrative unit and the daily flux of commuters on each connection in the United States 

and France. The networks exhibit important variability in the number of connections per 

geographic area. Analogously, the daily number of commuters on each connection is highly 

heterogeneous, distributed in a wide range of four to six orders of magnitude. These 

properties, often mathematically encoded in a heavy-tailed probability distribution, have 

been shown to have important consequences for dynamical processes, altering the threshold 

behavior and the associated dynamical phase transition31–33,37–40. In order to take into 

account the effect of the network topology we use a particle-network framework in which 

we consider a random subpopulation network with given degree distribution P(k) and denote 

the number of subpopulations with k connections by Vk. Furthermore, we assume statistical 

equivalence for subpopulations of similar degree. This is a mean-field approximation that 

considers all subpopulations with a given degree k as statistically equivalent, thus allowing 

the introduction of degree-block variables that depend only upon the subpopulation 

degree33. While this is an obvious approximation of the system description, it has been 

successfully applied to many dynamical processes on complex networks and it is rooted in 

the empirical evidence gathered in previous works21–23,33. For the sake of analysis we will 

assume that the average population in each node of degree k follows the functional form Nk 

= N̄k/〈k〉 where N̄ = ∑k NkP(k) is the average number of individuals per node in the 

subpopulation network. This expression represents the stationary population distribution in 

the case of a simple random diffusive process in which the diffusion rate of individuals 

along each link leaving a node of degree k has the form 1/k32,33. Moreover, the empirical 
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data from various sources suggest similar population scaling arise as a function of their 

connectivity to other populations19,22,23.

In order to approach the spreading process in the subpopulation network analytically, we 

define mixing subpopulations6,8 that identify the number of individuals Nkk′(t) of the 

subpopulation k present in subpopulation k′ at time t (see Fig. 2). We consider that the 

diffusion rate σkk′ is a function of the degree k and k′ of the origin and destination 

subpopulations, respectively, with σk = ∑k′∈υ(k) σkk′ and τk depending only on the degree of 

the subpopulation. In particular, if  and we study the system on a time scale larger 

than the time scale of the commuting process τk one can consider a quasi-stationary 

approximation in which the mixed subpopulations assume their stationary values:

(1)

(2)

These expressions (see the Methods section) allow us to consider the subpopulation k as if it 

had an effective number of individuals Nkk′ ≪ Nkk in contact with the individuals of the 

neighboring subpopulation k′ in a quasi-stationary state reached whenever the time scale of 

the dynamical process we are studying is larger than τk. For the sake of the analytical 

treatment in the following we will consider in the commuting rates only the dependence on 

the degree classes. More complicated functional forms including explicitly the spatial 

distance may be considered and we will analyze this case by performing data-driven 

simulations.

Contagion processes and the invasion threshold

In analyzing contagion processes in this system we consider the usual susceptible-infected-

recovered (SIR) contagion model41. Within each subpopulation the total number of 

individuals is partitioned into the compartments S(t), I(t) and R(t), denoting the number of 

susceptible, infected, and removed individuals at time t, respectively. The basic SIR rules 

thus define a reaction scheme of the type S + I → 2I with reaction rate β and I → R with 

reaction rate μ, which represent the contagion and recovery processes, respectively. The SIR 

epidemic model conserves the number of individuals and is characterized by the 

reproductive number R0 = β/μ that determines the average number of infectious individuals 

generated by one infected individual in a fully-susceptible population. The epidemic is able 

to generate a number of infected individuals larger than those who recover only if R0 > 1, 

yielding the classic result for the epidemic threshold41; if the spreading rate is not large 

enough to allow a reproductive number larger than one (i.e., β > μ), the epidemic outbreak 

will affect only a negligible portion of the population and will die out in a finite amount of 

time.
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While this result is valid at the level of each subpopulation, each subpopulation may or may 

not transmit the infection or contagion process to another subpopulation it is in contact with, 

depending on the level of mixing among the subpopulations. In other words, the mobility 

parameters σk and τk influence the probability that individuals carrying infection or 

information will export the contagion process to nearby subpopulations. If the diffusion rate 

approaches zero the probability of the contagion entering neighboring subpopulations goes 

to zero as there are no occasions for the carriers of the process to visit them. On the other 

hand if the return rate is very high, then the visiting time of individuals in neighboring 

populations is so short that they do not have time to spread the contagion in the visited 

subpopulations. This implies the presence of a transition32,33,42–44 between a regime in 

which the contagion process may invade a macroscopic fraction of the network and a regime 

in which it is limited to a few subpopulations (see Fig. 2 for a pictorial illustration). In this 

perspective we can consider the subpopulation network in a coarse-grained view and 

provide a characterization of the invasion dynamics at the level of subpopulations, 

translating epidemiological and demographic parameters into Levins-type parameters of 

extinction and invasion rates. Let us define  as the number of subpopulations of degree k 

affected by the contagion at generation 0, i.e., those which are experiencing the outbreak at 

the beginning of the process. Each subpopulation invaded by the contagion process will seed 

– during the course of the outbreak – the contagion process in neighboring subpopulations, 

defining the set  of invaded subpopulations at generation 1, and so on. This corresponds 

to a basic branching process32,33,42,45,46 where the nth generation of infected subpopulations 

of degree k is denoted by . In order to describe the early stage of the subpopulation 

invasion dynamics we assume that the number of subpopulations affected by a contagion 

outbreak (with R0 > 1) is small and we can therefore study the evolution of the number of 

subpopulations affected by the contagion process by using a tree-like approximation relating 

. As it is shown in the Methods section, in the case of R0 ≃ 1, it is possible to 

derive the following recursive equation

(3)

This relation carries explicit dependence on the network topology through the degree 

distribution P(k) and the factor λk′k that is the number of contagious seeds that are 

introduced into a fully-susceptible population of degree k from a neighboring population of 

degree k′. If the time scale of the disease is considerably larger than the commuting time 

scale, that is in our case µ−1 ≫ τ, we can consider the infectious individuals in the mixing 

subpopulation to assume their stationary values according to Eq. (2). The quantity λk′k can 

therefore be expressed as the total number of infected individuals in the mixing 

subpopulation by λk′k = (Nk′k + Nkk′) α, where α is the fraction of individuals that are 

affected by the contagion by the end of the SIR epidemic. The first term in the right-

handside of the above expression accounts for the total visits of infectious people from 

source subpopulation k′ to target subpopulation k. While the second term counts for the 

visits of individuals from the target subpopulation to the source subpopulation, during which 

they acquire infection and carry the contagion back to their origin. If we use the steady state 
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expression in equation (2), and we consider that α for the SIR dynamics can be explicitly 

written for R0 ≃ 1 it is possible to write an explicit form of the iterative equation (3), whose 

dynamical behavior is determined by the branching ratio

(4)

where ρ ≡ στ is the ratio of commuting to return rate and for the sake of simplicity we have 

considered that the per capita commuting rate σ and return rate τ−1 are the same for all 

subpopulations. In the above expression F is a function only of the moments of the degree 

distribution of the subpopulation network. R* is therefore equivalent to a basic reproductive 

number at the subpopulation level, defining the average number of supopulations to which 

each infected subpopulation will spread the contagion process. R* thus defines the invasion 

threshold as any contagion process will spread globally in the network system only if R* > 1. 

The subpopulation branching process is inherently considering the stochastic effects of the 

epidemic dynamics in the probability of contagion from one subpopulation to the other. It is 

interesting to note that the invasion threshold cannot indeed be derived in continuous models 

where stochastic effects are neglected.

Phase diagram and the network structure

For fixed disease and network parameters, the condition R* = 1 of Eq. (4) defines critical 

value for ρ that allows for the spreading of the contagion process. Thus there are two 

parameters underlying the mobility dynamics that we can either hold fixed or let free. In Fig. 

3 we show the phase diagram in the σ-τ space separating the global invasion from the 

extinction regime. The phase diagram tells us that, all parameters being equal, the rate of 

diffusion to nearby subpopulations has to be larger than σc to guarantee the spreading of the 

contagion. Analogously, if we allow τ to vary, we observe that the global spreading of the 

contagion process can be achieved by extending the visit times τ of individuals in nearby 

subpopulations above a definite threshold τc. The explicit expressions of the threshold 

values can be found in the Supplementary Information.

Another very interesting feature of the above threshold condition is the explicit effect of the 

network topology encoded in the moments of the degree distribution. Indeed, the 

heterogeneity of the network favors the global spread of the contagion process by lowering 

the threshold value. In the Supplementary Information we show that in the case of heavy-

tailed degree distribution the threshold virtually reduces to zero for infinitely large system 

sizes. Even at finite size, however, the threshold value is generally smaller for networks with 

greater heterogeneity as is shown in Fig. 3, which compares the phase diagrams of 

heterogeneous and homogeneous networks of same size. In order to test the validity of the 

analytical picture obtained here, we have performed an extensive set of Monte Carlo 

numerical simulations of the contagion process in large subpopulation networks. The 

simulations are individual based and consider the commuting and contagion dynamics 

microscopically with no approximations as detailed in the Supplementary Information. The 

substrate network is given by an uncorrelated random complex network47 generated with the 

uncorrelated configuration model48 to avoid inherent structural correlations. In Fig. 3 we 
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report the results for a network with Poissonian degree distribution and a network with 

power-law degree distribution P(k) ~ k−2.1. Individuals are distributed heterogeneously in 

each subpopulation according to the relation Nk = N̄k/〈k〉, where N̄ = 104. Although the 

analytical phase diagram has been derived by using several approximations, it matches the 

numerical simulations qualitatively and quantitatively, as shown by the good agreement of 

the analytical phase boundary and the numerical simulations in Fig. 3b. We also report in 

Fig. 4a the behavior of the number of invaded populations as a function of commuting rates. 

The phase transition between the invasion and extinction regimes at a specific value of ρ = 

στ is clearly observed in the microscopic simulations.

Data-driven simulations

As a further confirmation of the validity of the theoretical results we have tested our results 

in a real-world setting. We have considered the commuting network of all counties in the 

continental US as obtained by the US Census 2000 data49. In this dataset each subpopulation 

represents a county and a connection the presence of commuting flow between two counties. 

In the simulation each county is associated with its actual population and each link with a 

specific commuting rate from the real data. We have considered only short-range 

commuting flows up to 125 miles. The visit time has been considered to be of the order of a 

working day (8 hours). On this real data layer we have simulated the spreading of an SIR 

contagion process and studied the number of infected counties as a function of the global 

rescaling factor of the commuting rates. It is remarkable to observe that in the case of the 

real data a clear phase transition exists between the two regimes at a critical value of the 

global rescaling factor of the commuting rates. In Fig. 4 we also illustrate the different 

behavior of the contagion process in the two regimes by mapping the number of infected 

counties in the US as a function of time.

Conclusions

While the presented results are anchored upon the example of disease spread, the 

metapopulation approach can be abstracted to the phenomena of knowledge diffusion, 

online community formation, information spread, and technology. In all these examples, we 

have individuals stationed primarily in well-defined subpopulations, with occasional 

interactions with other subpopulations governed by interaction rates similar in scheme to 

those presented here. While most of the studies in defining epidemic threshold have focused 

on single populations, it is clear that more attention must be devoted to the study of the 

spread in structured populations. In this case the understanding of the invasion threshold is 

crucial to the analysis of large-scale spreading across communities and subpopulations. The 

theoretical approach presented in this paper opens the path to the inclusion of more 

complicated mobility or interaction scheme and at the same time provides a general 

framework that may be used not just as an interpretative framework but a quantitative and 

predictive framework as well. Understanding the effect of mobility and interaction patterns 

on the global spread of contagion processes can indeed be used to devise enhanced or 

suppressed spread by acting on the basic parameters of the system in the appropriate way, 

which might find applications ranging from the protection against emerging infectious 

diseases to viral marketing.
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Methods

Stationary populations

Rate equations characterizing the commuting dynamics among subpopulations can be 

defined by using the variables Nkk(t) and Nkk′(t) as

(5)

(6)

where σkk′ is the rate at which an individual of subpopulation k commutes to neighboring 

subpopulation k′. Then, considering the statistical equivalence of subpopulations with the 

same degree and the mean field assumption we have σk = k ∑k′ σkk′P(k′|k) where P(k′|k) is 

the conditional probability of having a subpopulation k′ in the neighborhood of a 

subpopulation k. Equilibrium is given by the condition ∂tNkk = ∂tNkk2032 = 0 and yields the 

relation

(7)

Using the expression Nk = Nkk(t) + k ∑k′ Nkk′(t)P(k′|k) for total number of individuals of 

subpopulation k one can obtain the stationary populations in equations (1) and (2).

Branching process

Each subpopulation of degree k′ invaded by the contagion process at the n − 1th generation 

may seed its k′ − 1 neighbors at most (all of its neighbors minus the one from which it got 

the infection). The probability of finding a subpopulation of degree k in the neighborhood is 

P(k|k′). For each neighboring subpopulation, the probability that it has not already been 

invaded by the contagion process in an earlier generation is . If λk′k 

infectious seeds are sent to the neighbor, the outbreak occurs with probability  50. 

We can then relate the number of diseased subpopulations at the nth generation with that at 

the n − 1th generation as the spontaneous realization of all these above conditions,

(8)

In the early stage of the contagion process we can assume that . We 

will also consider the case that we are just above the local epidemic threshold, R0 − 1 ≪ 1, 

so that the outbreak probability can be approximated by . If we 

also ignore degree correlations between neighboring subpopulations, P(k|k′) = kP(k)/〈k〉40, 

we obtain equation (3).
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Invasion threshold

In order to obtain the explicit expression for the subpopulation reproductive number in 

equation (4) we need to derive an expression for λk′k = (Nk′k + Nkk′) α. This expression 

depends on the form of commuting rates among subpopulations. If we consider the case in 

which

(9)

where  is the average total population in the neighborhood of 

subpopulation k. The above expression assumes that the per-capita mobility rate is rescaled 

by the number of individuals in the subpopulation8, thus leading to σk that decreases as Nk 

increases. This behavior account for the effect introduced by large subpopulation sizes; the 

overall per capita commuting rate outside of the subpopulation generally decreases in large 

populations as individuals tend to commute internally. In this case we obtain

(10)

This expression allows the calculation of Nkk′ and using the approximate relation for the 

fraction of infected cases generated by the end of the SIR epidemic41 introduced into a fully 

susceptible population , we obtain the expression for λk′k:

(11)

If we substitute the above relation into equation (3) we get

(12)

In order to write a closed form of the above iterative process we introduce the definitions 

 whose next generation equations are 

defined as

(13)

where G is a 2 × 2 matrix,

(14)
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The global behavior of the contagion process across the network of subpopulations is 

determined by the largest eigenvalue R* of G as expressed in equation (4) where F is a 

function of the moments of degree distribution,

(15)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Statistical properties of commuting networks in the United States and France
a, Commuting network in the United States at the level of counties (http://

www.census.gov/). b, Commuting network in France at the level of municipalities (http://

www.insee.fr/). Cumulative distributions of the number of connections (left) and the number 

of daily commuters (center) per administrative unit, as well as the number of daily 

commuters on each connection (right) are displayed. The networks are highly heterogeneous 

in the number of connections as well as in the commuting fluxes.
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Figure 2. Illustration of the subpopulation invasion dynamics
a, Mixing of two subpopulations and contagion dynamics due to commuting at the 

microscopic level. At any time subpopulation i is occupied by a fraction of its own 

population Nii and a fraction of individuals Nji whose origin is in neighboring subpopulation 

j. The figure depicts the flux of individuals back and forth between the two subpopulations 

due to commuting process. This exchange of individuals is the origin of the transmission of 

the contagion process from subpopulation i to subpopulation j. The contagion process is 

mediated by contacts between infectious (red particles) and susceptible (yellow particles) 

individuals. b, Macroscopic representation of invasion dynamics. Nodes are organized from 

left to right according to their generation index n. Arrows indicates the transmission of the 

contagion process from a diseased subpopulation at the n − 1th generation to a 

subpopulation at the nth generation.
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Figure 3. Phase diagrams separating the global invasion regime from the extinction regime
a, Plot of the equation (4) in the σ-τ space. The red and black lines identify the R* = 1 

relation for the homogeneous and heterogeneous uncorrelated random networks, 

respectively. The global spreading regime is in the region of parameters indicated by shaded 

areas. The networks are made of V = 104 subpopulations, each of which accommodates a 

degree dependent population of Nk = N̄k/〈k〉 individuals, with N̄ = 104. Both networks have 

the same average degree in which the heterogeneous network has degree distribution P(k) ~ 

k−2.1 and the homogeneous network has Poisonian degree distribution. The SIR dynamics is 

characterized by R0 = 1.25 and μ−1 = 15 days. b, Numerical simulations on heterogeneous 

networks. The system assumes the same parameter values of (a). Color scale from black to 

yellow is linearly proportional to the number of infected subpopulations. Black indicates an 

invasion of less than 0.1% of subpopulations and yellow indicates an invasion of more than 

10% of subpopulations.
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Figure 4. Dynamical behavior of an SIR epidemic on the real US commuting network data
a, Average fraction of infected subpopulation as a function of commuting rates in networks 

with the same statistical properties as the heterogeneous network in Fig. 3a. Visit time in this 

case is fixed at τ = 1 day. b, Average fraction of infected subpopulations as a function of the 

intensity of commuting fluxes in the US. We study the system behavior by varying all 

commuting rates σij between county pairs by a factor ω as σij → ωσij. Visit time assumes a 

realistic value of τ = 8 hours. The infection is initially seeded in Los Angeles. The data 

considers only real commuting flows up to 125 miles and the actual county populations (see 

text). c, Temporal progression of average cumulative number of infected cases in the 

subcritical and supercritical regimes of the invasion dynamics. The rescaling factors used in 

these simulations are marked in (b). The SIR dynamics assumes R0 = 1.25 and μ−1 = 3.6 

days in both cases.
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