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Abstract
Rationale and Objectives—In medical imaging, physicians often estimate a parameter of
interest (eg, cardiac ejection fraction) for a patient to assist in establishing a diagnosis. Many
different estimation methods may exist, but rarely can one be considered a gold standard.
Therefore, evaluation and comparison of different estimation methods are difficult. The purpose of
this study was to examine a method of evaluating different estimation methods without use of a
gold standard.

Materials and Methods—This method is equivalent to fitting regression lines without the x
axis. To use this method, multiple estimates of the clinical parameter of interest for each patient of
a given population were needed. The authors assumed the statistical distribution for the true values
of the clinical parameter of interest was a member of a given family of parameterized
distributions. Furthermore, they assumed a statistical model relating the clinical parameter to the
estimates of its value. Using these assumptions and observed data, they estimated the model
parameters and the parameters characterizing the distribution of the clinical parameter.

Results—The authors applied the method to simulated cardiac ejection fraction data with varying
numbers of patients, numbers of modalities, and levels of noise. They also tested the method on
both linear and nonlinear models and characterized the performance of this method compared to
that of conventional regression analysis by using x-axis information. Results indicate that the
method follows trends similar to that of conventional regression analysis as patients and noise
vary, although conventional regression analysis outperforms the method presented because it uses
the gold standard which the authors assume is unavailable.

Conclusion—The method accurately estimates model parameters. These estimates can be used
to rank the systems for a given estimation task.
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Much of the recent research in medical imaging has dealt with the development of imaging
systems or of image-processing techniques to produce “better” images. Thus, regardless of
the imaging modality involved, a definition of what constitutes a “better” image is required.
One common approach to the assessment of image quality is visual comparison by human
observers. This method, however, is both subjective and often irreproducible. A more
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scientific and objective approach to assessing image quality is one based on task
performance (1). To implement this approach, three elements much be specified: (a) the task
for which the images are being produced, (b) the observer who will perform this task, and
(c) the patient population being imaged. Typical tasks are the detection of an abnormality,
the estimation of some parameter of interest, or some combination thereof. A given imaging
system may be more suited for certain tasks, thereby requiring a clear definition of the task
itself to assess objective image quality. The observer is usually a human, but it can also be a
computer program (or some combination of the two). The patient population is the group of
subjects to be imaged. For example, if imaging is being performed to detect liver tumors,
then the patient population consists of those patients who are at risk for liver cancer.

Conventionally, we employ a gold standard to measure the performance of an observer by
using a particular imaging system for detection or estimation. A gold standard is a method
that is presumed to be correct for determining the presence of an abnormality or the
parameter being estimated. For example, for the detection of breast tumors on screening
mammograms, the gold standard is the examination of surgically obtained specimens by a
pathologist (2). Because of the invasive nature of most gold standards, the ability to measure
task performance without use of a gold standard is of considerable interest to the imaging
community (3).

In the case of detection tasks, common measurements of performance are various features of
the receiver operating characteristic (ROC) curve (4). This type of analysis required a gold
standard until Henkelman et al (5) developed a technique to compute ROC curves for
multiple imaging modalities without use of a gold standard.

For performance measurements involving an estimation task and a gold standard, we can
plot the estimate versus the gold standard for each patient and then use statistical techniques
(eg, linear regression) to determine the relationship between them. Estimation methods with
small bias and little noise are preferable.

The purpose of this study was to examine a method of evaluating different estimation
methods without use of a gold standard. This amounts to performing “regression without the
truth” (ie, the x axis), from which the title of this technique (RWT) is derived.

MATERIALS AND METHODS
A variety of different parameters are estimated in medical imaging in an attempt to quantify
an individual’s health status. For example, the cardiac ejection fraction describes the fraction
of the blood in the left ventricle that is pumped out during a given cycle. This parameter,
which is used by physicians as an indicator of a patient’s susceptibility to heart failure, can
be estimated with use of ultrasound (US), magnetic resonance (MR), or gamma-ray imaging
techniques (6,7). When evaluating a new method to estimate the cardiac ejection fraction, it
is common practice to use a more accepted modality as a pseudo– gold standard. There is no
a priori reason, however, to believe that any of these techniques provides the true value of
the parameter of interest. Many other quantities that are estimated in medical imaging also
lack a gold standard; examples include the blood oxygen concentration (8) and bone density
(9).

In this study, we assumed that a true value exists for the cardiac ejection fraction in each
patient, but that this value is unknown to us. Let us envision an experiment estimating a
clinically relevant parameter for P patients using M different modalities. We denote the
estimated parameter for the pth patient and mth modality by θpm and the true value (ie, the
unknown gold standard) for the pth patient by Θp. We assume that these quantities are
related by
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(1)

where am and bm are the linear model parameters and εpm is the random noise in the
measurement. We also assume for a given modality m that εpm follows a normal distribution
with a mean of zero and a standard deviation of σm; that is, for a given patient p,

(2)

where pr({εpm}) denotes pr(εp1, εp2, …, εpM). In formulating Equation (2), we assume that
the noise is independent across modalities and patients (ie, the noise in MR imaging is
independent of the noise in ultrasound), and that the cardiacl ejection fraction of one patient
does not affect that of another. Using Equation (1), we arrive at

(3)

Note that the terms am, bm, and σm, which make up the linear model describing each
modality, depend only on the modality; they are independent of the patient. Although a
linear model is assumed here, the RWT method is also applicable to nonlinear models
(discussed later).

In addition, we assume the gold standard for each patient, Θp, is the same for each modality.
Furthermore, we assume that a probability distribution exists on Θ, pr(Θ), from which the
Θp values are drawn as independent samples. Using a probabilistic view of Θ enables us to
compute the likelihood, L(·), that we observed our data given the model parameters. This is
accomplished by marginalizing over the variable Θp,

(4)

where pr({θpm}|{am, bm, σm}, Θ) is given in Equation (3) and D is the data θpm for all
observed patients and modalities. If we knew the density function pr(Θ), we would use it to
calculate this likelihood. We do not know this density function, however. Thus, we represent
pr(Θ) by parameterized density function , where the components of r ⃗ are parameters
that we can vary. For example, in the case of a normal distribution, we would vary the mean
and that standard deviation; thus, we have a likelihood that is a function both of the linear
model parameters and of the gold-standard density parameters. Our goal is to use data from
P patients for whom the parameter of interest has been estimated on M > 1 modalities to
determine estimates for am, bm, σm, and r ⃗ (denoted by âm, b̂m, σ̂m, and r ⃗̂, respectively) by
maximizing the expression for the likelihood of the data. This estimation method is
commonly referred to as maximum-likelihood (ML) estimation (10). The parameter values
determined with ML estimation characterize the relationship between the estimates and the
gold standard of each modality, the noise in these estimates, and the distribution of the true
values for the patient population. A detailed derivation has been published previously (11).

Many other methods are available for estimating these values, but ML estimation has the
advantage of being relatively easy to implement and of being asymptotically efficient. An
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efficient estimator is one that is unbiased (ie, yielding the correct value on average) and that
has minimum variance in the class of all such unbiased estimators (12). By “asymptotically
efficient,” we mean that the ML estimator tends to an efficient estimator as the patient
population increases. Note that estimation of the parameters am, bm, σm, and r ⃗ is guaranteed
to be asymptotically efficient only when the linear model is correct and the parameterized
density is capable of matching the true density of the gold standard.

Implementation
The likelihood function was implemented and optimized on an 800-MHz Pentium III
computer (Dell, Round Rock, Tex) by using Matlab software (Mathworks, Natick, Mass).
We used a quasi-Newton optimization method in the Matlab software to determine the
maximum of the likelihood. We constrained this optimization to look for reasonable values
of the parameters (ie, positive slopes and positive variances). We fixed the initial guess as
the midpoint of the search space, which was a point not equal to the true values of the
parameters. Using these constraints, the results of the optimization were not sensitive to the
initial guess. The optimization task itself took from a few seconds to a few minutes to run,
depending on the form of the assumed distribution that was used in the likelihood
expression.

We performed numerous simulation studies in which we sampled cardiac ejection fractions
(ie, the gold standard) for a simulated patient population from a beta distribution with fixed
parameters; that is, pr(Θ) was beta distributed. We then adjusted this gold standard by using
linear models with known parameters am and bm and a known noise level characterized by
σm. This comprised the data that were input for the RWT; the gold standard values were not
input for the RWT. In computing the likelihood function, we not only need the data but must
also assume a functional form for the gold-standard density. Thus, we assumed a truncated
normal distribution with a varying mean and variance; that is, p(Θ|r ⃗) was a truncated normal
density with r ⃗ = {μa,σa}. Note that this distribution differs from what was actually used to
generate the gold standard. This simulates the real-world situation in which one would not
know exactly how the gold standard was distributed.

Both the beta and the truncated normal distributions are bounded between zero and one. This
study examined the performance of RWT only with these bound distributions. (Difficulties
that arise when extending the RWT method to distributions spanning the entire real line will
be the subject of future work.) Both of the distributions employed are unimodal (ie, single
peaked). One might expect the distribution of cardiac ejection fractions to be bimodal, with
one peak for the patients with heart problems and one peak for the patients without heart
problems, but Sharir et al (7) have presented data to support a unimodal model for the
distribution of cardiac ejection fractions.

Illustrative Example
An illustrative example may help explain the RWT method further. For the numeric
simulations throughout this study, we generate Θp values (ie, the gold standard) by sampling
a known distribution. From this, we can generate the estimates for each modality (ie, the θpm
values) by using Equation (1). We use RWT to estimate the linear model parameters am, bm,
and σm and the parameters that determine the shape of pr(Θ) by using only the θpm values.
This is accomplished by maximizing a likelihood expression with numeric optimization
techniques.

Figure 1 displays a plot of θpm versus Θp for M = 2 modalities and P = 100 patients. Also
plotted are the regression lines derived using the estimated linear model parameters. We
stress that the gold standard was not used in the estimation of these linear model parameters.
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Thus, one could think of this figure as being a linear-regression analysis that was performed
without knowledge of the x-coordinates.

Figure 2 displays a plot of the density associated with the gold standard, pr(Θ), along with

the density  by using r ⃗ as determined with RWT. In this example, the gold standard
was sampled from a truncated normal distribution. A beta distribution with two varying
parameters, r ⃗, was used as the assumed distribution. This is the opposite of what was done in
the later simulation studies, in which the gold standard was a beta distribution and the model
employed was a truncated normal distribution. With certain choices regarding the
parameters, the beta distribution can look very different from a normal distribution.
However, the distribution parameters fit by RWT, r ⃗̂, are such that the beta distribution looks
similar to that of the truncated normal distribution that was used to generate the gold
standard.

Figure of Merit
The figure of merit in linear-regression analysis is the root-mean-squared error (RMSE),
hence the expression least-squares fitting. We use a similar figure of merit to characterize
the performance of a single application of RWT. The RMSE for a given modality m is

(5)

This figure of merit was chosen because it measures the difference between the gold
standard, Θp, and the values found through adjusting the data, θpm, by the estimated linear
model parameters, âm and b̂m. Note that this figure of merit cannot be used in practice,
however, because of the lack of a gold standard, but it provides an excellent technique to
evaluate the method in a simulation. In this study, we performed 50 simulations and average
RMSEm determinations (denoted by RMSEm) and also computed the standard error.

RESULTS
Analysis of RWT

As stated, ML estimation is asymptotically efficient. Figure 3a shows that the , as
given in Equation (5), decreases as the patient number increases. The variance of the noise
σm was fixed for each modality in this experiment. In the limit of large patient numbers, the
three different curves (each representing a different modality) tend to a minimum value σm/
am (see Eqq [1] and [5]) in accordance with ML theory.

Figure 3b compares the performance of conventional regression analysis with that of RWT.
As expected, conventional regression analysis using the gold standard outperforms RWT.
The difference between the two, however, decreases as a function of the size of the patient
population.

That an increase in data yields more accurate results is not surprising. An increase in the
number of modalities, however, is a somewhat less intuitive notion given the complexity of
our ML estimator. Figure 4 displays a plot of  versus number of modalities. After a
few modalities, the gain in accuracy is not substantial. Note that the performance of
conventional linear-regression analysis is independent of the number of modalities. The
performance of RWT with one modality is very poor, but the performance with two or more
modalities is relatively constant.
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Finally, we looked at the impact on  of varying the parameter σm to understand what
occurs regarding accuracy as the noise in the data increases. The curves in Figure 5a show
that  increases linearly with increases in σm. The slopes of these lines are given by 1/
am, as predicted from Equations (1) and (5).

Figure 5b compares the performance of conventional regression analysis with that of RWT.
Whereas the  limits to zero as σm → 0 for conventional regression analysis, RWT
limits to a positive constant. The constant difference between the two plots in Figure 5b
indicates the independent relationship between the variance of the noise and the comparative
performance of RWT and conventional regression analysis.

Nonlinear Models
A clear limitation of the results presented thus far is the strict assumption of a linear model
governing the relationship between the gold standard and the individual modalities. To ease
this assumption, one can rewrite Equation (1) as

(6)

where N(·) is some nonlinear function of the gold standard with the model parameters ν⃗m.

Figure 6 shows the results of a single experiment using a quadratic model for each of three
modalities. With modality 1 (Fig 6a), a nonlinear relationship is seen between the gold
standard and the estimate. With modality 2 (Fig 6b), a weak, nonlinear relationship is seen.
Finally, the relationship in modality 3 (Fig 6c) is linear. The RWT accurately fits all three
modalities. The time required for the optimization procedure to converge, however, is
increased by the added parameters to be estimated. Also, with too many parameters,
regression analysis will eventually fit the noise in the data. We have shown that the method
can be extended to nonlinear models, but extensive work remains to be completed with the
linear models before the performance of this technique using nonlinear models can be fully
characterized.

DISCUSSION
Arriving at a gold standard for a given estimation task is often difficult. Frequently,
researchers in a given field do not agree on a gold standard, and even when such agreement
occurs, the information can be difficult to obtain (eg, by means of postmortem examination).
Indeed, if an accepted gold standard was easy to obtain, no other methods to ascertain the
relevant information would be needed. Thus, a gold standard typically is not available.

In the absence of a gold standard, an alternate approach to comparing estimation tasks in
medical imaging involves plotting the results obtained with a new modality versus those
obtained with a more established modality. These results give us a pseudo– gold standard for
a common patient population (13). Such comparisons are not necessarily meaningful,
however, given the inaccuracy of the pseudo– gold standard. We have presented a method to
compare and to evaluate different estimation techniques without use of a gold standard.

An estimator of a medically relevant parameter should be both accurate and precise. For the
linear models discussed in this study, accuracy can be approximately achieved by adjusting
the measurements using the estimated model parameters âm and b̂m. After this correction has
been made, the variance in the adjusted measurements (ie, the precision) is . An
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estimate of this quantity  can be used as a figure of merit for cross-modality
comparisons.

The key advantage of RWT over conventional regression analysis is that RWT does not
require use of a gold standard. The performance of RWT is, however, hindered by this lack
of information. Furthermore, like conventional regression analysis, RWT involves the
assumption of a known functional form for the relationship between the gold standard and
the data, but unlike the case with conventional regression analysis, this relationship cannot
be visually assessed without the gold standard. We must also assume a functional form of
the gold standard density, pr(Θ), but some or all parameters characterizing the shape of this
density are free to vary in RWT. In this study, we have assumed a Gaussian noise model,
which is also implicit in conventional regression analysis, but other noise models are easy to
implement in the likelihood expression.

A principal weakness of RWT is the assumption that the gold standard for a particular
patient Θp does not vary across modalities. For example, a patient’s heart rate and, hence,
ejection fraction might vary if measured with MR imaging because of the enclosed nature of
many MR imaging machines. Variations in the gold standard can be accounted for, to first
order, by the modality noise term εpm if the variations in the gold standard are assumed to
have a mean of zero and constant variance.

We have previously studied the bias and variance of estimated parameters in this technique
when the true and assumed distributions differed (11). Reference 11 used only beta and
truncated normal distributions, and we found that parameters were accurately estimated even
when the distributions did not match. We are performing ongoing studies in which the
shapes of the assumed and true distributions differ greatly. For example, with diseased and
nondiseased patient populations, one might expect to see a bimodal distribution for the gold
standard. We are currently using a parameterized, bimodal distribution in the likelihood
expression. Furthermore, we are examining goodness-of-fit measures to determine how well
the parameters characterizing the shape of the gold-standard density are estimated. Finally,
we are studying the theoretic performance limit of RWT; that is, we have calculated the
Fisher information matrix for this problem and used it to determine the minimum possible
variances that an unbiased estimator can have for this problem. This type of analysis allows
us to study and to quantify the limitations of the RWT technique.

Conventional regression analysis uses more information than RWT (ie, the x axis). A
noteworthy aspect of RWT, however, is the exploitation of previously unused information.
We have shown that we can successfully estimate model parameters without the x axis if we
have measurements obtained from multiple modalities for a common group of patients.
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Figure 1.
A graphic, two-modality example of the method studied where a shows the results for M = 1
and b shows the results for M = 2. The dotted lines represent ±σ̂m. The slope, intercept, and
noise terms were estimated by using RWT. Although the x coordinates are plotted, they
were not used in estimating the linear model parameters.
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Figure 2.
A comparison of the true gold-standard density, pr(Θ), and the parameterized density,

. The shape of the density, as characterized by r ⃗, was determined with RWT but
without previous information. The gold-standard density shown here is a truncated normal
density, whereas the parameterized density used in the likelihood expression is a beta-
density function. In a sense, this illustrates a beta density imitating a given truncated normal
density. Note that the parameter of interest is limited to a finite domain.
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Figure 3.
(a) The  for three different modalities versus the number of patients. As the number of
patients increases, RMSEm converges to σm/am by Equations (1) and (5). (b) A comparison
between RWT and linear-regression analysis with a gold standard. Note that the RMSE is
also averaged over the three modalities. As expected, conventional regression analysis has
lower RMSE, but the performances of the two methods converge as the number of patients
increases. For these experiments, a⃗ = [0.6,0.7,0.8], b⃗ = [−0.1,0.0,0.1], σ⃗ = [0.05,0.03,0.08],
and the error bars represent the standard error calculated over 50 independent experiments.
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Figure 4.
The  (averaged across simulations and modalities) versus the number of modalities
used in a RWT experiment. A sharp decline in  is seen from one to two modalities,
followed by a slow decline. One might expect this, especially because RWT cannot work
properly with only one modality. The performance of conventional regression analysis is
independent of the number of modalities. The same model parameters were used for all
modalities in all experiments (am = 1, bm = 0.1, σm = 0.05, P = 100).
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Figure 5.
(a) The  for three different modalities versus variance of the noise σm. The 
increases in accordance with 1/am by Equations (1) and (5). (b) A comparison between
RWT and linear-regression analysis with a gold standard. Note that the RMSE is also
averaged over the three modalities. The  does not converge to zero for RWT as σm
tends to zero. The parallel nature of the two graphs indicates that the comparative
performance of RWT is independent of σm. For these experiments, a⃗ = [0.6,0.7,0.8], b⃗ =
[−0.1,0.0,0.1], P = 100, and the error bars represent the standard error calculated over 50
independent experiments.
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Figure 6.
An application of RWT with a quadratic model. (a) For modality 1, a strong, nonlinear
relationship with the gold standard and a relatively large variance were discovered
qualitatively. (b) Modality 2 was slightly nonlinear with a small variance, whereas (c)
modality 3 was linear with a large variance. Both were fit well by the quadratic RWT.
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