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Abstract
Cardiovascular disease is a leading cause of mortality among patients with diabetes, and heart
failure exists even in the absence of coronary disease. Myocardial metabolism is altered in the
diabetic heart as a result of changes in substrate availability secondary to insulin resistance. The
nuclear receptor peroxisome proliferator activated receptor-alpha (PPARα) and PPAR-gamma
coactivator-1alpha (PGC-1α) play important roles in transcriptional regulation of myocardial
metabolism and contribute significantly to the changes that occur in the diabetic heart. This review
summarizes the role of PPARα and PGC-1α in myocardial metabolism in the normal heart and in
the diabetic heart.
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Overview of Myocardial Energy Metabolism
To meet the energy demands of diverse physiologic and pathologic conditions, the
mammalian heart has a continuous and high requirement for adenosine triphosphate (ATP)
production. The myocardium uses a variety of fuels including glucose, lactate, and fatty
acids to produce ATP through high-level mitochondrial oxidative metabolism. The ATP
produced in the mitochondrion is transported to the cytoplasm for important cellular work,
including myocyte contraction.

The healthy adult heart relies predominantly on fatty acids but can rapidly switch substrate
preference depending on the developmental or physiologic state (e.g., exercise) [39]. This
metabolic flexibility is believed to be important for normal cardiac function.

Several pathologic circumstances are associated with derangements in myocardial fuel
utilization. Pathologic cardiac hypertrophy and congestive heart failure caused by pressure
overload result in the myocardium switching to glucose as a predominant substrate. This
change in metabolic programming often is referred to as a “fetal” shift because the
myocardium of the developing embryo relies mostly on glycolysis and lactate metabolism
for its ATP production [39]. In contrast, because the heart requires insulin for glucose
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uptake, the diabetic heart relies almost exclusively on fatty acids as an energy substrate [46,
53, 55].

There is ongoing debate as to whether these derangements in fuel metabolism contribute
directly to pathologic cardiac remodeling. The shift in metabolism may be adaptive initially,
but the consequences may be maladaptive. Our knowledge concerning inborn errors of
metabolism, such as genetic defects in fatty acid oxidation (FAO) enzymes, suggests that
conditions in which the heart is forced to use a single substrate (e.g., glucose) frequently
result in cardiomyopathy.

Emerging evidence demonstrates that the capacity for mitochondrial oxidative metabolism is
mediated at least in part at the level of gene transcription [15]. This gene regulatory control
allows for reprogramming of enzyme expression in a dynamic manner to respond to various
physiologic or pathologic conditions. Peroxisome proliferator activated receptor alpha
(PPARα) and its cardiac-enriched coactivator, PPAR gamma coactivator-1alpha (PGC-1α),
play important roles in the transcriptional regulation of myocardial metabolism. This review
focuses on PPARα and PGC-1α signaling in both the normal myocardium and the diabetic
heart.

PPARα, a Ligand-Activated Transcriptional Regulator of Fatty Acid
Metabolism

As one of three PPAR isoforms, PPARα is a member of the nuclear hormone receptor
superfamily. The PPARs are ligand activated transcriptional regulators. The endogenous
ligands for PPARs have not been established with complete certainty, but it appears that
long-chain fatty acids and/or their metabolites are the most likely source of the endogenous
ligand [10].

At binding of their ligand, PPARs form heterodimers with 9-cis retinoid X receptors (RXRs)
and bind to DNA response elements in target gene promoter regions (Fig. 1). In the adult
cardiomyocyte, PPARα is expressed at high levels and plays an important role in
transcriptional regulation of fatty acid metabolism [3, 24]. Additionally, PPARα has served
as an important pharmacologic target due to its large hydrophobic ligand-binding site, which
can be activated by a variety of compounds, including lipid-lowering fibrates [14, 27].

In the heart, PPARα activation induces expression of genes encoding nearly every step in
the fatty acid utilization pathway including transport proteins to facilitate fatty acid uptake,
acyl-coA synthetases for esterification of fatty acids to coenzyme A, fatty acid-binding
proteins that facilitate delivery of fatty acids to different cellular compartments,
mitochondrial carnitine system proteins that catalyze fatty acid transfer into the
mitochondrion, every enzyme in the fatty acid β-oxidation pathway, and other accessory
components of fatty acid metabolism such as uncoupling proteins.

Whereas PPARα ligand administration to rodents has clear effects on the induction of
PPARα target gene expression in the liver, its effect in the myocardium appears to be
minimal [13]. As a result of the hepaticspecific effect of PPARα ligand administration, most
of the knowledge regarding PPARα's effect on cardiac metabolism has been generated by
gain-of-function and loss-of-function models in mice. Mice with generalized deletion of
PPARα (PPARα-null mice) demonstrate decreased FAO rates [9, 16, 32, 58] and
concomintant increased glucose oxidation rates [9, 40]. The PPARα-null mice also have
mild cardiac fibrosis with aging and an inability to compensate for an increased cardiac
workload [9, 40, 58].
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In contrast, mice with transgenic overexpression in the heart exclusively (myosin heavy
chain (MHC)-PPARα mice) demonstrate upregulation of genes involved in fatty acid uptake
and oxidation, with concomitant decreased expression of genes involved in glucose uptake
and utilization [21, 41]. The MHC-PPARα mice exhibit an accumulation of myocardial
triglyceride that is exacerbated by fasting or a high-fat diet [21, 22]. Relying heavily on
FAO for ATP production, the MHC-PPARα animals experience left ventricular hypertrophy
and cardiac dysfunction that is worsened with a high fat diet [21, 22]. Taken together, the
opposing phenotypes demonstrated by deletion and over-expression of PPARα suggest an
important role for PPARα in regulating cardiac energy metabolism.

PGC-1, a Master Metabolic Regulator
In addition to ligand-mediated activation, PPARs also are activated by transcriptional
coactivators and corepressors. Transcriptional coactivators interact indirectly with the
PPARs and other nuclear receptors to establish a platform for recruitment of other proteins
important to chromatin remodeling and recruitment of the RNA polymerase II complex.

One of the most well-studied PPARα coactivators is PGC-1 [20, 25]. The PGC-1
coactivators (PGC-1α, PGC-1β, and PGC-related coactivator [PRC]) have been well
described as important regulators of mitochondrial metabolism (see multiple recent reviews)
[20, 29]. These coactivators have an impact on cellular biologic responses, enabling the cell
to meet changing energy demands associated with various physiologic stimuli. These
responses include augmenting mitochondrial biogenesis, respiratory rates, and uptake and
metabolism of substrate.

Highly versatile, the PGC-1 coactivators have the ability to interact with multiple different
transcription factors, many of which have an important role in cellular metabolism. In
addition to serving an important role in transcriptional regulation, the expression of the
PGC-1 coactivators is highly regulated by various hormones and signal transduction
pathways [52].

The first member of the PGC-1 family to be identified was PGC-1α. It was discovered as a
result of its interactions with the nuclear receptor, PPAR-gamma, in brown adipose tissue, a
mitochondria-rich tissue specialized for thermogenesis. Both PGC-1β and PRC were
subsequently identified but have been much less intensively studied. Expression of PGC-1α,
induced in the heart shortly after birth, also is increased in association with physiologic and
pathologic stimuli such as exercise and starvation [20, 25]. Findings have shown that
PGC-1α plays a role in recruiting other coactivator proteins with histone acetyltransferase
activity such as SRC1 and CBP/p300 to assist in chromatin remodeling (Fig. 1) [43, 57].
Recently, it has been demonstrated that PGC-1α also docks with a protein called ménage-a-
trois 1 (MAT1), which phosphorylates RNA polymerase II to modulate its activity [49]. In
addition, PGC-1α has its own RNA processing domain that also may contribute to its
transcriptional regulatory activity [37].

In the heart, PGC-1α is known to interact with several different transcription factors
including estrogen-related receptors, nuclear respiratory factors, and the PPAR family. The
interaction between PGC-1α and PPARα in the heart plays an important role in regulating
expression of enzymes involved in FAO and uptake [56] and may also be involved in
regulating mitochondrial biogenesis [17]. Much of our understanding regarding the role of
PGC-1α in the heart comes from genetically engineered mouse models.

Mice with constitutive overexpression of PGC-1α in the heart have robust proliferation of
mitochondria, experience cardiomyopathy, and succumb to early mortality [31]. To study
the pathophysiology of PGC-1α overexpression in the heart further, a tetracycline-inducible
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PGC-1α overexpression model was generated [48]. In this model, neonatal overexpression
of PGC-1α resulted in significant mitochondrial proliferation. In contrast, overexpression in
adult mice resulted in a modest mitochondrial proliferation, but the mitochondrial
architecture was abnormal, and the mice had severe cardiac dysfunction. The
cardiomyopathy in this model was reversible by discontinuing PGC-1α overexpression [48].

Two separate lines of PGC-1α-deficient mice have been described, both of which support an
important role for PGC-1α in cardiac metabolism and mitochondrial function [2, 33]. Both
murine models demonstrate impaired mitochondrial respiratory function and decreased
expression of genes involved in multiple mitochondrial metabolic pathways. In addition,
PGC-1α deficiency leads to cardiac dysfunction in the setting of pathologic stimuli such as
pressure overload [1, 2, 33]. Taken together, the gain- and loss-of-function models
demonstrate a clear role for PGC-1α in regulating mitochondrial number and metabolism.

Altered Cardiac Metabolism in Diabetes
The past decade has witnessed an emerging epidemic of obesity fueling an overall rise of
almost 50% in diagnosed cases of type 2 diabetes in adults [35]. Alarmingly, the incidence
of type 2 diabetes also has increased in the pediatric population in association with the
epidemic of childhood obesity [36, 42]. Cardiovascular disease is the leading cause of death
in the diabetic population. Although coronary artery disease and hypertension contribute to
the incidence of cardiovascular disease, cardiomyopathy is common in diabetics
independent of these risk factors [19, 28, 44, 45, 47]. Furthermore, more recent
echocardiographic studies with obese adolescents have demonstrated that cardiovascular
abnormalities may begin at an early age [34].

The pathogenesis of diabetic cardiomyopathy remains unclear. However, emerging data
suggest that cardiac dysfunction is linked to alterations in myocardial lipid and energy
metabolism [46, 53]. In models of both type 1 and type 2 diabetes, the energy substrate
flexibility becomes constrained, and the diabetic heart begins to rely almost exclusively on
FAO for ATP production [4, 23, 53].

In human patients, findings have shown that fatty acid metabolism is increased in type 1
diabetics [26]. It also has been noted that diabetics have triglyceride accumulation in the
myocardium [38, 50, 54]. Interestingly, several investigators have documented increased
PPARα and PGC-1α expression in murine insulin-resistant and diabetic hearts [5, 8, 17].
The role of these transcriptional regulators in altering the cardiac metabolism in the setting
of diabetes is an area of active investigation.

PPARα and PGC-1α in the Diabetic Heart
Various murine models have helped to increase our understanding of the role played by
PPARα and PGC-1α in the diabetic heart. Studies have shown that PPARα-deficient animals
with insulin resistance experience blunted activation of FAO gene expression, suggesting
that PPARα is necessary for this metabolic change [5, 17]. Furthermore, mice that
overexpress PPARα exclusively in the heart (MHC-PPARα mice) have a cardiac phenotype
similar to that of the diabetic heart, with increased fatty acid uptake and oxidation, decreased
glucose uptake, and myocardial triglyceride accumulation [21].

In addition, the MHC-PPARα mice experience cardiac hypertrophy and contractile
dysfunction that we believe is related to the excess fatty acid utilization and triglyceride
accumulation [21, 22]. This accumulation of triglycerides is likely toxic to the myocardium
and has been linked with insulin resistance and cardiac dysfunction [11, 12, 22, 59, 61].
Evidence suggests that PPARα may drive this lipotoxic response. The MHC-PPARα mice
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experience cardiomyopathy only after being challenged with a high-fat diet. The contractile
dysfunction is associated with marked lipid accumulation but is reversible with removal of
the high-fat diet [22]. In addition, deficiency of CD36 or lipoprotein lipase (LpL) (two
important regulators of fatty acid uptake) in the context of PPARα overexpression rescues
the lipid accumulation and cardiomyopathy in high-fat-fed MHC-PPARα mice [18, 60].
These data thus suggest that PPARα plays an important role in lipotoxicity and
cardiomyopathic remodeling in the diabetic heart.

In addition to the lipotoxic effects associated with changes in fatty acid uptake, the diabetic
heart may suffer from mitochondrial derangements, including changes in mitochondrial
ultrastructure and function [6–8, 17, 51]. Alteration of mitochondrial gene expression has
been noted, although reports are conflicting, with some evidence of increased expression
and other evidence of decreased expression [17, 51].

Our data suggest that PGC-1α and mitochondrial oxidative phosphorylation gene expression
may change with the progression from insulin resistance to full-blown diabetes (unpublished
data). We previously demonstrated a mitochondrial biogenesis response and an increase in
gene expression for enzymes involved in mitochondrial oxidative phosphorylation in the
myocardium of insulin-resistant mice [17]. This effect was blunted in the setting of PPARα
deficiency and recapitulated in MHC-PPARα animals, suggesting that PPARα is involved in
the mitochondrial changes in the insulin-resistant heart [17].

Furthermore, this mitochondrial biogenesis phenomenon was associated with upregulation
of PGC-1α gene expression in wild-type animals and a lack of change in PGC-1α in the
setting of PPARα deficiency [17]. Thus, our data suggest that both PPARα and PGC-1α may
regulate the mitochondrial biogenesis response. Indeed, we have demonstrated that PPARα
is capable of activating the PGC-1α promoter in skeletal muscle cells (unpublished data),
suggesting the presence of an autoregulatory loop between the transcriptional regulator and
its coactivator.

More recently, we have noted that the mitochondrial changes found in MHC-PPARα hearts
are associated with downregulation of PGC-1α and that mitochondrial architecture and
PGC-1α expression levels are rescued in the setting of lipoprotein lipase deficiency [18].
Importantly, the rescue of PGC-1α and mitochondrial morphology was associated with
improvement in cardiac function as detected by echocardiography. These data, suggest that
lipid accumulation in the myocardium in the setting of PPARα overexpression may have
detrimental effects on PGC-1α expression and mitochondrial function and that this may in
turn contribute to contractile dysfunction. The specific role of PGC-1α in the insulin-
resistant heart is an ongoing area of investigation. In addition, the role of the other PGC-1
isoforms, such as PGC-1β, which has overlapping roles with PGC-1α [30], remains to be
investigated.

Conclusion
Diabetes is being diagnosed at alarming rates and at younger ages. Cardiovascular disease,
the leading cause of mortality, is in large part related to metabolic abnormalities in the
diabetic cardiomyocyte. The diabetic heart has limited substrate availability and thus
depends on fatty acids for its major source of fuel. The shift in metabolic fuel source is
driven, at least in part, by PPARα and its coactivator PGC-1α. Although the metabolic
changes driven by PPARα and PGC-1α may be adaptive, they likely have maladaptive
consequences, contributing to diabetic cardiomyopathy.
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Fig. 1.
Both peroxisome proliferator activated receptor-alpha (PPARα) and PPAR-gamma
coactivator-1alpha (PGC-1α) are activated by insulin resistance and diabetes. Forming a
heterodimer with RXRα, PPARα binds to a DNA response element, namely, the nuclear
receptor response element (NRRE). At binding of the NRRE within the promoter of PPAR
target genes, gene transcription is activated. The transcriptional activity of PPARα is
influenced by binding of endogenous ligands and by the coactivator PGC-1α. Recruiting
additional coactivators with histone acetyltransferase (HAT) activity, PGC-1α interacts with
other regulators such as ménage-a-trois 1 (MAT) to promote chromatin remodeling and to
facilitate gene transcription
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