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Abstract

Pathogenic bacteria synthesize and secrete toxic low molecular weight compounds as virulence factors. These microbial
toxins play essential roles in the pathogenicity of bacteria in various hosts, and are emerging as targets for antivirulence
strategies. Toxoflavin, a phytotoxin produced by Burkholderia glumae BGR1, has been known to be the key factor in rice
grain rot and wilt in many field crops. Recently, toxoflavin-degrading enzyme (TxDE) was identified from Paenibacillus
polymyxa JH2, thereby providing a possible antivirulence strategy for toxoflavin-mediated plant diseases. Here, we report
the crystal structure of TxDE in the substrate-free form and in complex with toxoflavin, along with the results of a functional
analysis. The overall structure of TxDE is similar to those of the vicinal oxygen chelate superfamily of metalloenzymes,
despite the lack of apparent sequence identity. The active site is located at the end of the hydrophobic channel, 9 Å in
length, and contains a Mn(II) ion interacting with one histidine residue, two glutamate residues, and three water molecules
in an octahedral coordination. In the complex, toxoflavin binds in the hydrophobic active site, specifically the Mn(II)-
coordination shell by replacing a ligating water molecule. A functional analysis indicated that TxDE catalyzes the
degradation of toxoflavin in a manner dependent on oxygen, Mn(II), and the reducing agent dithiothreitol. These results
provide the structural features of TxDE and the early events in catalysis.
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Introduction

Pathogenic bacteria employ an array of protein molecules and/

or secondary metabolites as mediators of pathogenicity in human,

animal, and plant hosts. In general, while bacterial molecules such

as lipopolysaccharides, capsular polysaccharides, peptidoglycans,

and lipoproteins serve as pathogen-associated molecular patterns

to initiate interactions with the host, they also activate the host

innate immune system [1,2]. To evade host defense systems,

pathogens directly inject bacterial proteins, known as effectors,

into the cytosolic compartment of host cells via various secretion

systems [3], which have been well characterized in plant immune

responses [1]. Effectors play essential roles in pathogenesis by

disturbing the metabolism of host cells through several different

strategies [3–5]. In addition to these recently characterized

processes, bacteria have also been shown to synthesize and secrete

toxic low molecular weight chemicals, collectively called toxins, as

virulence factors [6]. The modes of action, which are unique to

each toxin, show great diversity in host cells and range from gene

regulation to the control of ion channel activity [6,7]. Structural

and single-molecule studies of toxins in complexes with target

proteins have provided molecular insights into the functional roles

of those toxins [8,9].

In recent years, it has become evident that the expression of

genes involved in the synthesis and secretion of toxins is regulated

at the level of transcription by quorum sensing, the central

mechanism for bacterial intercellular signaling that utilizes

diffusible small chemicals as a signal [10]. This general theme is

applicable to the phytopathogenic bacterium Burkholderia glumae

BGR1, which is responsible for rice grain rot and wilt in many

field crops. B. glumae produces toxoflavin (Figure 1A) [11], which

acts as a key factor in this disease, possibly by producing

superoxide and hydrogen peroxide [12,13]. In fact, the synthesis

and transport of toxoflavin in B. glumae were shown to be

coordinately regulated by quorum sensing signals [14]. Therefore,

interference of quorum sensing referred to as quorum quenching

has been suggested as the antivirulence strategy, in which N-

acylhomoserine lactones (AHLs), the quorum sensing signals

produced in many Gram-negative bacteria, were degraded [15].

For example, lactonases produced by some Bacillus spp. are known

to hydrolyze the lactone bond in the homoserine ring of AHLs,

and transgenic plants expressing Bacillus AHL lactonase showed
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resistance to quorum sensing-dependent bacterial infection [16].

Recently, another type of quorum-quenching enzyme was

identified, and structural analysis indicated that this enzyme

hydrolyzes the peptide bond between the acyl chain and

homoserine ring of AHLs [17].

In addition to quorum quenching, degradation of the toxin itself

could serve as an antivirulence strategy in toxin-mediated diseases.

An enzyme that showed the ability to degrade toxoflavin in vitro

was recently identified from Paenibacillus polymyxa JH2 and was

named toxoflavin-degrading enzyme (TxDE) [18]. Although the in

vivo function of TxDE in P. polymyxa JH2 remains to be

determined, its identification and characterization may contribute

significantly to plant biotechnology by providing a non-antibiotic

selection marker for plants [18]. Furthermore, this may lead to the

development of disease-resistant crops carrying an antivirulence

factor to prevent rice grain rot. To understand the structural and

functional features of TxDE, we determined its crystal structure in

substrate-free form and in complex with the substrate toxoflavin,

and performed functional analysis of the active site residues.

Further NMR study was also carried out in order to characterize

the early event in catalysis.

Results

Overall Structure of TxDE
We have extensively searched for TxDE mutants suitable for

structural study, because a wild-type enzyme failed to produce a

crystal. Among those mutant enzymes, TxDE(F94S) successfully

yielded a crystal for the initial structural analysis. The structure of

TxDE was determined at 2.2 Å resolution using a crystal of

selenomethionine (SeMet)-substituted TxDE(F94S) mutant en-

zyme (Table S1). However, the replacement of Phe-94 with a

serine caused the enzyme to be catalytically inactive (Figure S1),

possibly by hindering the binding of substrate. Subsequently, the

TxDE(D175A) mutant, which is catalytically active (Figure S1),

was crystallized. Its structure was determined in substrate-free

form at 1.6 Å and in a binary complex with the substrate

toxoflavin at 2.0 Å resolution, by molecular replacement with the

refined structure of TxDE(F94S) as a search model (Table S1).

These two structures have one monomer in an asymmetric unit.

The structural features described in the present study are based on

the structural analysis of TxDE(D175A).

TxDE encodes 221 residues, but a total of 222 residues from

Thr-2 to the extraneous leucine and glutamine at the C-terminus

form 14 b-strands and three a-helices in the substrate-free form

(Figure 1B). The topology of TxDE is composed mainly of two

layers of b-sheets, which bisect the molecule into A- and B-

domains, each with seven b-strands (Figure 2A). Specifically, the

A-domain (residues 1–51 and 200–221) contains one babbb motif

for the N-terminal 51 residues and one bbb motif for the C-

terminal residues (Figure 1B). The strands in the A-domain are

arranged in a mixed orientation, such that the b1 strand of the N-

terminal b1+ b4+ b32 b2+ motif (the superscripts + and 2 indicate

parallel or antiparallel orientation relative to the b1 strand) makes

edge-to-edge contacts in an antiparallel manner with the b12

strand of the C-terminal b122 b13+ b142 motif, resulting in a

continuous seven-stranded b-sheet with a distorted orientation

(Figure 2A). The only a-helix in the A-domain, a1, is located at the

inner wall of the b-sheet, close to b2 and b3. A similar

configuration, but with much greater distortion of the b strands,

was observed in the B-domain (residues 58–186), which is

connected to the A-domain by a long loop between b4 and b5,

and between b11 and b12. Strands from b5 to b8 and helix a2

constitute a babbb motif, whereas three strands, b9 to b11, and

helix a3 form a babb motif. Similar to the A-domain, two b
strands in the B-domain, one from each motif (i.e., b5 and b9),

interact with each other in an edge-to-edge orientation, such that

seven strands in two motifs are arranged in the spatial order b6+

b72 b8+ b5+ b92 b112 b10+. The two motifs in the B-domain are

almost orthogonal to each other, forming a highly concave surface

along the seven-stranded b-sheet (Figure 2A). Helices a2 and a3 in

the B-domain are positioned respectively at each end of the sheet.

Interactions between the Two Domains
The overall structure of TxDE is stabilized by interactions

between the two domains. In particular, the two b-sheets are

packed in a parallel manner, such that the side chains of b-strands

in the A-domain interact closely with those in the B-domain.

These interactions are mediated mainly by hydrophobic residues.

Specifically, leucine and isoleucine residues are predominantly

located at the interface between the two domains: b3, b4, b1, b12,

b13 from the A-domain and b11, b9, b5, b8 from the B-domain

(Figure 2B). These interactions are so hydrophobic and extensive

that water molecules are not present between the two layers of b

Figure 1. Chemical structure of toxoflavin and sequence alignment of TxDE. A, The chemical structure of toxoflavin is shown with the
numbering of atoms. B, The amino acid sequence of TxDE and similar proteins are compared: TxDE from Paenibacillus polymyxa JH2 (GenBank
accession number: GQ9218340) [18] and uncharacterized proteins from Bacillus amyloliquefaciens (A7ZAJ8) and Exiguobacterium sibiricum (B1YFD6).
Highly conserved residues are shown in red and boxed in blue; strictly conserved residues are shown on a red background. Three residues that
interact with Mn(II) in the active site are indicated by red asterisks; blue triangles represent the residues involved in hydrogen bonding at the active
site; and black squares indicate residues having van der Waals interactions with toxoflavin. The secondary structural elements are shown for the
corresponding sequences, with the A-domain in red and the B-domain in blue. This figure was prepared using ESPript [36].
doi:10.1371/journal.pone.0022443.g001

Structure of Toxoflavin-Degrading Enzyme
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sheets, with a total of 864 Å2 of the buried surface area,

corresponding to 26% of the surface area of each sheet. In

addition, the three helices, located at both ends of the b-sheet, seal

off the potential cavity in the interdomain interface (Figure 2B).

Specifically, residues in a1 (Met-17, Phe-20, Met-24, and Leu-25)

and in a2 (Trp-76, Leu-77, and Phe-80) form hydrophobic

interactions with residues in the A-domain (Phe-37, Leu-39, Leu-

41, and Phe-48) and in the B-domain (Val-104 and Leu-114),

along with a loop (Ile-65 and Leu-133) connecting the A- and B-

domains. At the other end of the b-sheet, Leu-153 from a3

participates in interactions with Leu-219 of the A-domain, as well

as Leu-158, Ile-173, and Leu-182 of the B-domain. All of these

residues are within 4 Å of each other.

Active Site in the Substrate-Free TxDE
The location of the active site in TxDE was suggested by the

presence of a possible metal binding site in the B-domain

(Figure 2A), consistent with the requirement of a Mn(II) ion for

its catalytic activity (Figure S1) [18]. We had also noted that TxDE

became stable and soluble in the presence of Mn(II) ions;

therefore, Mn(II) was supplemented at the early stage of protein

purification. The metal binding site is embedded in the

hydrophobic cavity in the B-domain, which was generated by a

deep, concave, funnel-like surface enclosed by the hydrophobic

residues. Unlike that in the A-domain, the funnel-like space in the

B-domain has two possible openings, one at each end of the long

axis of the funnel; however, these openings are effectively sealed off

by mainly hydrophobic residues, including Phe-96, Phe-97, Phe-

172, and Phe-179 at one end, and Ile-111, Arg-187, Arg-188, Trp-

189, and Leu-190 at the other (Figure 3A). Although the top and

bottom of the funnel are mostly closed off, there is a vent on the

side of the funnel that connects the surface of the molecule to the

inside of the enzyme (Figure 3B). This channel is elliptical, with

dimensions of 8610 Å on the basis of interatomic distance, and its

wall is lined with hydrophobic residues: Phe-94, Pro-95, Phe-96,

Phe-97, Ile-111, Leu-170, Phe-172, Leu-181, Trp-189, and Leu-

190 (Figure 3B). The metal binding site is located at the end of the

9 Å-long hydrophobic channel from the vent.

In the metal binding site, three residues from the inner wall of

the funnel (His-60 from b5, Glu-113 from b8, and Glu-138 from

b9) as well as three well-ordered water molecules coordinate with

the bound metal (Figure 3C). These six ligands form a

coordination shell of octahedral geometry, with an average

distance of 2.2 Å to the bound metal (Table S2). In this

coordination shell, His-60 and Glu-138 form part of the equatorial

plane with two water molecules, each across from His-60 and Glu-

138, respectively, while Glu-113 and a water molecule trans to Glu-

113 serve as the axial ligand. In addition to these metal-

coordinating water molecules, there are several water molecules

near the first coordination shell of the metal ion in the active site,

within hydrogen bonding distance. The metal ion was identified as

Mn(II) by the characteristic hyperfine signals from electron

paramagnetic resonance spectroscopy (Figure S2). Therefore, it

was concluded that TxDE is a metalloenzyme requiring Mn(II) for

its activity, and this is consistent with the results of a functional

analysis (Figure S1) [18].

Structural Features of the TxDE–Toxoflavin Complex
The structure of TxDE(D175A) in complex with toxoflavin,

designated as TxDE(D175A)–Tox complex, was determined in a

soaking experiment. Structural superposition of substrate-free

TxDE(D175A) and its complex with toxoflavin, performed using

the CCP4MG molecular graphics program [19], did not indicate

any noticeable differences in conformation between the two forms,

which had a root mean square deviation of 0.33 Å for all Ca
atoms.

Figure 4 shows the details of the active site in the

TxDE(D175A)–Tox complex. The substrate toxoflavin is bound

to the Mn(II)-coordination shell, with an orientation such that the

planar ring of toxoflavin fits into the long axis of the elliptical

channel, and the methyl group at N1 points toward a vent

(Figure 4, A and B). The binding site is surrounded by mainly

hydrophobic residues in the wall of the channel: Phe-94, Phe-97,

Ile-111, Leu-170, Phe-172, Leu-181, Trp-189, and Leu-190.

Specifically, O5 of toxoflavin replaced the Mn(II)-ligating water

molecule across from Glu-138 of the equatorial plane in the

substrate-free structure, at a distance of 2.4 Å relative to the

Mn(II) ion, whereas another equatorial water molecule trans to

His-60 remained in the coordination shell (Figure 4A and Figure

S3). However, the axial water molecule, which was present in the

Figure 2. Overall structure of TxDE in the substrate-free form. A, A ribbon diagram is shown, with the corresponding secondary structures
labeled as defined in Figure 1B. The black sphere indicates the Mn(II) ion. In the left panel, the molecule is oriented to place the B-domain in front,
and a different view is shown in the right panel. Labels for the secondary structures in each motif are indicated in different colors. B, Hydrophobic
interactions between the A- and B-domains are shown. Hydrophobic residues such as leucine, isoleucine, and phenylalanine are predominantly
located in this interdomain interface. These residues along the b-sheet include Ile-213, Leu-211, Leu-205, Met-203, Leu-201, Ile-4, Leu-7, Leu-9, Ile-46,
Phe-48, and Leu-41 from the A-domain, and Ile-173, Leu-178, Leu-180, Leu-182, Ile-136, Ile-139, Ile-141, Ile-61, Ile-63, and Ile-112 from the B-domain.
doi:10.1371/journal.pone.0022443.g002

Structure of Toxoflavin-Degrading Enzyme

PLoS ONE | www.plosone.org 3 July 2011 | Volume 6 | Issue 7 | e22443



substrate-free form, was absent in the active site of the complex.

The planar ring of toxoflavin was at an angle of about 55u relative

to the equatorial plane of the coordination shell; thus the axial

ligand, if present, would have been only about 2.8 Å from the

toxoflavin ring (Figure S3). Other water molecules present in the

substrate-free form were also replaced; in particular, the methyl

groups at N6 and O7 now occupy the positions of water molecules

in the substrate-free form.

The binding of toxoflavin in the complex appears to be

stabilized by hydrophobic interactions and hydrogen bonds

(Figure 4, A and C). Specifically, the side chains of Phe-94, Phe-

172, Trp-189, and Leu-190 are within 4.0 Å of toxoflavin, with

the side chains of Phe-94 and Leu-190 positioned parallel to the

toxoflavin ring at a distance of 3.6–3.8 Å (Figure 4A and Figure

S3). Other hydrophobic residues such as Phe-97, Leu-170, and

Leu-181 are involved in the formation of a hydrophobic

environment over a range of 4–5 Å from toxoflavin. In addition

to these hydrophobic interactions, there are several hydrogen

bonds between toxoflavin and its neighboring residues: O5 to the

hydroxyl group of Tyr-103 at 3.0 Å, O7 to the main chain

nitrogen of Leu-190 at 2.9 Å, and N2 to a water molecule at

3.0 Å. It is noteworthy that the side chains of Trp-189 and Leu-

190 are oriented such that part of the toxoflavin is sandwiched into

the cavity between these two side chains (Figure 4A and Figure

S3). This binding mode is likely to be stabilized by hydrophobic

interactions and a hydrogen bond between O7 and the main-chain

nitrogen of Leu-190, as described above.

Functional Analysis
To understand the functional roles of residues in the active site,

we performed thin-layer chromatographic analysis to measure the

degradation of toxoflavin after reaction with various mutant

enzymes. In fact, our attempts to measure the kinetic parameters

of the wild-type and each mutant enzyme were unsuccessful using

UV-Visible spectroscopic and thin-layer chromatographic analy-

sis, mainly due to the complexity of the reaction (see Discussion), as

well as the detection limits of thin-layer chromatographic analysis.

First, we examined whether TxDE catalyzes toxoflavin

degradation in an oxygen-dependent manner, because our analysis

indicated that TxDE is structurally similar to oxygen-dependent

enzymes (see Discussion). The assay results indicated that substantial

amounts of toxoflavin remained under anaerobic conditions, in

contrast to aerobic conditions (Figure 5), strongly supporting the

suggestion that TxDE requires oxygen, as well as Mn2+ and the

reducing agent DTT, for the degradation of toxoflavin (Figure S1)

[18]. Second, the residues in the Mn(II)-binding site (Figure 3C)

were also shown to be essential for the catalytic activity of the

enzyme (Figure 5), consistent with the metal requirement for

enzyme activity. In addition, we showed that the hydroxyl group

of Tyr-103 and the hydrophobic features of Leu-190 and Phe-94

play a crucial role in enzyme catalysis.

Discussion

Low molecular weight toxins secreted from pathogenic bacteria

exert destructive effects as virulence factors in various hosts; the

modes of action for fungal toxins have been reviewed [7]. The

identification of enzymes capable of degrading these toxins may

provide an alternative antivirulence strategy for toxin-mediated

diseases. To facilitate the investigation of the catalytic features of

toxoflavin-degrading enzyme, we report the crystal structure of

TxDE from P. polymyxa JH2. This enzyme exhibits in vitro

degradation activity toward phytotoxin toxoflavin, a virulence

factor produced by the pathogenic bacterium B. glumae [14,18].

Structural analysis of the substrate-free form of TxDE and its

complex with the substrate toxoflavin, as well as the results of a

functional analysis, suggest the unique features of the enzyme.

TxDE appears to be novel in its in vitro function, as no other

enzymes with a similar function have been characterized to date;

however, hypothetical proteins with sequence similarities of 52–

57% with TxDE were identified from various Bacillus species (37%

identity and 57% similarity) and Exiguobacterium sibiricum (38%

identity and 52% similarity), which were annotated as members of

the glyoxalase family (Figure 1B) (see below). A structural

alignment search using DALI [20] indicated that TxDE is

structurally similar to a functionally uncharacterized protein from

B. cereus (Z-score, 12.2; sequence identity, 11%; PDB ID 1ZSW

from Midwest Center for Structural Genomics) and has limited

Figure 3. The active site of TxDE in the substrate-free form. A, A close-up view of the active site in the B-domain shows a deep, concave,
funnel-like surface with nearby hydrophobic residues; the Mn(II)-binding site is indicated by the black sphere. B, Surface representation of (A) shows
that the metal binding site is located deep within a hydrophobic channel. C, The active site metal has an octahedral coordination, with three amino
acid ligands and three water molecules. The 2Fo-Fc electron density map contoured at 1s clearly indicates the locations of the metal and the three
water molecules, represented by black and red spheres, respectively.
doi:10.1371/journal.pone.0022443.g003
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structural similarity with other functionally known proteins,

despite a low degree of sequence similarity (6–25%) and low Z-

score (4.8–8.6). In fact, all of these structurally similar proteins are

members of the vicinal oxygen chelate superfamily of metalloen-

zymes [21,22], which includes glyoxalase, bleomycin resistance

protein, fosfomycin resistance protein, methylmalonyl-coenzyme

A epimerase, and bacterial extradiol dioxygenases. Proteins in this

family share a common structural feature in which the babbb
motif is the basic structural module of their three-dimensional

conformation, although the numbers and relative orientations of

these modules in the monomer and their oligomerization vary

among the proteins [21,22]. Specifically, glyoxalase and bleomycin

resistance protein in this family contain two babbb motifs in each

monomer and form a functional dimer; the edge-to-edge

interactions of b-strands between motifs in different monomers

generate two independent active sites at the intersubunit interface

(Figure S4A). In contrast, 2,3-dihyroxybiphenyl 1,2-dioxygenase

(DHBD) from Pseudomonas cepacia [23] is similar to TxDE in that

there are four motifs in the monomer, with sequentially ordered

motifs mediating edge-to-edge interactions and forming two

domains, and the active site is present in only one particular

domain (Figure S4B). From a structural perspective, the topology

of TxDE differs from that of the three proteins described above;

four motifs in the monomer that form a continuous b-stand in two

domains are not assembled in a sequential manner, but rather with

edge-to-edge interactions between motifs 1 and 4, and motifs 2

and 3 (Figure 2).

The structural similarity with DHBD is extended to the active

site of TxDE, in which one histidine and two glutamate residues

along with three water molecules serve as the first coordination

shell for Mn(II) (Figure 3C and Table S2). In the extradiol

dioxygenases, to which DHBD belongs, two histidines and one

carboxylate with three water molecules is a common motif of the

active site bearing Fe(II) or Mn(II), to catalyze ring cleavage of

catecholic compounds by activating and incorporating dioxygen

into the substrate, producing a ring-opened product [24,25].

Consistent with this structural similarity, mutation of the Mn(II)-

coordinating residues His-60, Glu-113, and Glu-138 (Figure 5), as

Figure 4. The active site in the TxDE–Tox complex. A, The binding of toxoflavin at the active site is shown, with the 2Fo-Fc electron density
map contoured at 1s for a bound Mn(II) ion (black sphere), water molecule (red sphere), and toxoflavin molecule. B, The surface representation of the
active site provides a better view of the toxoflavin molecule in the hydrophobic channel. C, Schematic diagram showing the binding mode of
toxoflavin in the active site. The dashed lines indicate putative hydrogen bonds, which are labeled with the interatomic distance (in Å); the decorated
arcs represent van der Waals interactions of less than 5.0 Å. Water molecules and a bound Mn(II) ion are shown as red and black spheres, respectively.
doi:10.1371/journal.pone.0022443.g004

Structure of Toxoflavin-Degrading Enzyme
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well as the absence of Mn(II) from the reaction medium, abolished

TxDE enzyme activity (Figure S1). It was also noticed that in

contrast to aerobic conditions, the substrate toxoflavin was not

efficiently degraded under anaerobic conditions (Figure 5). Taken

together, these observations suggest that TxDE catalyzes the

degradation of toxoflavin in an oxygen- and Mn(II)-dependent

manner.

Our functional analysis also indicates that the identity and

precise orientation of active site residues play an essential role in

catalysis, possibly by positioning the incoming toxoflavin into the

productive binding mode for catalysis. Consistent with the

structural implication of Phe-94 (Figure 4A), the F94W mutant

enzyme, which could enhance stacking interactions with the

substrate, maintained activity, whereas the F94S mutant was

catalytically inactive (Figure 5 and Figure S1). Also, the absence of

a hydrophobic feature in the L190G mutant and a possible

distortion of the main chain in the L190P mutant almost abolished

enzyme activity (Figure 5), supporting the proposed structural role

of Leu-190 as a part of the substrate binding pocket (Figure 4). The

functional role of the hydroxyl group in Tyr-103 remains to be

established.

Another notable feature of TxDE is the requirement for the

reducing agent DTT for catalysis (Figure S1) [18]. The results of

UV-visible spectroscopic analysis suggested that toxoflavin is

subject to chemical modification by DTT, even in the absence of

the enzyme, to form reduced toxoflavin (peak at 244 nm) and

oxidized DTT (i.e., 1,2-dithiane-4,5-diol; peak at 287 nm) (Figure

S5). Subsequent NMR experiments also validated that toxoflavin

is converted to 4,8-dihydrotoxoflavin in the presence of DTT, with

the concurrent formation of oxidized DTT (Figure S6). Further

analysis indicated that the reduced form of toxoflavin indeed

serves as a substrate for the enzyme (Figure S5). Therefore, DTT is

a prerequisite for the formation of the reduced form of toxoflavin.

An unusual feature of TxDE-dependent catalysis is the reaction

product(s). In a dioxygenase-catalyzed reaction, the product is a

chemically stable muconic semialdehyde adduct [24,25]. Howev-

er, there is no solid evidence for the stable products from TxDE-

dependent degradation of toxoflavin; instead, many molecules

with a diverse range of molecular mass, but lower than that of

toxoflavin, were characterized by LC-MS analysis. This strongly

suggests that TxDE produces a chemically labile molecule which

cannot be characterized under our LC-MS analysis, and the

unstable molecule(s) is likely subject to successive reactions in a

spontaneous or/and enzyme-dependent manner. In fact, the

reduced form of toxoflavin, not the oxidized form, was shown to

be subject to oxidation and decarboxylation [26,27]. Therefore,

we postulate that toxoflavin is reduced by DTT and subsequently

4,8-dihydrotoxoflavin is subject to oxidation for further reaction

which is not yet characterized. Owing to the complexity of the

TxDE reaction, the detailed features with regard to the catalytic

mechanism and final product by TxDE remain to be elucidated.

Further investigations are required to answer details of the

degradation pathway.

In this study, we determined the crystal structure of TxDE, an

enzyme that exhibits in vitro degradation activity against the

phytotoxin toxoflavin. Structural and functional analyses indicate

that the enzyme is similar to a dioxygenase in both its structure

and function, and that toxoflavin degradation is catalyzed in an

oxygen-, DTT-, and Mn(II)-dependent manner. The character-

ization of TxDE may facilitate the development of disease-resistant

crop plants as well as applications in other areas of biotechnology

[18].

We note the recent publication of Fenwick et al. [28] describing

the crystal structure of TxDE. Structural and functional features of

TxDE reported in these two independent studies are almost

identical.

Materials and Methods

Construction of TxDE Variants
For structural and functional analysis, various TxDE enzymes

were produced as described below. The DNA fragment of TxDE

was amplified from cDNA of Paenibacillus polymyxa JH2 [18]

(GenBank accession number GQ921834) by PCR with sequence-

specific and/or mutagenic primers. The resulting PCR products

were ligated into the NdeI and XhoI sites of the expression vector

pET41b containing a C-terminal His-tag. Since a wild-type TxDE

failed to produce a crystal for structural analysis, extensive search

has been carried out to identify TxDE mutants suitable for further

structural study. Among those mutant enzymes produced,

TxDE(F94S) successfully yielded a crystal for the initial structural

analysis. Subsequently, the TxDE(D175A) mutant was used for

further structural analysis of the substrate-free form and the

complex with the substrate toxoflavin.

Expression, Purification, and Crystallization
Escherichia coli BL21(DE3) pLysS strain (Stratagene) harboring

the plasmid was used to express the C-terminal His-tagged TxDE

protein. Cells were grown at 37uC in Luria-Bertani medium

containing 10 mg/L kanamycin and 34 mg/L chloramphenicol to

an OD600 of 0.8, and then induced at 37uC for 4 h with the

addition of 1 mM isopropyl-1-thio-b-D-galactopyranoside. The

harvested cells were sonicated in buffer A (50 mM Tris-HCl,

Figure 5. Thin-layer chromatographic analysis of toxoflavin
degradation under various conditions using wild-type and
mutant TxDEs. Reactions were performed at 25uC under aerobic
conditions, unless specified. Chemically synthesized toxoflavin is shown
as the Standard. The wild-type enzyme was highly inactive under
anaerobic conditions. Enzymes with mutations of the metal-binding
residues E138A, E113A, or H60A or of other residues near the active site
(Y103F, L190G, or L190P) were catalytically incompetent relative to the
wild-type enzyme. Note that some variations of intensity for the
residual toxoflavin after a reaction are mainly due to the recovery yield,
while chemically synthesized toxoflavin was used as a standard without
a reaction.
doi:10.1371/journal.pone.0022443.g005
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pH 7.5, 200 mM NaCl, 1 mM DTT, and 1 mM MnCl2) and

subjected to centrifugation at 30,0006g for 1 h. The crude extract

was applied to a HisTrap column (GE Healthcare), and TxDE

protein was eluted using buffer B (buffer A plus 500 mM

imidazole). After dialysis against buffer C (50 mM Tris-HCl,

pH 7.5, 1 mM DTT, and 1 mM MnCl2), the protein was further

purified using a Mono-Q column (GE Healthcare) with a linear

gradient of NaCl. After dialysis against buffer C, the enzyme was

concentrated to about 12 mg/mL for crystallization. A SeMet-

substituted TxDE(F94S) protein was prepared as described above,

except that the expression plasmid was transformed into E. coli

strain B834(DE3)pLysS, a methionine auxotroph (Novagen), and

the protein was expressed in minimal medium in the presence of

10 mg/mL SeMet.

Crystallization was carried out at 22uC using the sitting-drop

vapor-diffusion method. Crystals of TxDE(F94S) were produced

with buffer containing of 0.1 M MES, pH 6.5, 50 mM CaCl2, 28%

(v/v) PEGMME5000, and 0.1 M NaI, whereas TxDE(D175A)

crystals were produced under the following conditions: 0.1 M

CAPS, pH 10.5, 0.2 M LiSO4, and 1.2 M NaH2PO4/0.8 M

K2HPO4.

Data Collection and Structure Determination
In general, crystals of SeMet-TxDE(F94S) and TxDE(D175A)

were soaked in the respective crystallization mother solution

with the addition of the appropriate cryoprotectant (see below)

as well as ligand, as necessary, and then flash-frozen in liquid

nitrogen. For structure determination by multi-wavelength

anomalous dispersion, data using a SeMet-TxDE(F94S) crystal

were collected at three different wavelengths to 2.2 Å resolution

at 100 K. Later, single-wavelength data were also obtained

using crystals of TxDE(D175A) to 1.6 Å resolution and the

complex with toxoflavin at 2.0 Å resolution, respectively, on

beamlines 4A and 6C at Pohang Accelerator Laboratory,

Pohang, Korea. All crystals had the symmetry of the space

group R3; however, owing to different cell parameters, there

were four monomers and one monomer in an asymmetric unit

for TxDE(F94S) and TxDE(D175A) crystals, respectively.

Collected data were processed using the HKL2000 package

[29] (Table S1).

Glycerol was initially used as a cryoprotectant in structural

analysis of SeMet-TxDE(F94S) crystals. However, preliminary

data indicated preferential binding of glycerol to the active site;

therefore, either sucrose or PEG4000 was used as an alternative

cryoprotectant in the structural analysis of TxDE(D175A) crystals.

Specifically, the TxDE(D175A) crystal was soaked in a solution of

0.1 M CAPS, pH 10.5, and 48% PEG4000 as cryoprotectant for

the substrate-free structure. As toxoflavin becomes very labile at

high pH (particularly above pH 9.5), an extensive search was

carried out for the formation of the complex with toxoflavin.

Later, we found that the TxDE(D175A)-toxoflavin complex could

be formed by soaking a TxDE(D175A) crystal for about 30 min in

a solution of 0.1 M HEPES, pH 7.5, 2 M ammonium sulfate, 2%

PEG400, and 20% sucrose, as well as additional 1 mM MnCl2,

5 mM DTT, and 2 mM toxoflavin.

For TxDE(F94S) structure determination, the program

SOLVE/RESOLVE [30,31] was used for initial phasing and

density modification. The initial electron density map was

sufficiently interpretable to trace all residues, except the N-

terminal Met-1 and the last two histidine residues in the C-

terminal His-tag. The model was built using O [32] and refined

using CNS [33]. The Rwork and Rfree of the TxDE(F94S)

structure were 25% and 31%, respectively, after refinement

using CNS. Later, data for TxDE(D175A) at 1.6 Å resolution

were collected, and the structure was determined by molecular

replacement using the program CNS, with a refined model of

monomeric structure from TxDE(F94S) as a search model.

Model building and refinement were carried out in a manner

identical to that for TxDE(F94S). The structure of the

TxDE(D175A)–toxoflavin complex was also determined by

molecular replacement using the program CNS, with a refined

model of TxDE(F94S) as a search model. Currently, a structure

of TxDE(D175A) and its complex with toxoflavin is refined to

final Rwork/Rfree values of 19.5/22.0% and 21.9/25.7%,

respectively, and no residues were found to be in a disallowed

region in Ramachadran plot, except for Gln-176. Details of the

refinement are listed in Table S1.

The atomic coordinates and structure factors (codes 3OUL for

the substrate-free form of TxDE(D175A), 3OUM for its complex

with toxoflavin) have been deposited in the Protein Data Bank

(http://www.rcsb.org).

Functional Analysis
An enzyme assay to measure the degradation of toxoflavin was

performed according to previously reported procedures [18]. All

enzymes used were expressed and purified as described above, and

their reactions were performed at 25uC under aerobic conditions,

unless otherwise specified. Briefly, 400 mL of assay buffer (50 mM

sodium phosphate, pH 7.0) contained 20 mL of TxDE enzyme

(3 mg/mL), 50 mM toxoflavin, 10 mM MnCl2, and 5 mM DTT.

After a 30-min incubation, an equal volume of chloroform was

added to the assay buffer to stop the reaction. The resulting

chloroform fraction was dried completely and then solubilized in

10 mL of methanol. Thin-layer chromatography was performed,

and the degradation of toxoflavin was visualized under UV light at

365 nm.

For the enzyme reaction under anaerobic conditions, all

processes were carried out in an anaerobic chamber filled with

N2 (MO Tek, Korea). Specifically, the reagent solutions were

prepared in the chamber, and the protein solution was degassed

before transport to the chamber. For the reactions in the absence

of DTT or Mn2+ (Figure S1), the purified enzyme was first

extensively dialyzed against a buffer of 50 mM Tris, pH 7.5, and

10 mM EDTA, and then dialyzed again against 50 mM Tris

buffer (pH 7.5).

1H-NMR Study
Pure toxoflavin [34], 4,8-dihydrotoxoflavin [11], DTT, and 1,2-

dithiane-4,5-diol (DTD) [35] at a concentration of 10% in 99%

deuterated methanol (CD3OD) were measured as the authentic

compounds. The spectra (A) to (C) of Figure S6 show the peak

assignments for each proton in toxoflavin, 4,8-dihydrotoxoflavin,

and DTT, respectively. The reaction was carried out in NMR

tubes with an internal diameter of 5 mm under aerobic conditions

at 22uC, and all spectra were measured in 99% CD3OD. A

mixture of toxoflavin (5 mg, 0.026 mmol) and (6)-DTT (4 mg,

0.026 mmol) in 99% CD3OD (5 mL) was left to stand for 10 min.

Then, the spectrum of the mixture was measured at 22uC (Figure

S6D). After oxygen was bubbled into the reaction mixture for

1 min, the spectrum of the mixture was obtained (Figure S6E).

The following are the 1H-NMR (in CD3OD) data for toxoflavin:

d 3.41 (3H, s, 6-Me), 4.09 (3H, s, 1-Me), 8.91 (1H, s, 3-H); for 4,

8-dihydrotoxoflavin: d 3.20 (3H, s, 6-Me), 3.45 (3H, s, 1-Me), 7.13

(1H, s, 3-H); for DTT: d 2.63 (4H, d, J1,2 = J3,4 = 6.3 Hz, 1- and

4-CH2), 3.67 (2H, t, J = 6.0 Hz, 2- and 3-CH); for 1,2-dithiane-4,

5-diol: d 2.82–2.92 (2H, m, 3-Ha and 6-Ha), 2.98–3.08 (2H, m, 3-Hb

and 6-Hb), 3.46–3.54 (2H, m, 4- and 5-H).
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Supporting Information

Table S1 Crystallographic data and refinement statis-
tics.
(DOC)

Table S2 Details for distances and angles (degrees)
between a bound metal and its ligands.
(DOC)

Figure S1 Thin-layer chromatographic analysis of
toxoflavin degradation under various conditions. The

enzyme reaction was carried out using three different enzymes: wild-

type enzyme (WT), TxDE with the F94S mutation, and TxDE with

the mutation D175A. For the reaction in the absence of DTT or

Mn2+, the purified WT enzyme was dialyzed against buffer in the

presence of 10 mM EDTA, and then DTT or Mn2+ was added. The

‘‘Standard’’ lane is toxoflavin in the absence of any other

components. Toxoflavin was degraded by D175A mutant enzymes,

but not by the F94S mutant enzyme, as well as in the absence of DTT

or Mn2+. All reactions were carried out under aerobic conditions.

(TIF)

Figure S2 EPR spectrum of the purified TxDE. Sample

contains 290 uM TxDE. EPR parameters: 100 K, 1-mW

microwave power at 9.18 GHz, modulation amplitude 3.2G.

(TIF)

Figure S3 Stereoscopic view of the active site of the
TxDE–toxoflavin complex. This view, obtained by a rotation

of about 90u along the vertical axis of Figure 4A, illustrates that the

possible sixth coordinating ligand is missing in this complex. The

electron density of 2Fo-Fc contoured at 1 s is shown for a bound

Mn(II) (black sphere), water molecule (red sphere), and toxoflavin

molecule.

(TIF)

Figure S4 Overall structure of glyoxalase and 2,3-
dihyroxybiphenyl 1,2-dioxygenase (DHBD). (A) As de-

scribed in the text, a dimer of glyoxalase (PDB ID 1FRO) [37]

generates two independent active sites at the intersubunit

interface. Each monomer is indicated in a different color, and

the active sites are presented with a bound metal ion (black

sphere). (B) The structure of monomeric DHBD (PDB ID 1HAN)

[23] was similar to that of TxDE in this study. Each domain is

colored differently. In each domain, two sequentially ordered

babbb motifs form continuous b-stands by edge-to-edge interac-

tions. The C-terminal active site is shown with a bound metal ion

(black sphere).

(TIF)

Figure S5 UV-Vis absorption spectra of toxoflavin in the
absence and presence of DTT. Two different absorption

spectra of toxoflavin (25 mM), which was dissolved in 50 mM

HEPES, pH 6.8, and 10 mM MnCl2, were recorded under aerobic

conditions. In the absence of DTT (solid line), toxoflavin exhibits

two absorption peaks, at 258 and 393 nm. Upon the addition of

2 mM DTT (dashed line), two peaks appeared, at 244 and

287 nm. The absorption peak at 287 nm corresponds to that of

the oxidized form of DTT (i.e., 1,2-dithiane-4,5-diol; DTD), and

its absorbance varies according to the concentration of DTT used

in the experiment. The peak at 244 nm was later identified by

NMR spectroscopy as that of reduced toxoflavin (i.e., 4,8-

dihydrotoxoflavin) (Figure S6); it remained stable only in the

presence of DTT. After the DTT was exhausted, the spectrum of

4,8-dihydrotoxoflavin changed into that of toxoflavin (solid line)

owing to oxidation by adventitious air or bubbled oxygen, with an

additional absorbance shoulder at 287 nm for DTD. At this stage,

toxoflavin was no longer degraded by the TflA enzyme, unless

additional DTT was added to the reaction mixture, strongly

suggesting that the reduced form of toxoflavin is the true substrate

for the enzyme.

(TIF)

Figure S6 1H-NMR experiments in deuterated methanol
(99% CD3OD). 1H-NMR chemical shifts under aerobic

conditions at 22uC for (A) pure toxoflavin (1), (B) pure 4,8-

dihydrotoxoflavin (2), and (C) pure DTT (3) are shown with peak

assignments for each proton in the compounds. (D) The 1H-NMR

experiment was performed in deuterated methanol after a 10-min

reaction of toxoflavin (1) with an equimolar amount of DTT (3) at

22uC under aerobic conditions. A chemical shift analysis indicated

that the reaction mixture contained predominantly 4,8-dihydro-

toxoflavin (2) and DTD (4) with a small quantity of DTT (3),

consistent with the results of the UV-Vis spectroscopic analysis

shown in Figure S5. (E) After the reaction of toxoflavin (1) with an

equimolar amount of DTT (3) in deuterated methanol at 22uC for

10 min under aerobic conditions, oxygen was bubbled into the

reaction mixture for 1 min. The analysis indicated that all DTT

(3) was converted into DTD (4) and 4,8-dihydrotoxoflavin (2) was

converted into toxoflavin (1) by oxidation, again consistent with

the results of the UV-Vis spectroscopic analysis shown in Figure

S5.

(TIF)
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