
The ciliary diffusion barrier: the gatekeeper for the primary
cilium compartment

Qicong Hu1 and W. James Nelson1,2,*

1 Department of Biology, Stanford University, Stanford, CA 94305
2 Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305

Abstract
The primary cilium is a cellular antenna that detects and transmits chemical and mechanical cues
in the environment through receptors and downstream signal proteins enriched along the ciliary
membrane. While it is known that ciliary membrane proteins enter the cilium by way of vesicular
and intraflagellar transport, less is known about how ciliary membrane proteins are retained in,
and how apical membrane proteins are excluded from the cilium. Here, we review evidence for a
membrane diffusion barrier at the base of the primary cilium, and highlight the recent finding of a
septin cytoskeleton diffusion barrier. We also discuss candidate ciliopathy genes that may be
involved in formation of the barrier, and the role of a diffusion barrier as a common mechanism
for compartmentalizing membranes and lipid domains.
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Introduction
Cilia are rod-like membrane projections of several microns length on the apical surface of
many, if not all cell types in vertebrates (Pazour and Bloodgood 2008). They are composed
of a cylindrically organized microtubule axoneme that emanates from a centriole-derived
structure called the basal body (Marshall 2008; Satir and Christensen 2007). The ciliary
membrane surrounds the axoneme and is contiguous with the surrounding plasma membrane
(Fig. 1).

Cilia are assembled and maintained through a bidirectional transportation system called
intraflagellar trafficking (IFT) mediated by IFT complexes and molecular motors moving
along axonemal microtubules (Fig. 1) (Ishikawa and Marshall 2011; Pedersen and
Rosenbaum 2008; Pigino et al. 2009; Rosenbaum and Witman 2002). IFT regulates cilia
assembly, resorption and signaling, and defects in IFT proteins are found in a variety of
cilium-related diseases (Pazour and Rosenbaum 2002; Pedersen and Rosenbaum 2008;
Scholey and Anderson 2006; Snell et al. 2004; Wang et al. 2006).

Cilia are categorized into motile or multi-cilia (9 + 2 pattern of microtubule structure), and
immotile or primary cilia (9 + 0 pattern of microtubule structure) based on the mobility and
number of cilia, and the organization of axonemal microtubules (Fig. 1). Motile cilia in the
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respiratory airway clear mucus by beating constantly in coordinated waves (Shah et al.
2009), and nodal cilia generate flow to specify left-right asymmetry (Basu and Brueckner
2008; Nonaka et al. 1998). Sperm has a specialized cilium that is motile and drives sperm
motility. This class of motile cilia will not be discussed further, and the reader is directed to
several a recent review of this field (Salathe 2007).

The primary cilium in mammals was first identified over 100 years ago (Zimmermann
1898). However, it was considered a vestigial appendage of little importance and was
largely ignored until the last decade when studies began to link ciliary dysfunction with
genetic diseases such as polycystic kidney disease (PKD) (Bloodgood 2009; Pazour et al.
2000).

Recent studies have revealed that the primary cilium is the cell’s antenna which receives and
transmits extracellular signals through specific receptors on the ciliary membrane that
initiate cell signaling cascades critical for normal development and homeostasis
(Eggenschwiler and Anderson 2007; Gerdes et al. 2009; Lancaster and Gleeson 2009;
Marshall and Nonaka 2006; Pazour and Witman 2003; Singla and Reiter 2006; Sloboda and
Rosenbaum 2007). Also mediated by the primary cilium (Eggenschwiler and Anderson
2007; Pazour and Bloodgood 2008) are mechano-reception (Malone et al. 2007; Nauli et al.
2003; Praetorius and Spring 2001; Schwartz et al. 1997), chemo-reception (McEwen et al.
2008; Mombaerts 1999), photo-reception (Besharse and Horst 1990), and extracellular
signaling by Sonic Hedgehog (Shh) (Huangfu et al. 2003; Rohatgi et al. 2007; Wong and
Reiter 2008) and Wnt (Gerdes and Katsanis 2008), Planar Cell Polarity (PCP) (Jones and
Chen 2008; Ross et al. 2005), and PDGF-AA (Schneider et al. 2005).

Heritable diseases, called ciliopathies, are associated with ciliary dysfunction. They present
clinically with a complex combination of phenotypes including cystic kidneys, retinal
degeneration, hearing loss, situs inversus, and other defects: for example, PKD (Nauli et al.
2003; Pazour et al. 2000; Yoder et al. 2002), Bardet-Biedl syndrome (BBS) (Kulaga et al.
2004; Mykytyn and Sheffield 2004), Nephronophthisis (NPHP) (Hildebrandt et al. 2009),
Meckel-Gruber syndrome (MKS) (Delous et al. 2007; Kyttala et al. 2006), Joubert syndrome
(JBTS) (Baala et al. 2007; Parisi et al. 2007), Usher syndrome (Yan and Liu 2010). Each
syndrome is caused by mutations in a number of genes, and in general the normal proteins
encoded by those genes localize to the primary cilium or basal body (Badano et al. 2006;
Fliegauf et al. 2007; Sharma et al. 2008).

Distinct protein and lipid compositions of the ciliary membrane and surrounding plasma
membrane

The ciliary membrane is contiguous with the surrounding plasma membrane but retains a
distinct composition of lipids and proteins required for cilia-mediated sensing/signaling
events, ciliary membrane trafficking and ciliogenesis. However, mechanisms for retaining
these proteins and lipids in the primary cilia are not clear.

In tissue culture cell lines, many proteins and signaling pathways are concentrated in the
primary cilium including: the polycystic kidney disease-causing proteins polycystin-1,
polycystin-2, cystin and polaris (Nauli et al. 2003; Pazour et al. 2002; Yoder et al. 2002);
Shh signaling components Smoothened (Smo), Patched1 (Ptc1), Gli2, Gli3 and β-arrestin
(Corbit et al. 2005; Haycraft et al. 2005; Kovacs et al. 2008; Rohatgi et al. 2007); platelet-
derived growth factor receptor α (PDGFRα) (Schneider et al. 2005); the angiopoietin
receptors tyrosine kinases Tie-1 and Tie-2 (Teilmann and Christensen 2005); and, melanin-
concentrating hormone receptor 1 (Mchr1) (Berbari et al. 2008b). Specialized membrane
signaling proteins are also found in olfactory cilia such as membrane and olfactory
transduction proteins (Mayer et al. 2008), in the olfactory sensory neurons of C. elegans
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such as the odorant receptor cyclic nucleotide-gated channel CNGB1b (Jenkins et al. 2006),
in motile cilia in airway epithelial such as sensory bitter taste receptors (Shah et al. 2009),
and in the outer segment, a specialized cilium of rod photoreceptors that contain the
photosensor, rhodopsin (Tam et al. 2000).

Small GTPases that mediate trafficking and biogenesis of ciliary membrane are also
enriched in the primary cilium. Rab8a is present in primary cilia of cultured cells and
coordinates with BBS proteins to promote ciliary membrane growth (Knödler et al. 2010;
Nachury et al. 2007; Westlake et al. 2011). Proteomic analyses of photoreceptors and
Chlamydomonas reinhardtii revealed that Rab subfamily members, ARF subfamily
members, RAN, and SNARE proteins are present in the sensory cilium and flagellum,
respectively (Kwok et al. 2008; Liu et al. 2007a; Pazour et al. 2005). The ADP ribosylation
factor-like (ARL) family of small GTPases of the Ras superfamily are enriched in the cilium
and mutations in Arl13b gives rise to PKD phenotype in Zebrafish (Duldulao et al. 2009).
BBS proteins are present in primary cilium and assemble as a coat on vesicles that deliver
membrane proteins to the cilium (Jin et al. 2010; Nachury et al. 2007). Some polarity protein
complexes such as the transmembrane protein Crumbs3 localize to cilia of cultured MDCK
cells, and are required for ciliogenesis (Fan et al. 2007; Sfakianos et al. 2007).

The ciliary membrane also maintains a lipid composition different from that of the apical
plasma membrane. In quail oviduct, a high concentration of cholesterol was found on the
shaft of ciliary membrane but not in the ciliary necklace enriched in intramembrane particles
(Chailley and Boisvieux-Ulrich 1985). The trypanosome flagellar membrane is enriched in
sterols and saturated fatty acids (Tyler et al. 2009). In addition, lipid-raft associated proteins
such as palmitoylated and myristoylated proteins are targeted to the ciliary membranes
(Emmer et al. 2010; Emmer et al. 2009; Janich and Corbeil 2007). Several studies have
linked ciliopathy with defective phosphotidylinositol (PtdIns) signaling by inositol
polyphosphate-5-phosphatase E (INPP5E), which mediates PtdIns metabolism and localizes
in the primary cilia. Mutations of INPP5E were found in ciliopathy patients and impaired
INPP5E phosphatase activity (Bielas et al. 2009; Jacoby et al. 2009). Therefore, cilia should
be enriched in INPP5E product PI(4)P and PI(3,4)P2. A number of cilium-related proteins
have been shown to bind phospholipids including Tubby-like protein 3 (TULP3) and
BBSome proteins (Jin et al. 2010; Mukhopadhyay et al. 2010; Nachury et al. 2007).

Lipid rafts and lipid micro-domains may organize a micro-environment for signal
transduction complexes (Simons and Toomre 2000). It remains to be determined if the
primary ciliary membrane contains lipid rafts and if so, whether they play roles in cilia
sensory functions. Difficulties in purifying primary cilia and the lack of tools to detect or
manipulate lipids have impeded our understanding the function of lipids in the ciliary
membrane (Mitchell et al. 2009). Nevertheless, the concentration and restricted distribution
of proteins and lipids in the ciliary membrane indicate that the contents of the ciliary
membrane and the surrounding plasma membrane are physically and functionally separated.

Early evidence of a membrane diffusion barrier in the primary cilium
Early studies suggested that the presence of a membrane diffusion barrier at the base of the
primary cilium that physically and functionally separated the surrounding apical plasma
membrane and ciliary membrane.

In Chlamydomonas reinhardii, glycoprotein agglutinins which mediate the adhesion of two
algae during mating are segregated into two pools comprising an active fraction on flagella
and an inactive fraction on the plasma membrane. However, cell body agglutinins move into
the flagellum in response to mating signal, demonstrating that the function barrier can be
opened by regulatory signals (Hunnicutt et al. 1990). In Chlamydomonas eugametos, the
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agglutination antigens present on the cell body are unable to diffuse into the flagellar/ciliary
membrane, suggesting a physical barrier at the base of the ciliary membrane (Musgrave et
al. 1986). In Madin–Darby canine kidney (MDCK) cells, Laurdan staining showed that the
ciliary membrane has a condensed lipid zone of high lipid order at the base of primary
cilium, regarded as the periciliary membrane domain (Pazour and Bloodgood 2008) and
glycosylphosphatidylinositol (GPI) anchored proteins, while can diffuse in the surrounding
plasma membrane, were excluded from the ciliary membrane in fixed cells (Vieira et al.
2006) although a recent study using live cell microscopy indicated that GPI-GFP is in the
ciliary membrane of MDCK cells (Francis et al. 2011).

The outer segment of photoreceptor cells in the retina is a specialized primary cilium that
concentrates the membrane protein rhodopsin (Besharse et al. 1977). In photoreceptor rod
cells, rhodopsin is compartmentalized in the outer segment yet diffuses into the inner
segment after breaching the connecting cilium, suggesting that the connecting cilium serves
as a membrane diffusion barrier between the inner and outer segments (Spencer et al. 1988).
Interestingly, in retinal rod photoreceptors the small soluble protein GFP is able to diffuse
between the outer and inner segments across the connecting cilium, but it remains to be
determined if larger soluble proteins have the same property (Calvert et al. 2010). It is
possible, therefore, that mechanisms involved in retaining membrane proteins and soluble
proteins in primary cilium are different. Nevertheless, these data suggest the presence of a
membrane diffusion barrier surrounding the ciliary membrane.

Direct test of a membrane diffusion barrier in the primary cilium of mammalian cells
Ciliary membrane proteins can be targeted to the ciliary membrane through ciliary targeting
sequences (CTS), and they become enriched in the cilum (Berbari et al. 2008a; Follit et al.
2009; Geng et al. 2006; Nachury et al. 2010; Pazour and Bloodgood 2008; Rohatgi et al.
2007; Tam et al. 2000; Tao et al. 2009). Several hypotheses have been put forward to
explain the retention and enrichment of ciliary membrane proteins: active transport, binding-
retention, and a diffusion barrier (Fig. 2) (Emmer et al. 2010; Nachury et al. 2010). The
active transport hypothesis posits that newly synthesized proteins are actively transported
into the primary cilia to offset the constant, free diffusion of proteins out of the primary cilia
(Fig. 2A). In the binding-retention hypothesis, proteins once transported into the primary
cilia are “fixed” in the primary cilia possibly by binding to a ciliary matrix or the
microtubule axoneme (Fig. 2B). In diffusion barrier hypothesis, proteins are retained by a
physical barrier that prevents proteins from diffusing from the ciliary membrane into the
surrounding apical plasma membrane (Fig. 2C).

The diffusion of ciliary membrane proteins in the ciliary membrane and surrounding apical
plasma membrane of polarized epithelial cells were measured directly using fluorescence
recovery after photobleaching (FRAP) (Hu et al. 2010). Photobleaching of the whole cilium
or plasma membrane pool revealed that four membrane proteins in the apical plasma
membrane and ciliary membrane are mobile, but do not exchange, indicating the presence of
a physical barrier that blocks the free diffusion of those membrane proteins between these
two adjacent plasma membrane compartments. It should be noted, however IFT88 shows
high turnover and mobility suggesting IFT complexes may adopt the active-transportation
mechanism to enter and be retained within the primary cilium (Hu et al. 2010). Interestingly,
in Chlamydomonas, only a small portion of polycystic kidney disease 2 (PKD2) is mobile
within the flagella suggesting that distinct mechanisms may be involved in retaining
different ciliary membrane proteins in the ciliary membrane (Huang et al. 2007).
Chlamydomonas flagellar proteome showed that a subset of membrane proteins are more
enriched in the axonemal fraction than in the membrane and matrix fraction suggesting their
anchorage to the axoneme (Pazour et al. 2005). Taken together, these results indicate that at
least some membrane proteins are retained in the ciliary membrane by a diffusion barrier,
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and not by the active transportation or binding-retention hypothesis, whereas a subset of
membrane proteins such as PKD2 may utilize the binding-retention mechanism to maintain
ciliary localization.

Septins as a component of the membrane diffusion barrier in the ciliary membrane
Septins comprise a large, conserved family of GTPases that form linear heterotrimers
(heterotetramers in budding yeast) which in turn assemble into apolar filaments, bundles and
rings (Bertin et al. 2008; Sirajuddin et al. 2007; Versele and Thorner 2005). They play
important roles in mitosis, cell migration, and cell morphogenesis by forming scaffolds and
diffusion barriers (Caudron and Barral 2009; Hu et al. 2008; Joo et al. 2007; Kinoshita et al.
2002; Kremer et al. 2007; Oh and Bi 2011; Spiliotis et al. 2008; Spiliotis et al. 2005).

Studies in a several biological systems indicate that septins assemble into structures that
regulate the distribution of membrane proteins between different compartments of cells, and
hence have characteristics of a diffusion barrier. In budding yeast, septins assemble into
hourglass shape rings and ordered protein “gauzes” at the mother-daughter neck. There,
septins act as a scaffold to restrict the distribution of polarity and exocytosis factors (Faty et
al. 2002; Gladfelter et al. 2001; Rodal et al. 2005) and form a diffusion barrier between the
mother and daughter cells for plasma membrane proteins, the nuclear envelop and the
endoplasmic reticulum (ER) to maintain asymmetric cell division (Barral et al. 2000;
Dobbelaere and Barral 2004; Luedeke et al. 2005; Shcheprova et al. 2008). Disruption of the
septin rings results in mislocalization of cortical proteins at the bud neck, and therefore a
failure of cytokinesis (Dobbelaere and Barral 2004; Oh and Bi 2010; Versele and Thorner
2005). In mitotic mammalian cells, septins surround the midbody, and have been proposed
to be a cortical barrier between the two daughter cells (Schmidt and Nichols 2004). In
sperm, septin filaments encircle the cortical membrane between the middle and principle
piece of sperm tail; septin gene knockout causes a defect in sperm motility due to cortical
disorganization and dispersion of the membrane protein Basigin due to a loss of the septin-
based diffusion barrier (Ihara et al. 2005; Kissel et al. 2005; Kwitny et al. 2010; Steels et al.
2007). In hippocampal neurons, septins localize at the membrane and at the base of dendrite
spines; depletion of septins affects dendritic branch morphogenesis (Tada et al. 2007; Xie et
al. 2007). In mouse epithelial cells, septins localize to the base of the primary cilia at the
boundary between ciliary membrane and plasma membrane, and between the axoneme and
distal/subdistal appendage proteins of basal body (Hu et al. 2010) (Fig. 3). In Xenopus
epidermis, septins form ring-like structures at the base of cilia in multi-ciliated cells while
exogenous, over-expressed SEPT2 localizes along the shaft of cilia suggesting septins may
play a role in the axonemal matrix for ciliary function (Kim et al. 2010).

Depletion of septins in both mouse epithelial cells and Xenopus impairs the formation and
organization of cilia. In epithelial cells with reduced levels of SEPT2, ciliary membrane
proteins can diffuse across the barrier as measured using FRAP (Hu et al. 2010). Similarly,
the enrichment of ciliary membrane proteins involved in Shh signaling is partially lost,
resulting in a reduced Shh signaling. Thus, SEPT2 contributes to the formation of the
diffusion barrier at the base of the primary cilium. In Xenopus, septins interact with PCP
signaling proteins and Fritz (Kim et al. 2010). Septins and Fritz are in the same pathway to
control convergent-extention and ciliogenesis in early Xenopus development. In addition,
depletion of septins or Fritz impairs Shh signaling. Finally, mutations in the Fritz gene are
found in patients with Meckel-Gruber and Bardet-Biedl syndromes, although it is not known
whether septin mutations also exist in patients with those ciliopathies and whether mutations
in Fritz in those patients are pathogenic. The finding that a septin cytoskeleton is localized
to sites of many of these barriers for membrane compartmentalization indicates an
evolutionarily conserved mechanism to organize and compartmentalize membrane structure.
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Despite these recent advances, several important questions remain. First, it remains
unknown how septins contribute to the formation of the membrane diffusion barrier; there
are no data to explain how septins are specifically recruited to the diffusion barrier at the
base of primary cilia, sperm annulus, bases of dendritic spins or midbody of mitotic cells.
Septins can interact with phospholipid membranes and mediate their tubulation (Tanaka-
Takiguchi et al. 2009; Zhang et al. 1999), and phosphatidylinositol-4,5-bisphosphate
(PI(4,5)P2) promotes the assembly of yeast septins in vitro (Bertin et al. 2010). It is possible
that septins locally organize membrane lipids which in turn restrict the mobility of
membrane proteins. Alternatively, septins may bind transmembrane proteins which serve as
the diffusion barrier, although transmembrane proteins that interact with septins have not
been identified.

Second, it is unknown whether the septin-mediated membrane diffusion barrier has
selectivity for different membrane proteins, soluble (cytoplasmic) proteins of different
molecular sizes, or peripheral membrane proteins that bind to different lipids.

Third, it is unknown whether and how ciliary diffusion barriers are regulated. For example,
ciliary membrane proteins can be targeted and transported to the ciliary membrane during
ciliogenesis indicating that the barrier either has not formed, or is permissive to the diffusion
of ciliary membrane proteins. In another example, Shh binding to Ptc1 results in Ptc1
leaving the ciliary membrane causing Smo enrichment in the cilia (Corbit et al. 2005;
Milenkovic et al. 2009; Rohatgi et al. 2007; Wong and Reiter 2008). How the ciliary barrier
selectively gates these receptors remains unknown. In this context it is interesting to note
that nuclear transport components RanGTP and importin-β2 mediate the shuttling of
cytoplasmic kinesin-2 motor KIF17 into cilia (Dishinger et al. 2010; Hurd et al. 2011), but it
is unknown how this complex by-passes the ciliary barrier.

Ultrastructure of the ciliary base
The diffusion barrier is localized at the boundary of apical plasma membrane and ciliary
membrane (Hu et al. 2010) (Fig. 1–3). Ultrastructural studies of the ciliary base shed some
light on the structural nature of the diffusion barrier. Freeze-fracture electron microscopy
(EM) revealed a “ciliary necklace” surrounding the membrane at the base of cilia (Fig. 1)
(Gilula and Satir 1972). The necklace is composed of rows of particles associated with the
membrane that are connected to the basal body by appendages, and was proposed to form
the membrane diffusion barrier or organize lipids at the transitional zone between the basal
body and axonemal microtubules (Satir and Christensen 2007) (see Fig. 1). However, the
molecular identity of the ciliary necklace remains to be determined.

Another membrane structure at the base of the ciliary membrane comprises the ciliary
membrane pocket (Fig. 1). Cross sections of Elliptio lateral cilium revealed a pocket
structure at the base of ciliary membrane with the ciliary necklace localized on the inner side
of the pocket (Gilula and Satir 1972; Sorokin 1962). In Trypanosomatid, a protozoan
parasite which uses a single flagellum as an invasion tool, a ciliary/flagellar pocket also
exists and appears as a site for protein endocytosis and exocytosis (Gadelha et al. 2009; Gull
2003; Kohl et al. 2005; Overath et al. 1997). A cytoskeleton protein BILBO1 at the ciliary
pocket was identified and plays an important role in ciliary pocket biogenesis (Bonhivers et
al. 2008). A membrane pocket was also identified in Xenopus rod photoreceptor at the base
of connecting cilum (Papermaster et al. 1985). Additional ultrastructural studies showed a
similar structure in human retinal pigment epithelial (RPE) cells, mouse 3T3 cells and some
mouse kidney epithelial (IMCD3) cells (Molla-Herman et al. 2010; Rohatgi and Snell 2010).
Actin filaments were observed in the vicinity of ciliary pocket, possibly mediating the
position of cilium. Remarkably, clathrin-coated pits and vesicles were also found
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exclusively at the ciliary pocket, further indicating that they are sites of endocytic targeting
and recycling of ciliary membrane proteins (Molla-Herman et al. 2010).

Taken together, a ciliary diffusion barrier protein complex may be localized at the transition
zone (TZ) consisting of the basal body, its accessory appendages (also called transition
fibers) connected to the ciliary pocket, the proximal region of the axoneme, the ciliary
necklace membrane region and the Y-connector between axonemal microtubules and ciliary
necklace membrane (Fig. 1). This complex may be the main site for trafficking in and out of
ciliary membrane and, as a diffusion barrier, regulate membrane and cytosolic protein
diffusion (Nachury et al. 2010).

Additional candidates for the ciliary diffusion barrier
Several proteins, in addition to septins, have been identified at the ciliary diffusion barrier
complex/transitional zone (Sharma et al. 2008) and some may constitute the diffusion
barrier. Interestingly, many of them are proteins encoded by ciliopathy genes. In C. elegans
and cilia of different mammalian tissues, the Nephronophthisis disease gene product
NPHP1, NPHP2/Invesin, NPHP4/Nephroretinin, NPHP6/CEP290/MKS-4, NPHP8/
RPGRIP1L/MKS-5, NPHP9/Nek8 and NPHP11/TMEM67/MKS-3/Meckelin are localized
mainly at the transitional zone at the ciliary base (Delous et al. 2007; Fliegauf et al. 2006;
Mollet et al. 2005; Otto et al. 2005; Otto et al. 2003; Otto et al. 2008; Sayer et al. 2006;
Shiba et al. 2010; Simons et al. 2005; Valente et al. 2006; Winkelbauer et al. 2005).
Remarkably, in Chlamydomonas reinhardtii, CEP290 is an integral component of Y-shape
connector that links the microtubule doublets to the ciliary necklace at the TZ; significantly,
cep290 mutant causes a loss of the Y-shape link and therefore the association between
axonemal microtubules and ciliary membrane. Loss of CEPT290 leads to a reduction of
IFT-associated and membrane proteins in the flagella (Craige et al. 2010). Thus, CEP290
appears to function as a gatekeeper to regulate the delivery and exit of flagellar proteins
(Betleja and Cole 2010). Meckel-Gruber syndrome (MKS) proteins MKS-1, MKS-2/
TMEM216, MKS-3/Meckelin/TMEM67 and their related proteins are also localized to the
ciliary base and are required for ciliogenesis (Bialas et al. 2009; Dawe et al. 2009; Valente et
al. 2010; Williams et al. 2009; Williams et al. 2008). A recent study systematically
characterized the localization and function interaction of MKS and NPHP proteins at the TZ
in C. elegans and demonstrated they establish the attachment between basal body/TZ and
ciliary membrane and ciliary gating function (Williams et al. 2011). It would be of great
interest to determine their ultrastructure localization and protein binding profiles. In
Xenopus photoreceptors, the Usher syndrome gene products SANS (USH1G), Whirlin
(USH2D), USH2b and VLGR1b are in a complex that forms a bridge between the
connecting cilium and periciliary membrane (Liu et al. 2007b; Maerker et al. 2008); Usher
syndrome is a disorder that causes combined deafness and blindness characterized with
degeneration of retinal photoreceptors. Retinitis pigmentosa GTPase regulator (RPGR)
localizes at the connecting cilium and maintains the polarized distribution of rhodopsin in
the photoreceptor cells (He et al. 2008; Hong et al. 2001; Roepman et al. 2005); mutations in
RPGR are a frequent cause of retinitis pigmentosa (RP), a retinal degeneration disease.
Basal body distal appendage protein Cep164 forms a donut-shaped structure at the base of
primary cilium (Graser et al. 2007). Oral-facial-digital type I (OFD1) syndrome gene
product OFD1 has basal body and centrosomal localizations (Romio et al. 2004).

Although these proteins are candidates for forming the diffusion barrier, details of the fine
structure localization and functions of these proteins networks at the transitional zone and at
the base of the cilia remain to be determined. Immuno-gold labeling and super-resolution
microscopy could be used to further pinpoint their localization at the ciliary base. Tandem
affinity purification system coupled with sequential mass spectrometry has been used
successfully to identify BBSomes and their associated proteins (Nachury et al. 2007), and
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this might be an application useful for the purification of protein complex in the transitional
zone. Protein interactions could be verified subsequently by biochemical methods and
genetic interaction studies. In-vitro purification, reconstitution, high resolution EM and
crystal structures of those protein complexes would be helpful to study their structure-
function relationships.

Conclusions and Perspectives
The ciliary diffusion barrier maintains the specific concentration of ciliary membrane
proteins and associated signaling complexes within the cilium compared to the surrounding
(apical) plasma membrane. The diffusion barrier appears to be localized to the TZ at the
base of the ciliary membrane, and consist of ciliary necklace, the Y-link connecting ciliary
necklace and axonemal microtubules, a septin cytoskeleton, and may include a complex
protein network involving proteins encoded by ciliopathy genes.

Many important aspects of the diffusion barrier are poorly understood. First, selectivity of
the diffusion barrier to different proteins remains to be determined. The diffusion of
additional integral membrane proteins, peripheral proteins and IFT complex and associated
proteins could be tested using FRAP. Soluble proteins of different sizes could be tagged
with fluorophores and injected into or expressed in cells and their distribution observed in
cilia. Interestingly, 10kDa fluorescently labeled dextrans can enter mammalian primary cilia
while dextrans of 40kDa or larger are excluded from the ciliary compartment suggesting a
size exclusion mechanism controlling the ciliary entry of soluble proteins (Kee et al. 2010).
The underlying mechanisms involved in selectivity should be addressed. Second, the
signaling cascades regulating the assembly, disassembly and permeability of the diffusion
barrier are unknown. Third, the biochemical composition and structure of the diffusion
barrier are unknown. Protein complexes encoded by ciliopathy genes at the TZ could be
purified and identified, and their localization at the ciliary base could be pinpointed using
high-resolution immuno-gold EM. Protein depletion or genetic knock-outs of single or
multiple components are needed to test the structural and functional importance of specific
proteins and combinations of proteins at the TZ of the diffusion barrier. Once the molecular
nature of the diffusion barrier is defined, animal models can be established to explore the
physiological relevance of the ciliary diffusion barrier in development, homeostasis and
diseases.
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Fig. 1. Scheme of a fully assembled primary cilium and ciliary base structures
IFT particles move with their cargos (eg. ciliary membrane proteins) within the cilia by the
molecular motors kinesin 2 (anterograde trafficking) and cytoplasmic dynein 1b/2
(retrograde trafficking). At the ciliary base, transition fiber/distal appendages link the basal
body to the ciliary base, and together with ciliary necklace they form the transition zone and
a diffusion barrier for ciliary proteins. Plasma membrane invagination (ciliary pocket) at the
ciliary base appears to be sites for endocytosis. The illustration is adapted from (Rosenbaum
and Witman 2002) and EM images from (Gilula and Satir 1972).
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Fig. 2. Scheme of three hypotheses to retain ciliary membrane proteins
A: Active transportation hypothesis. Ciliary membrane proteins are actively targeted and
transported into the ciliary membrane and they are able to diffuse out of the ciliary
membrane into plasma membrane or endocytosed from the plasma membrane into
cytoplasm. The transportation rate into ciliary membrane is faster than the diffusion rate out
of the cilium, thereby resulting in the enrichment of proteins in the cilium. B: Binding-
retention hypothesis. Ciliary membrane proteins, once transported into the ciliary
membrane, bind stably to the axoneme and are retained. C: Diffusion barrier hypothesis.
Ciliary membrane proteins, once transported into the ciliary membrane are prevented from
diffusing from the ciliary membrane by a physical barrier but may actively move within
ciliary membrane.
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Fig. 3. SEPT2 forms a ring-like structure at the ciliary base of IMCD3 cells
IMCD3 cells were fixed and stained with anti-SEPT2 antibody (green) and anti-acetylated
tubulin antibody (red). The image shows the primary cilium on the apical membrane. Scale
bar, ~2μm.

Hu and Nelson Page 19

Cytoskeleton (Hoboken). Author manuscript; available in PMC 2012 June 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


