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Summary
Invariant natural killer T-cells (‘iNKT’) are the best-known CD1d-restricted T-cells, with recently-
defined roles in controlling adaptive immunity. CD1d-restricted T-cells can rapidly produce large
amounts of Th1 and/or Th2//Treg/Th17-type cytokines, thereby regulating immunity. iNKT can
stimulate potent anti-tumor immune responses via production of Th1 cytokines, direct
cytotoxicity, and activation of effectors. However, Th2//Treg-type iNKT can inhibit anti-tumor
activity. Furthermore, iNKT are decreased and/or reversibly functionally impaired in many
advanced cancers. In some cases, CD1d-restricted T-cell cancer defects can be traced to CD1d+

tumor interactions, since hematopoietic, prostate, and some other tumors can express CD1d.
Ligand and IL-12 can reverse iNKT defects and therapeutic opportunities exist in correcting such
defects alone and in combination. Early stage clinical trials have shown potential for reconstitution
of iNKT IFN-gamma responses and evidence of activity in a subset of patients, with rational new
approaches to capitalize on this progress ongoing, as will be discussed here.
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1.1. CD1d-restricted T Cell Populations-I: Invariant natural killer T cells
Natural killer T cells (NKT) are a population of innate-like T cells with unique activation
properties and effector functions related to NK cells. The best characterized population of
NKT cells, termed invariant NKT (iNKT), was initially identified by a restricted T cell
receptor repertoire. iNKT express a canonical, invariant T cell antigen receptor comprised of
Vα14 and Jα18 in mice and rats and Vα24-Jα18 in humans and non-human primates, with
preferred (although not essential or invariable) Vβs, in both cases. Unlike classical T cells,
which recognize peptides presented by highly polymorphic MHC molecules, iNKT cells
recognize (glyco-)lipids via MHC-like, non-polymorphic CD1d molecules (1–10). The basis
of iNKT regulatory function is their rapid secretion of multiple cytokines and chemokines
accompanied by CD1dspecific cytotoxicity following TCR triggering (1–7). iNKT rapidly
secrete large amounts of different cytokines after activation and thereby regulate immune
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responses. These products include both regulatory factors (e.g. IL-4, IL-10, IL-13) as well as
pro-inflammatory agents such as IL-2, IL-17, TNFa, CCL3 (MIP1a), and IFNγ, reflecting
their capacity to suppress or stimulate immune responses (1–7). iNKT were shown to
contribute to immune surveillance in early stage tumors and in chemically-induced cancers
(3- 5;11–13). The originally-defined prototypic high-affinity iNKT glycolipid ligand, alpha-
galactosylceramide (αGalCer) was identified in a screen for anti-cancer agents. αGalCer and
iNKT have subsequently been shown to have anti-cancer activity in animal models and anti-
tumor potential in patients (3-5;11,12), as well as to have anti-pathogenic activity (14–18).
Although exogenous CD1d ligands similar to αGalCer have been identified from pathogenic
as well as non-pathogenic microorganisms (14,16,19), the identity of physiological
endogenous ligands that can also mediate CD1d-dependent T cell activation remains
supposed, but so far identification has been limited to ligands for subsets (14,16,19–22).
Furthermore, unike T cells, iNKT can also be activated by cytokine combinations (21).

The main CD1d-expressing cell types have been identified as dendritic cells (DCs),
macrophages, B and murine T cells (1–4;16,23–27). To date, physiological functions of
CD1d in anti-tumor activity (11–13), tolerance induction (5) and host defense (14–18) have
been best established in the case of DCs. The interaction between iNKT and APC (antigen
presenting cells: monocytes, macrophages, DCs) appears to be of central importance in
regulating immune responses. Monocytes or DCs loaded with αGalCer can activate iNKT in
vitro and in vivo, with subsequent iNKT stimulation of DC maturation (1–10;19–22;28–31).
The interactions between iNKT and DCs appear to share many features with those between
conventional CD4+ T cells and DCs, although priming is not required and there are other
key differences. DCs pulsed with a specific Ag (in this case αGalCer) stimulate iNKT
through TCR ligation and this can be enhanced by B7 (CD80/86) ligation of CD28 on the
iNKT (20–22; 28–31). iNKT activation and production of IFNγ are markedly enhanced by
DCs producing IL-12, with increased expression of IL-12 receptor on activated iNKT (1–7;
28–31). CD40L expression by activated iNKT can in turn activate DCs through ligation of
CD40, with iNKT IFNγ further stimulating DC IL-12 (1–7; 28–31). These interactions
provide a mechanism by which iNKT markedly amplify IL-12 production by DCs, and are
consistent with the requirement by iNKT, in some anti-tumor responses, for low-dose
exogenous and/or physiological endogenous IL-12 (1–7;11–13; 28–31). In several systems,
iNKT are the primary responders to low dose IL-12 rather than NK cells (11–13;32–36).
Finally, it should be noted that the profile of chemokine receptors expressed by peripheral
blood iNKT indicates that they primarily traffic to peripheral tissues, consistent with their
biological function being to interact with immature DC in tissues and stimulate their
maturation (37,38).

1.2. CD1d-restricted T Cell Populations-II: relation of iNKT to other CD1d-
reactive T cells

Human and rodent iNKT have many common features and closely resemble one another in
activity and in general properties. However, iNKT frequencies are lower in humans than in
mice (39). This is true both in the periphery and in the organs including liver. In fact, human
liver is dominated by non-invariant CD1d-restricted T cells (40–42), many of which do not
even express NK markers (41), although “tip-of-the iceberg” iNKT behave similarly (43).
Furthermore, both human and murine bone marrow tend to be dominated by the “non-
invariant” (‘Type 2’) CD1d-restricted NKT cells (1–7;44).

Human iNKT proportions decline with age (45,46), whereas in mice they rise (47), possibly
due to declines in other lymphocyte populations. This, together with minimal surface
expression of CD1d by healthy human hepatocytes (23,41) unlilke mouse (24,26), may
explain why αGalcer is lethal in older mice, causing a Con-A-like acute hepatitis (48), but
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has minimal effects in most adult humans. Indeed, cytokine responses to αGalcer
administration are only detected in patients with higher levels of iNKT (49). Furthermore,
men generally have less iNKT than women, and levels are also typically lower in those with
chronic diseases of many types, including multiple auto-immune diseases and cancers
39,45,46). Therefore, despite overall conservation to the level of species cross-reactivity of
iNKT with CD1d (50), there are important CD1d-restricted T cell species differences.

Finally, while all the CD1d-restricted T cells described above are αβ T cells, there is no
reason in principle that γδ T cells could not also be CD1d-restricted, as have been described
for other CD1 molecules (16). Indeed, such cells have been described and are not always
protective. CD1d is up-regulated in murine model coxsackie virus infection and its
recognition specifically by Vγ4+ T cells is associated with the autoimmune viral myocarditis
sequelae of otherwise successful anti-picornaviral responses (51).

2.1. Principle of CD1d-restricted T cell anti-tumor activities
CD1d-restricted T cell populations physiologic role in tumor immunosurveillance is
mediated at least partly through APC maturation and IL-12 induction and via both NK and
CD8+ T cells (11–13;21,27– 30;39). In addition, immunity against many tumor models is
observed with therapeutic activation of iNKT by selective agonist α-galactosylceramide
(αGalCer) presented by CD1d+ APC (11–13). Sequential production of IFNγ, initiated by
iNKT and subsequently produced by NK cells, is pivotal for the antimetastatic activity of
αGalCer and other agents affecting CD1d-restricted T cells, such as IL-12 and cytokine
combinations such as IL-12 and IL-18 (11–13;21). Direct CD1d-restricted T cell
cytotoxicity may contribute via classic granule-mediated as well as TNF family
mechanisms, since some tumors express CD1d (see below). Despite normal IL-4 production
and activation marker up-regulation, iNKT in tumor bearing mice have defective IFNγ
responses (11–13;52–54). These are reminiscent of cancer patient iNKT defects in activation
by αGalCer or IL-12 (55–57). Indeed, the presence of Th1-type IFNγ-producing CD1d-
restricted T cell populations is a positive prognostic indicator in a number of cancers
described (see below).

2.2. CD1d-restricted T Cell Populations in Cancer Patients and CD1d
Expression in Cancer

Quantitative defects in the iNKT pool are found in various types of cancer including
melanoma, colon, lung, breast, head and neck squamous cell carcinoma (HNSCC), prostate
cancer, myelodysplastic syndromes and progressive multiple myeloma (13;45,46;55–58).
However, these differences are not absolute, there is overlap between groups, and these
defects are not unique to cancers, being associated with many inflammatory conditions (59).

Importantly, these statistically significant quantitative defects are frequently accompanied in
certain advanced cancers by profound but reversible defects in the capacity of iNKT to both
proliferate (55–57,60) and produce IFNγ in vitro and ex vivo (55–57). Interestingly, both the
proliferative defect and the Th1 response block are reversible in vitro, and unlike committed
memory T cells, iNKT defects can therefore potentially be corrected in patients. IL-2
reverses the iNKT proliferative defect (55,60), similarly to how it well-known overcome
some forms of T cell anergy. Similarly, IL-12 can reverse the block in IFNγ production in
response to αGalCer in vitro (55), reflecting the in vivo block we subsequently identified in a
tumor model (54). Importantly, conventional T cell responses from the same patients were
normal, indicating that these defects are iNKT-specific (55–57,60). Not all cancers exhibit
iNKT defects and relative iNKT cell Th2 biases are not found in all (especially early) stages
or cancers and other clear exceptions have been reported (58,61).
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Certain tumor types are known to express CD1d and thus can be directly recognized by
iNKT (42,61–66). These include some of the very tumors where selective functional defects
of iNKT have been identified: hematopoietic malignancies, prostate cancer, and certain but
not all neurological tumors (54–57;61). The functional consequences of CD1d on tumor
cells are not well understood, but increasing evidence suggests this may impact iNKT. For
example, early and intermediate stage myeloma cells express CD1d, which can be targeted
for killing, but this is lost on advanced myeloma and most myeloma cell lines (67–69).
Other mostly solid human and model tumors have generally been believed to be CD1d-
negative (B16 melanoma cell lines represent a good example of this), reflecting limited
CD1d expression outside normal hematopoietic cell types (23–27). However, there is
evidence for at least some CD1d expression on various solid tumor cell lines (70–73).
Furthermore, very low levels of CD1d are sufficient for presentation to iNKT, just as for
MHC-peptide complexes and other T cells. The presence of CD1d on some tumors makes
them sensitive to iNKT cytotoxicity (61,63,74,75) as well as potentially direct mechanisms
of apoptosis/cell suicide, as seen in CD1d+ myelomas upon CD1d cross-linking (69).
Therefore, CD1d expression may be a common demoninator in advanced cancers with
failure of Th1 iNKT driven by tumor acting as non-professional APCs. Of course, other
factors may contribute, including CD1d expression by stroma and infiltrating immune cells
in various tumors and stages, as well as in response to some therapies. Indeed, another
mechanism of targeting tumors by iNKT can involve them killing tumor-associated
macrophage-type cells (76).

Most human cancer studies utilize blood iNKT and therefore investigate systemic effects.
However, some studies have been performed using human iNKT associated with tumors.
Results show that tissue and tumor-infiltrating lymphocyte (TIL) iNKT and other CD1d-
reactive ‘NKT’-type cells are distinct and can be enriched relative to in matched blood
(42,77–79). In liver cancer, iNKT cytokine responses can be Th1-biased (42,77), like such
cells in healthy liver and other liver diseases (40–42), and unlike the equivalent Th0 cells in
mouse (1–7). Interestingly, TIL can be enriched for CD4+ iNKT, which at least from healthy
donors, produce higher levels of regulatory/Th2 cytokines ex vivo (1–7;36;78). Human
iNKT have shown the ability to kill tumor cells ex vivo. In many cancer patients, these cells
are depleted from tissues, and in some cases replaced by Type 2 NKT (42,77).

There is also the remarkable finding that iNKT and other CD1d-reactive peripheral blood T
cell populations producing IFNγ in vitro are strongly and selectively associated with
improved prognosis in patients with glioma, colon cancer HNSCC, and hematological
cancers (55,58,80,81). This latter specific feature of CD1d-restricted T cell Th1 responses
could be of diagnostic value.

2.3. Role of iNKT in Prostate Tumor Immunity: an example of the relation of human and
model studies

We first described reversible numerical and functional iNKT defects in patients with
advanced prostate cancer (55). Similarly, a functional iNKT defect was found in TRAMP
mice stimulated with glycolipid αGalCer in vivo (Figure 1; 54). Furthermore, iNKT
deficiency exacerbates sensitivity to the TRAMP prostate cancer model (53). iNKT can be
found in established TRAMP tumors in the TIL compartment. We characterized the
interaction of tumor cells with iNKT cells from TRAMP mice ex vivo compared to iNKT
cells from healthy mice. Systemic iNKT in both normal and TRAMP mice constitutively
express low levels of CD69. However, high levels of CD69 as well as IL-12RB1 are
expressed by TIL iNKT, suggesting iNKT are hyper-activated within tumors (54).

TRAMP tumor cell lines, human CaP lines and primary prostate epithelium as well as
primary TRAMP tumors express CD1d (54). Moreover, CD1d on the TRAMP-C2 cell line
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is functional. TRAMPC2 pulsed with αGalCer stimulate IL-2 secretion by iNKT
hybridomas (54). Therefore, we tested whether tumor cells could aberrantly activate iNKT.
TRAMP tumor cells induce expression of activation markers CD25, PD-1 and IL-12RB1 on
primary iNKT (54). TRAMP tumor cells modestly activate primary iNKT ex vivo even
without exogenous ligand. αGalCer+ TRAMP tumor cells induce iNKT IL-4, but not IFNγ
(54). IL-4 production occurs independently of co-stimulatory molecules presented by CD1d+

DC (30), whereas iNKT IFNγ is enhanced by IL-12 produced by DC (28-30). However,
despite iNKT up-regulation of IL-12R, IL-12 alone was not sufficient to stimulate their
IFNγ production. Only both IL-12 and the high-affinity ligand αGalCer together could
induce IFNγ production by iNKT (54), thus showing that tumor cells can reversibly inhibit
iNKT. This defect can be overcome by provision of strong TCR signals (such as provided
by the high affinity ligand αGalCer) in combination with Th1 adjuvant IL-12.

The mechanism(s) by which iNKT in the presence of tumors acquire a Th2 like profile is not
fully understood, but appears to be related to a specific defect in signaling to IFNγ
production (54). As mentioned, DCs play a fundamental role in controlling iNKT effector
functions, and iNKT can control DC maturation. This positive feedback loop provides a
further potential in vivo contributing mechanism to help explain the observed qualitative
iNKT defects. As discussed above, some other tumors express CD1d (62–73) as well as
human and mouse prostate epithelial cells (54). Therefore, one may speculate that
CD1d+tumors present endogenous glycolipids to iNKT, hence there is some cytokine
production even in the absence of αGalCer (54), as has been shown in other systems (82,83),
leading to iNKT activation that is distinct from normal DC-induced activation. Finally,
provision of exogenous high affinity ligand-loaded tumor cells has been shown to break
tumor tolerance in some systems even in the absence of IL-12 (84,85).

2.4. Further Examples of NKT-related therapy
2.4.1. CD1d mAb bypasses iNKT defects in models

CD1d mAb have widely been used to block CD1d-reactive T cell activity in vivo (1–7).
However, an unexpected effect of this approach has been identified. Direct CD1d mAb
administration induces a potent Th1 and type 1 interferon response both in vitro but also in
vivo, through maturation of dendritic type and other CD1d+ antigen presenting cells, such as
monocytes (86,87). As mentioned above, CD1d cross-linking of myeloma cell CD1d leads
to apoptosis, which has been suggested as another element of a multi-pronged attack in
CD1d+ tumors (69).

As described for several tumor cell line models, anti-CD1d mAb can also delay or actually
prevent tumor growth (88). In models, this approach is synergistic with other approaches,
both conventional and immuno-therapeutic (89). Therefore, this may be a future alternative
means to bypass defects in NKT cells of cancer patients (Figure 2).

2.4.2. Further NKT-related therapeutic Approaches
Several further direct approaches to exploit the anti-tumor activity of CD1d-restricted T cell
populations have been described. For example, direct transfer of iNKT cells is
therapeutically active against a range of model tumors (11–13;34).

Unlike most classical T cells, IL-12 and IL-18 combined will also activate NKT
independently of the TCR (21) and this combination has been shown to enhance anti-tumor
activity (11,90). NKT activity is also synergistic with NK cells in mice treated with IL-12
and IL-18 (11,21,90).
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Finally in this regard, iNKT have also been shown to have powerful adjuvant-like activity
for T and B cell immune responses to model antigens, a range of pathogens, and against
tumors (91-98). In particular, as also mentioned above, αGalCer presented on CD1d+ tumor
cells or carried to DC on some CD1d-negative tumors (84,85), or presented by dendritic
cells and other APC, augments anti-tumor activity in numerous models (96-99). Therefore,
NKT have the potential synergise with other immuno- and conventional therapies. This is
discussed further below for models and in the context of clinical trials.

2.5. Optimizing Cancer Vaccines through iNKT cells
While some potentially tumor reactive T cell clones may be lost (by central or peripheral
mechanisms) in tumor-bearing individuals, other clones appear to remain naïve or tolerized
and can potentially be activated by tumor vaccines. Multiple tumor vaccines have been
shown to require iNKT presence for optimal activity, including both GM-CSF-transduced
(‘GVax’) (100) and some types of CpG based vaccines (101–105). It is likely that other
vaccine types are purely (but still usefully) synergistic with NKT-related therapies. Such
synergy has been described, as above, for CD1d mAbs with other immunotherapies in
various models (89). The efficacy of GM-CSF tumor vaccine is largely impaired in iNKT
cell deficient as well as CD1d KO mice (100), which supports a critical role for iNKT in the
requisite maturation of DCs for effective antigen presentation in this system. However, as in
direct anti-tumor responses (11,12), CD1d-restricted T cells are not protective for all cancer
vaccines, with CD1/noninvariant CD1d-restricted T cells apparently having deleterious
effect on anti-tumor immunity (106).

3.1. iNKT-related clinical trials
Cumulatively, in vivo results from tumor models (Figure 3) and in vitro patient results, along
with results in various other diseases have led to a range of current and planned clinical
trials exploiting the NKT system in different ways (107). Initial phase clinical trials
attempting to induce antitumor immunity through activation of iNKT have revolved around
the ligand, αGalCer. Further details are provided below, as described in detail in other
reviews in this issue of Clin. Immunol. (108–113).

In the first iNKT trial, in which patients with solid tumors received intravenous αGalCer,
signs of immune activation only occurred in the fraction of patients with relatively normal
iNKT numbers (49,109). Despite overall relatively specific effects, αGalCer has been
reported to have an off-iNKT target effect of inducing type-1 IFN (114), which could also
affect anti-tumor activity in vivo.

As murine experiments indicated that anti-tumor acitivity of αGalCer is enhanced by loading
onto DC (11,12;99), similar approaches have been evaluated in clinical trials for solid and
hematological malignancies. αGalCer-pulsed monocyte-derived ‘DC’ produced more potent
immune activity, including inflammatory tumor responses, tumor necrosis and decreases in
tumor markers in some patients, as well as expansion of iNKT up to a few months and an
increase in adaptive T cell immunity (11-13;112,113,115-117). Local targeting of αGalCer-
pulsed APC has been shown to be well-tolerated in HNSCC patients (118).

iNKT adoptive transfer has also been effective in mouse tumor models (11–13;34,119).
Based on these observations and those that the size of the IFNγ-producing NKT-type cell
pool also appears to correlate with survival (15, 55,58,80,81), a study evaluated feasibility of
adoptive transfer of autologous iNKT-enriched populations in cancer patients, and reported
that the treatment was well-tolerated and could be accompanied by clinical responses (120).
Combining iNKT-enriched product with αGalCer-pulsed APC has been associated with
evidence of some clinical responses as well as increased cytokine responses in HNSCC
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(121). As purity of initial enriched iNKT products has been variable and mostly modest,
future studies aim to use more homogeneous populations of iNKT to allow evaluation of
clinical responses.

Current immunotherapeutic approaches in cancer may also be expected to be substantially
more potent when combined synergistically with iNKT restoration/activation. For examples,
iNKT can activate other T cells and limitations on the latter are being relieved in current
trials involving anti-CTLA4 and anti PD-1 mAbs. It is likely that direct positive iNKT
activation will be synergistic with approaches to inihibit conventional T cell inhibitory
pathways.

Further trials have had impacts on various NKT-type populations. In pioneering model
studies by several groups, bone marrow NKT-type cells (which unlike mouse liver, but like
human bone marrow are dominated by non-invariant NKT; 4,20,44;122-125), were shown
to contribute to graft-versus-tumor (GvT) activity, but also be capable of suppressing graft-
versus-host disease (GvHD) (123–125). This potential double benefit was exploited in
several regimens in which the non-invariant (‘Type 2’) NKT were enriched and activated in
vivo. NKT in general are resistant cells, which can also recover faster than other T cells from
potent stimulations and/or insults, such as pharmacological doses of IL-12, anti-CD3 mAb,
steroids, etc. (1–7;21,22,90). Dr. S. Strober’s group found that a clinical protocol-derived
treatment with total lymphoid organ irradiation and anti-thymocyte globulin (TLI + ATG)
led to rapid restoration of NKT populations ahead of conventional T cells (123–125). These
types of treatment could also enhance bone marrow transplant (BMT) efficacy in multiple
models (123–126). However, a note of caution was raised by the finding that iNKT DC
activation and IL-12 production downstream of αGalCer could exacerbate GvHD (127).
Therefore, a clinical non-invariant NKT enhancing protocol combining TLI + ATG with
BMT was tested and found to have a strong protective effect against acute GvHD (128,129).
In parallel, non-myeloablative BMT and kidney transplantation without immunosuppression
in patients with renal failure due to myeloma led to transient mixed chimerism and tumor
control without GvHD or kidney rejection (130,131). Donor leukocyte infusions (DLI) can
enhance BMT anti-tumor effects and most recently recipient leukocyte infusions (RLI) have
been shown to have similar activity. In particular, iNKT were the protective population in
models of the RLI approach (131).

Based on the large amounts of model data, others trials, and our preclinical data summarized
above, a phase I clinical trial of autologous iNKT in patients with advanced cancer was
initiated (PI. Dr. S. Balk; DF/HCC #06-432), and has now completed 8 melanoma patient
treatments. The approach is feasible and well-tolerated, with only local/grade 1-2 toxicity.
The trial is conducted through the Dana Farber/Harvard Cancer Center, in collaboration with
Drs. S. Hodi and G. Dranoff, who have extensive expertise in the conduct of melanoma
clinical trials. The methods for iNKT purification and expansion are similar to those we
have published previously (55,133), with modifications for clinical grade use. Dr. J. Ritz
(DFCI) supervises the iNKT cell culture. Patients undergo leukapheresis yielding ~1010

PBMC. Residual iNKT (~ 0.01% iNKT, ~ 106 cells) are purified from the leukapheresis
product using GLP-grade biotinylated mouse anti-human mAb (6B11) against the human
invariant Vα24Jα18 TCR chain (55,133) and GMP grade antibiotin micro-beads for
purification on a magnetic column, as described (133). This procedure yields populations
highly enriched in iNKT (~ 50% pure), with little or no losses. The bulk of purified iNKT
are then expanded in vitro with CD3 mAb and IL-2 (133) for therapeutic use of up to > 100
million total iNKT/infusion at 3 bi-weekly infusions. The first 3 patients received iNKT
alone. Since there was no grade 3 or greater toxicity, subsequent patients additionally
receive GM-CSF subcutaneously for 10 days with second and third iNKT administrations, to
mobilize and activate dendritic cells. Patients are restaged as appropriate 3 – 4 weeks after
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final iNKT infusion and followed thereafter. Complete formal clinical and immunological
results will be reported at conclusion of the trial. In summary, these data confirm feasibility
of such a clinical trial, show isolation and expansion of iNKT from patients with advanced
melanoma, and infusion safety.

4.1. Conclusions
In conclusion, although iNKT cells and other CD1d-reactive T cells appear to frequently
suffer attrition in advanced cancers and some other diseases, this can be reversible and
mechanistic insights reveal rational approaches to restore NKT cell physiological protective
activities (Figure 3) for cancer (as above), as well as for other therapeutic settings such as
sickle cell disease (134). At least some ‘Type 2’ non-invariant CD1d-reactive T cells and
even iNKT cells can inhibit anti-tumor responses, including those of other iNKT in tumor
models (135-137), so CD1d-reactive T cell-related therapeutic approaches need to avoid
augmenting undesirable responses alongside protective ones. Although highly specific for
iNKT, based on lack of activity in Jα18 KO mice (lacking only the TCR J region used by
iNKT and a small number of other T cells; 1–7), there is a report of direct type-1 IFN
inducing activity of αGalCer on human liver cells (114), which could contribute either
positively or negatively where αGalCer is used therapeutically. A spectrum of αGalCer
analogues are now in preclinical development (e.g. 111,138), some of which will be
deployed in phase 1 trials imminently. Although, as expected, toxicity has been minimal, the
therapeutic potential of NKT-based approaches has not yet been fully realised in early
clincal trials. However, a number of recent immunological and clinical observations suggest
both that progress is being made and that various means to improve on NKT-related
therapies will become available in the near future (108–113). Indeed, a wide-ranging series
of approaches involving (or even bypassing) NKT cell populations are at various stages of
late-stage preclinical development.
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Highlights

There are 2 major CD1d-restricted T cell populations

Both CD1d-restricted T cell subsets can contribute to anti-tumor immunity

Both CD1d-restricted T cell subsets can “lose” against progressive tumors

Both CD1d-restricted T cell subsets defects can be reversed

Improved CD1d-restricted T cell therapies are nearing clinical trials
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Fig. 1. αGalCer stimulated NKT-dependent cytokine production is decreased in prostate cancer
model in vivo and in vitro
Left: 15 or 40 wk. old mice with prostate tumors (T) or normal controls (N) were stimulated
with αGalCer in vivo and serum cytokines analyzed 90 min. later. Right: Splenocytes of 40
weeks old tumor-bearing mice or normal controls were stimulated in vitro with 100 pg/ml
αGalCer and culture supernatants tested for IL-4 and IFNγ 24 hr. later. Cytokine levels of
unstimulated mice splenocytes were below detection limit.
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Fig. 2. Bypassing iNKT cell defects with CD1d cross-linking
iNKT defects in cancer shown in red. CD1d mAb can stimulate CD1d+ APC maturation and
IL-12 production (86,87). This can lead to activation of downstream Th1-type effectors such
as NK cells, resulting in anti-tumor (green) as well as anti-viral effects (87-89). Blocking of
Type 2 non- invariant CD1d-reactive T cells with Th2 bias may also contribute to net gain in
anti-tumor activity. FInally, a direct pro-apoptotic effect of CD1d mAb on CD1d+ tumor
cells has also been described (69), potentially augmenting this effect.
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Fig. 3. Simplified model for iNKT involvement in anti-tumor responses
iNKT cell defects in cancer shown in red. iNKT defects can be corrected (green). NKT cells
can contribute to anti-tumor responses through several mechanisms, but the dominant
protective pathway described to date depends on mutual stimulation of iNKT cells
interacting with CD1d+ APC, such as some myeloid dendritic cells in humans, most APC in
rodents.
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Table

Examples of Published and Ongoing iNKT-Targeted Clinical Trials

Published iNKT Trial Indication Ref.

αGalcer i.v. Advanced Cancer 49, 109

αGalcer-loaded monocyte-derived DC. Advanced Cancer 115

αGalcer-loaded monocyte-derived matured DC. Multiple Myeloma 116, 113

αGalcer-loaded monocyte-derived APC. Non-Small Cell Lung Cancer 117, 112

αGalcer-loaded monocyte-derived DC. Head & Neck Squamous Cell Cancer 118, 112

αGalcer-expanded iNKT-enriched T cells. Non-Small Cell Lung Cancer 120, 112

αGalcer-loaded APC & expanded iNKT. Head & Neck Squamous Cell Cancer 121, 112

Ongoing Clinical Trial Indication Status (04/2011)/Ref.

Anti-iNKTCR mAb purified & expanded iNKT. Stage IV Melanoma ongoing; n = 8

iNKT-expressed adenosine receptor agonist. Sickle Cell Disease ongoing; 134

αGalcer-loaded matured DC + lenalidomide. Multiple Myeloma ongoing; 113
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