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The notion that there is a connection between our diet and our 
health goes back to biblical times (1). Since the discovery that 
consumption of citrus fruit protected sailors from developing 
scurvy (2), many other relationships between diet and disease have 
been found (3). Nevertheless, for many chronic diseases, the link 
with dietary intake, if it exists, remains obscure.

Many research designs for studying diet–disease relationships 
have been used, including animal feeding experiments, migrant 
studies, ecological epidemiology studies (in which the unit of 
analysis is a population rather than an individual), and randomized 
trials, but the two most commonly used are the case–control and 
cohort study designs. In both studies, participants report their die-
tary intake using a self-report instrument, usually a food-frequency 
questionnaire (FFQ). This instrument aims to measure the usual 
(ie, average) daily intakes of foods and nutrients over the past sev-
eral months. However, intake estimates that are derived from this 
instrument invariably differ from the true intake values for several 
reasons: subjects may find it difficult to recall and average their 
intakes over the long term, reported intakes may be influenced by 
psychological factors such as social desirability, and consumption 
frequencies and average portion sizes of food groups (eg, cold 
breakfast cereal) may be imperfectly translated to specific nutrient 

amounts. Thus, in nutritional epidemiology studies that use self-
report instruments, the measured exposure (ie, the estimated 
intake) has an error that is often substantial and probably larger 
than that for most other exposures of common epidemiological 
interest.

Measurement error can be classified into two types: differential 
and nondifferential. Differential measurement error is the error 
that is related to the outcome of interest and can occur in a case–
control study when case subjects recall their diet with different 
error than control subjects, resulting in recall bias. This type of 
measurement error is less likely to occur in a cohort study because 
diet is usually reported long before the diagnosis of the disease. 
Here we concentrate on nondifferential measurement error—
error that is uncorrelated with disease—and our comments relate 
only to cohort studies. Measurement error in nutritional case–
control studies has not been studied extensively and requires a 
separate discussion.

Nondifferential measurement error in the measured exposure 
creates three problems: 1) bias in estimated relative risks; 2) loss of 
statistical power to detect diet–disease relationships; and 3) in 
some circumstances, invalidity of the conventional statistical tests 
for detecting those relationships. We discuss each problem in turn.
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Dietary measurement error creates serious challenges to reliably discovering new diet–disease associations in nutritional cohort 
studies. Such error causes substantial underestimation of relative risks and reduction of statistical power for detecting associa-
tions. On the basis of data from the Observing Protein and Energy Nutrition Study, we recommend the following approaches to 
deal with these problems. Regarding data analysis of cohort studies using food-frequency questionnaires, we recommend 1) 
using energy adjustment for relative risk estimation; 2) reporting estimates adjusted for measurement error along with the usual 
relative risk estimates, whenever possible (this requires data from a relevant, preferably internal, validation study in which  
participants report intakes using both the main instrument and a more detailed reference instrument such as a 24-hour recall or 
multiple-day food record); 3) performing statistical adjustment of relative risks, based on such validation data, if they exist, 
using univariate (only for energy-adjusted intakes such as densities or residuals) or multivariate regression calibration. We note 
that whereas unadjusted relative risk estimates are biased toward the null value, statistical significance tests of unadjusted  
relative risk estimates are approximately valid. Regarding study design, we recommend increasing the sample size to remedy 
loss of power; however, it is important to understand that this will often be an incomplete solution because the attenuated  
signal may be too small to distinguish from unmeasured confounding in the model relating disease to reported intake. Future 
work should be devoted to alleviating the problem of signal attenuation, possibly through the use of improved self-report  
instruments or by combining dietary biomarkers with self-report instruments.
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How Serious Are These Problems?
Bias in Relative Risks
In univariate disease models that assess associations between 
disease and a single dietary intake, “classical” measurement error 
in the exposure attenuates the estimated relative risks (ie, it brings 
them closer to the null value of 1.0). Classical measurement error 
is nondifferential additive error that is independent of the true 
exposure and has mean zero and constant variance. However, die-
tary measurement error is not usually classical, but instead involves 
bias that is related to true intake, in addition to random variation 
(4). The “flattened-slope phenomenon,” in which subjects with a 
high level of intake tend to underreport their intake and subjects 
with a low level of intake tend to overreport their intake, inflates 
the estimated relative risk (5), but the random variation attenuates 
it. In combination, random variation usually prevails, still leading 
to overall attenuation of the relative risk estimate (6).

How great is this attenuation? To answer this question, one 
needs to compare the flawed measurement with an exact measure of 
usual intake or, in the absence of an exact measure, a “proper refer-
ence instrument” (ie, an unbiased measure whose errors are unre-
lated to usual intake and to errors in the FFQ) (4). Unfortunately, 
few such measures of either type are available. Other self-report 
instruments, for example, 24-hour recalls, are biased and their  
errors are correlated with errors in the FFQ (6). The few measures 
that are known to be proper reference instruments are “recovery” 
biomarkers, which have a known quantitative time-associated rela-
tion between dietary intake and recovery (excretion) in human 
waste (7). One recovery biomarker is doubly labeled water for  
assessment of energy expenditure (8), which, assuming that the 
study subject is in energy balance, measures energy intake. Other 
recovery biomarkers are 24-hour urinary nitrogen excretion (9) and 
24-hour urinary potassium excretion, which are used to measure 
intakes of protein and potassium, respectively.

In 1999, the US National Cancer Institute initiated the 
Observing Protein and Energy Nutrition (OPEN) Study (10), in 
which 261 male and 223 female adult volunteers completed an 
FFQ (twice), a 24-hour recall (twice), one doubly labeled water 
assessment (twice in a subsample of 25 persons), and a 24-hour 
urinary potassium and urinary nitrogen assessments (twice each). 
From this study, it was possible to estimate the level of relative risk 
attenuation when using an FFQ as the main instrument in a cohort 
study for five exposures: energy, protein, potassium, protein den-
sity (the ratio of protein to energy), and potassium density.

Attenuation is quantified by the attenuation factor—a multipli-
cative factor that operates on the true regression coefficient in the 
disease model. The smaller the coefficient the greater the attenua-
tion of the relative risk estimate. For energy, the estimated atten-
uation factor (SE) was 0.08 (0.03) for men and 0.04 (0.03) for 
women. The attenuation factor (SE) for protein was 0.16 (0.03) 
and 0.14 (0.04) for men and women, respectively, for potassium, 
0.29 (0.04) and 0.23 (0.06), for protein density 0.40 (0.07) and 0.32 
(0.08), and for potassium density, 0.49 (0.07) and 0.57 (0.08)  
respectively (6). These attenuation factors would cause a true rela-
tive risk of 2.0 to be estimated, on average, as 1.03–1.06 for energy, 
1.10–1.12 for protein, 1.17–1.22 for potassium, 1.25–1.32 for 
protein density, and 1.40–1.48 for potassium density. Although the 

attenuation for the micronutrient potassium (namely, reduction to 
a relative risk of 1.17–1.22) appeared less extreme than that for the 
macronutrient protein (reduction to a relative risk of 1.10–1.12), it 
was nevertheless still substantial. Importantly, energy adjustment 
improved the attenuation: the attenuation coefficients for protein 
density and potassium density were larger (and therefore less 
extreme) than those for absolute protein and potassium. However, 
by any standard, these results indicate a considerable amount of 
attenuation that can be attributed to the dietary measurement 
error in an FFQ, and, if the problem is greatest for macronutri-
ents, it is also present for micronutrients.

Later we show that this concern about attenuation applies also 
to multivariable models that assess associations of disease with 
several error-prone dietary exposures.

Loss of Statistical Power
Accompanying the severe degree of attenuation is an equally severe 
loss of statistical power. Calculations based on data from the OPEN 
study indicate that to compensate for the loss of statistical power 
resulting from the use of an FFQ, one would need study samples 
that are 25–100 times larger for the energy exposure, 10–12 times 
larger for the protein exposure, and five to eight times larger for 
protein density. In cohort studies of rare diseases, these sample size 
inflations necessitate the conduct of enormous studies with hun-
dreds of thousands of participants.

Nutritional epidemiologists have indeed met this challenge by 
establishing large prospective cohort studies such as the Nurses’ 
Health Study (11), the European Prospective Investigation into 
Cancer and Nutrition (12), and the National Institutes of Health—
American Association of Retired Persons (NIH–AARP) Diet and 
Health Study (13), as well as by conducting meta-analyses of cohort 
studies [eg, (14)]. Later, we discuss whether increasing sample size 
adequately solves the problem of loss of statistical power.

Invalidity of Conventional Statistical Tests
For a single mismeasured exposure in the disease model, the usual 
statistical test of the null hypothesis (no exposure effect) remains 
theoretically valid even though the estimated relative risk is atten-
uated. However, in multivariable disease models with two or more 
mismeasured exposures, the validity of conventional statistical tests 
is no longer guaranteed. In this case, estimated relative risks may 
become attenuated, inflated, or can even change direction, and 
consequently, one cannot tell whether a statistically significant 
relative risk indicates a real association. This concern is important 
because investigators often include more than one nutritional 
exposure in disease models. For example, energy adjustment 
models are commonly used, where a nutrient of interest is included 
in some form, together with energy (15). Theoretically, the stan-
dard, residual, density, and partition energy-adjusted models 
(16,17) are all subject to this worrying concern.

This change in nature of the bias in the estimated relative risk 
in models with two or more mismeasured exposures arises from a 
phenomenon known as residual confounding. When two explana-
tory variables are in a model and one is mismeasured, then if the 
variables are correlated, the exactly measured one will “adopt” part 
of the effect of the mismeasured one. When there are two nutri-
tional intake variables and both are mismeasured, each will adopt a 
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part of the effect of the other, and the fractions of the effect that 
are adopted will depend on the relative sizes of the errors and the 
correlations between them.

To evaluate the extent of this problem, we need to calculate the 
fraction of the other variable’s effect that will be adopted by the expo-
sure of primary interest. We call this fraction the contamination 
factor. We have used OPEN study data to estimate these contamina-
tion factors for protein, energy, and potassium in combination with a 
variety of other nutrients. Table 1 displays estimated contamination 
factors for a model with protein density, potassium density, energy, 
and one other nutrient density, for a selection of nutrients, by sex. 
The estimated contamination factors are generally small, which 
means that, at worst, rather small fractions of the effects of one nutri-
tional variable are transferred to another because of residual con-
founding. Among the 60 estimated values in Table 1, the largest in 
absolute value is 20.20, the contamination of the carbohydrates effect 
from the protein effect. By using the false discovery rate for indepen-
dent estimates (18) to adjust for multiple comparisons, we found that 
not one of the 60 estimates is statistically significantly different from 
zero at the 5% level. (This test provides only a rough guide because 
the estimates in Table 1 are not mutually independent.)

In summary, the results in Table 1 suggest that residual con-
founding arising from multiple nutritional variables in the same 
model does not have a very large impact on relative risk estimates. 
However, there are two caveats. First, the standard errors of the 
estimated contamination factors are large (Table 1). Additional 
information from new validation studies [eg, (19,20)] will allow a 
more precise estimation of contamination factors. Second, the 
contamination factors that can be studied are currently limited to 

those relating to protein, potassium, energy, and one further nu-
trient. Contamination between combinations of nutrients that 
have no recovery biomarkers cannot be studied. Thus, recommen-
dations that are based on such data are founded on seriously 
incomplete information. However, the estimates in Table 1 repre-
sent the best information currently available.

Our summary statement, if true, is somewhat comforting, 
because it means that usual statistical significance tests of associa-
tions between dietary intakes and disease, unadjusted for measure-
ment error, will not be seriously biased. Such tests will not 
necessarily have adequate statistical power, and so null results 
should be treated with due caution. However, if a usual (unad-
justed) test detects a statistically significant association, then one 
need not worry that the result is mainly due to residual confound-
ing from another dietary variable in the model. In other words, the 
results in Table 1 provide good news regarding concern over false-
positive results, but no comfort regarding false negatives.

How Best to Deal With These Problems?
Statistical Analysis: Bias in Relative Risks
Given that estimated relative risks are biased because of dietary 
measurement error, how should researchers analyze and report 
their results? It seems obvious that the conventional relative risk 
estimates from the disease risk model (usually a logistic or Cox 
regression model), albeit biased, should be reported. Also, for FFQ 
data, the model should include some form of energy adjustment; 
otherwise, the attenuation is likely to be so severe as to preclude 
useful results. A more difficult issue is whether to report estimates 

Table 1. Contamination factors of selected nutrient and food densities with energy, protein density, and potassium density, estimated 
from Observing Protein and Energy Nutrition Study data*

Nutrient or food density† Sex Protein density (SE) Potassium density (SE) Energy (SE)

Energy Male 20.01 (0.03) 0.13 (0.05) NA
Female 0.03 (0.05) 0.10 (0.06) NA

Protein Male NA 20.01 (0.09) 0.08 (0.05)
Female NA 0.00 (0.10) 0.06 (0.05)

Potassium Male 20.05 (0.06) NA 0.04 (0.04)
Female 0.00 (0.07) NA 20.04 (0.05)

Total fat Male 20.03 (0.07) 0.00 (0.08) 0.05 (0.05)
Female 20.02 (0.08) 20.08 (0.10) 20.07 (0.05)

Saturated fat Male 20.03 (0.05) 20.04 (0.07) 0.10 (0.04)
Female 20.01 (0.06) 20.07 (0.08) 20.02 (0.04)

Carbohydrates Male 20.20 (0.09) 20.12 (0.12) 20.06 (0.07)
Female 20.07 (0.12) 20.19 (0.15) 0.14 (0.08)

Fiber Male 20.05 (0.06) 0.08 (0.08) 20.12 (0.04)
Female 0.10 (0.06) 0.12 (0.08) 0.00 (0.04)

Vitamin C Male 0.00 (0.03) 0.03 (0.04) 20.02 (0.02)
Female 0.09 (0.04) 0.05 (0.05) 20.03 (0.03)

Vitamin E Male 0.04 (0.05) 0.07 (0.06) 20.05 (0.03)
Female 0.03 (0.07) 0.14 (0.08) 0.00 (0.04)

Sodium Male 0.04 (0.10) 0.10 (0.13) 20.17 (0.07)
Female 0.08 (0.12) 20.06 (0.15) 0.01 (0.08)

Fruits and vegetables Male 0.00 (0.04) 0.09 (0.06) 20.03 (0.03)
Female 0.13 (0.05) 0.06 (0.07) 20.04 (0.03)

* Contamination factors for the first three nutrients or food densities (energy, protein, and potassium) are for a disease model with the following three explanatory 
variables: food-frequency questionnaire (FFQ) protein density, FFQ potassium density, and FFQ energy. For the remaining nutrients or food densities, the 
contamination factors are for a disease model with four explanatory variables: FFQ protein density, potassium density, energy, and the selected nutrient density. 
NA = not applicable.

† All nutritional variables were log-transformed.
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that are adjusted, in some way, for measurement error. The 
method of regression calibration (21,22) has often been used to 
provide such adjustment. However, implementation of this method 
is not straightforward, as we now explain.

Implementing regression calibration requires knowledge of the 
relationship between the true value and the observed value, as do 
other methods of statistical adjustment for measurement error. 
Such knowledge can be obtained from a specially conducted valida-
tion study, in which a random subsample of participants in the main 
study complete a proper reference instrument in addition to the 
FFQ. The reference instrument usually used in the validation study 
is a more detailed self-report, such as a multiple-day food record or 
24-hour recall. Unfortunately, these instruments do not meet the 
requirements for a proper reference instrument because their  
measurement errors are related to true intake and are correlated 
with those of the FFQ (6,23). The question therefore arises: Should 
researchers perform regression calibration with an imperfect refer-
ence instrument, such as a 24-hour recall, and report the resulting 
adjusted relative risk estimates, or should they report only unad-
justed relative risks together with a statement that the estimates are 
biased, most probably attenuated? We examined this question by 
using data from the OPEN study to compare attenuation and con-
tamination factors based on a 24-hour recall reference instrument 
with those based on a biomarker reference instrument. We first 
explain the relevance of this comparison to the stated question.

A commonly used form of regression calibration adjustment that 
was proposed by Rosner et al. (21) can be implemented by first esti-
mating the attenuation and contamination factors on an appropriate 
scale in which the reference instrument and FFQ are approximately 
linearly related, and then applying these factors to the unadjusted 
relative risk estimates to calculate the adjusted relative risks. Thus, 
using OPEN data, we calculated the attenuation and contamination 
factors using a 24-hour recall reference instrument and compared 
them with the values obtained using recovery biomarkers. If the 
factors calculated using a 24-hour recall appear similar to those 
calculated using recovery biomarkers, then the adjusted risk esti-
mates based on regression calibration using a 24-hour recall refer-
ence instrument will also be similar to those that would have been 
obtained had a proper reference instrument been used. Table 2 and 
Supplementary Table 1 (available online) present such a comparison 
for attenuation and contamination factors, respectively.

Table 2 shows that the 24-hour recall–based attenuation factors 
for energy are overestimated compared with those based on recov-
ery biomarkers; however, for protein density and potassium den-
sity, the differences between the 24-hour recall–based and recovery 
biomarker–based attenuation factors are smaller than those for 
energy, and there is no overall trend toward larger values using the 
24-hour recall as reference. For protein density, the differences 
between biomarker-based and 24-hour recall–based estimates are 
in different directions for men and women (although these differ-
ences are not nominally statistically significant and could be 
chance fluctuations); for potassium density, the differences between 
biomarker-based and 24-hour recall–based estimates are small.

The 24-hour recall–based contamination factors tend to have 
higher absolute values compared with recovery biomarker–based 
contamination factors (Supplementary Table 1, available online). 
This tendency is not very marked; for example, the mean absolute 

value for 24-hour recall–based factors is 0.07 and the mean abso-
lute value for biomarker-based factors is 0.06. However, 13 of 60 
24-hour recall–based factors are nominally statistically significant 
at the 5% level, and the three factors with the lowest P values—
protein density with potassium density for women, carbohydrate 
density with protein density for men, and energy with potassium 
density for men—are statistically significant at the 5% level even 
after the false discovery rate correction. It therefore appears that 
use of the 24-hour recall as the reference instrument can occasion-
ally lead to seriously inflated estimates of the contamination factor.

How should we translate into practical recommendations the 
similarities and differences between 24-hour recall–based factors 
and recovery biomarker–based factors shown in Table 2 and 
Supplementary Table 1 (available online)? We have conducted a 
series of calculations that postulate scenarios involving different 
combinations of true relative risks, and to those scenarios we ap-
plied the 24-hour recall–based factors to evaluate the size of bias 
expected in the estimates of these relative risks. We compared 
three possible approaches to relative risk estimation: 1) no adjust-
ment for measurement error; 2) a univariate measurement error 
adjustment for each relative risk estimate; and 3) a multivariate 
measurement error adjustment for the set of relative risks. In the 
univariate adjustment method, we ignored contamination factors, 
assuming them to be close to zero. This assumption is motivated 
by the small values in Table 1 and because the 24-hour recall some-
times misestimates a contamination factor (Supplementary Table 1, 
available online). The univariate measurement error adjustment is 
simple, requiring only division of the unadjusted relative risk esti-
mate by the 24-hour recall–based attenuation factor for that vari-
able. The multivariate adjustment method uses the full set of 
24-hour recall–based attenuation and contamination factors, as 
described by Rosner et al. (21). We asked whether either adjust-
ment method, based on a 24-hour recall reference, reduces the  
bias in estimated relative risks compared with no adjustment,  
and if so, which adjustment method performs better. (See the 
Supplementary Material [available online] for a description of the 
design and results of these investigations.) From the results 

Table 2. Attenuation factors for energy, protein density, and 
potassium density estimated using recovery biomarkers vs using 
a 24-hour recall as the reference instrument, results from the 
Observing Protein and Energy Nutrition Study

Nutrient* Sex

Recovery  
biomarker  

based† (SE)
24-h Recall  
based‡ (SE)

Energy Male 0.08 (0.03) 0.21 (0.04)
Female 0.03 (0.03) 0.09 (0.05)

Protein density Male 0.43 (0.07) 0.35 (0.07)
Female 0.33 (0.08) 0.45 (0.06)

Potassium density Male 0.57 (0.08) 0.59 (0.05)
Female 0.61 (0.08) 0.62 (0.07)

* All nutritional variables were log-transformed. 

† Based on a multivariable disease model with food-frequency questionnaire 
(FFQ) energy, protein density, and potassium density as explanatory vari-
ables. Note that the values for energy and protein density are not identical to 
the attenuation factors for these variables that are reported in the text. This 
is because the values cited in the text were those for a univariate model.

‡ Based on a multivariate disease model with FFQ energy, protein density, and 
potassium density as explanatory variables.
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obtained, we conclude that both the univariate and multivariate 
methods, on average, improve estimation compared with no  
adjustment. Although the univariate method performed somewhat 
better, on average, than the multivariate method for men, there 
was little difference between the methods for women. We repeat 
the caveat that these calculations were limited to models that 
include protein, potassium, and energy.

As explained in more detail in the Supplementary Material 
(available online), our current recommendation for nutritional 
cohort studies that use an FFQ as the main instrument and have an 
internal validation study with a self-report reference instrument 
(eg, a 24-hour recall or multiple-day food record) is to use either 
the univariate or multivariate method of adjustment in reporting 
relative risks. We expect that most investigators would prefer  
using the simpler univariate method, which, on the basis of current 
evidence, is acceptable. Note, however, that our recommendation 
refers to energy-adjusted intake variables used in the density or 
residual models. Univariate adjustment for the unadjusted intakes 
used in the standard and partition models is inappropriate because 
the attenuation factor for the nutrient would be too small; the 
multivariate adjustment is recommended in this case.

Note that in implementing the regression calibration adjust-
ments that we are recommending, the attenuation and contamina-
tion factors should be estimated from the validation study after 
adjustment for the (exactly measured) confounders included in the 
disease model. For example, for the univariate method, the atten-
uation factor is estimated as the linear slope of the reference  
instrument value on the FFQ value in a multiple regression that 
also includes the confounders. Other practical issues regarding the 
regression calibration adjustment, including notes on the design of 
appropriate validation studies and the special design and analysis 
requirements that arise when the nutrient or food of interest is 
consumed seasonally or episodically, may be found at the end of 
the Supplementary Material (available online).

For cohort studies that do not include an internal validation 
study, investigators should try to obtain information from valida-
tion studies of other cohorts that are conducted in a population 
similar to the study population of interest and with a similar main 
study instrument. The measurement error adjustment should be 
based on this external information.

Study Design: Loss of Power and Signal Attenuation
We have shown that regression calibration can alleviate the biased 
estimation caused by dietary measurement error, but unfortu-
nately, it usually does not recover the lost statistical power. In fact, 
when using the univariate adjustment, the ratio of the adjusted risk 
estimate to its standard error will be somewhat smaller than that 
for the unadjusted estimate, and the P value, larger. Assuming 
small contamination effects, this is also likely to be true for the 
multivariate adjustment method.

The classical remedy to a loss of statistical power is to increase 
the study sample size. As mentioned earlier, several very large  
nutritional observational cohort studies have been conducted 
(11–13). A recent report from one of those studies, the NIH–
AARP cohort study (24), illustrates this approach to recovering 
lost statistical power. The study report included 188 736 postmen-
opausal women, 3501 of whom were diagnosed with breast cancer 

during follow-up. The estimated energy-adjusted hazard ratio for 
breast cancer for the highest vs lowest quintile of percent energy 
from total fat was 1.11 (95% confidence interval [CI] = 1.00 to 
1.24) and the test for trend across quintiles was statistically signif-
icant (Ptrend = .017). However, as the authors note in their discus-
sion, unmeasured or incompletely ascertained confounders could 
have influenced the results.

The NIH–AARP report illustrates a general principle: When 
relative risk attenuation due to measurement error is severe, the 
usual remedy of increasing sample size does not necessarily solve 
the problems of interpretation caused by measurement error. As 
demonstrated in the OPEN study, dietary measurement error can 
cause attenuation of sizable relative risks to observed values of 1.25 
or less. When the unadjusted relative risk is this low, it becomes 
uncertain whether the observed association, even if statistically 
significant, is due to the exposure or to unmeasured confounders 
(see Supplementary Material [available online] for more details). 
With observed associations this weak, the effects of unmeasured 
confounders can become dominant, and, unlike random variation, 
these effects cannot be removed by increasing the sample size. 
This problem arises directly from the “signal attenuation” that is 
familiar to nutritional epidemiologists. Increasing the sample size 
can recover the loss of power, but will not lessen the attenuation of 
the signal.

Another common approach for dealing with low statistical 
power is to conduct a meta-analysis of available cohort studies as 
has been done in studying the association between dietary fat 
intake and breast cancer (14,25,26). However, several investigators 
have cautioned against overinterpreting apparently highly precise 
results reported from meta-analyses of observational studies, for 
reasons similar to the “signal attenuation” argument elucidated 
above. For example, Egger et al. (27) warn that confounding can 
distort findings from observational studies and of the consequent 
“danger that meta-analyses of observational data produce very 
precise but equally spurious results.” They conclude that “the sta-
tistical combination of data should not therefore be a prominent 
component of reviews of observational studies.”

Nutritional epidemiologists must therefore turn their attention 
to addressing signal attenuation as well as low statistical power. 
Several steps toward this aim are already being taken. First, new 
self-report instruments are being developed that could be used in 
large studies and that may have improved measurement character-
istics over those of the FFQ. Three studies (28–30) suggest some 
improvement in the ability to detect a disease–diet association 
when a more detailed instrument is used compared with the FFQ. 
In these studies, statistically significant associations between die-
tary intakes and disease were found using 7-day diaries or multiple-
day food records, whereas the association as measured through an 
FFQ did not achieve statistical significance. Previously, the barrier 
to using such instruments in large studies has been the labor inten-
sive and costly coding of the records. Now, automated versions of 
a 24-hour recall (31,32) promise to overcome that barrier, and 
pilot studies of their use are in progress.

Schatzkin et al. (33) used data from OPEN to evaluate the 
potential gain from the use of a 24-hour recall as the main instru-
ment in a cohort study. They estimated, using mathematical 
modeling for four repeats of a 24-hour recall, attenuation factors 
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for protein density of 0.50 (SE = 0.09) for men and 0.40  
(SE = 0.13) for women compared with values for a single FFQ of 
0.40 (SE = 0.07) for men and 0.32 (SE = 0.08) for women. Thus, 
for energy-adjusted components, although one should not expect 
dramatic improvements in attenuation and statistical power from 
the use of multiple repeats of an automated 24-hour recall, there 
is reason to hope that there will be some worthwhile gains over 
the use of an FFQ. Moreover, if new cohort studies were designed 
to include repeat 24-hour recalls plus an FFQ determination, 
further improvements in attenuation may be seen from combining 
information from the two instruments. A method for combining 
such information has been described for intakes of a single nu-
trient or a single food that is “episodically consumed” (ie, not 
typically consumed every day by all in the population) (34). This 
method now requires extension to models with multiple nutrients 
and foods.

A second way of addressing the signal attenuation is to  
combine information from self-report instruments with measure-
ments of dietary biomarkers. We have already mentioned the few 
recovery biomarkers that have been used to study the measure-
ment error in self-report instruments. However, there is a much 
larger class of dietary biomarkers—the so-called “concentration” 
biomarkers (7)—which are known to be correlated with dietary 
intakes of different foods or nutrients, although they do not  
represent the exact level of intake. These include serum caroten-
oids, lipids, and vitamins. Freedman et al. (35) have proposed 
combining measurements of these biomarkers with information 
from self-reports to strengthen the signal and increase statistical 
power in analyses of diet–disease relationships. They have  
recently demonstrated this approach in an analysis of the associ-
ation between dietary lutein and zeaxanthin intakes and nuclear 
cataracts (36). In their example, the estimated odds ratio for 
disease using the FFQ was 0.77 compared with an estimated 
odds ratio of 0.68 using the combined FFQ–biomarker measure. 
This difference in odds ratios represented an increase of 50% in 
the signal (the log odds ratio increased in absolute value from 
0.26 to 0.39).

With a similar objective of incorporating biomarkers into die-
tary assessments, Prentice et al. (37) have proposed a large feeding 
study in which participants consume their usual diet, and an array 
of biomarkers is measured at study baseline and conclusion. The 
data that accrue may allow a rational combination of a wider range 
of biomarkers with information from self-reports, potentially  
further advancing progress in combating the research problems 
caused by dietary measurement error.

Concluding Remarks
In summary, we have provided recommendations for statistical 
analysis to deal with the biased estimation of relative risks that arises 
from dietary measurement error. In addition, with regard to study 
design, we have highlighted the dual problems of loss of statistical 
power and signal attenuation. The statistical analysis recommenda-
tions are based on data from OPEN. When information from  
recently completed and currently active validation studies using 
recovery biomarkers becomes available, our recommendations can 
be checked and, if necessary, updated. Signal attenuation represents 

the major obstacle to progress, and thus the emphasis of future work 
should be on alleviating it.
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