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SUMMARY
Regulatory conflicts occur when two signals which individually trigger opposite cellular responses
are present simultaneously. Here, we investigate regulatory conflicts in the bacterial response to
antibiotic combinations. We use an Escherichia coli promoter-GFP library to study the
transcriptional response of many promoters to either additive or antagonistic drug pairs at fine
two-dimensional resolution of drug concentration. Surprisingly, we find that this dataset can be
characterized as a linear sum of only two principal components. Component one, accounting for
over 70% of the response, represents the response to growth inhibition by the drugs. Component
two describes how regulatory conflicts are resolved. For the additive drug pair, conflicts are
resolved by linearly interpolating the single drug responses, while for the antagonistic drug pair,
the growth-limiting drug dominates the response. Importantly, for a given drug pair, the same
conflict resolution strategy applies to almost all genes. These results provide a recipe for
predicting gene expression responses to antibiotic combinations.

INTRODUCTION
Cells respond to signals present in their environment by altering the transcription levels of
their genes (Alberts, 2008; Lopez-Maury et al., 2008). Global gene regulatory responses to
changes in the cellular environment have been studied for many different organisms and
environments. In particular, transcriptional responses to a wide range of specific signaling
molecules as well as more general signals such as nutrients, stress conditions, and drugs
have been characterized in great detail (Camilli and Bassler, 2006; Davies et al., 2009;
Dwyer et al., 2007; Hughes et al., 2000; Kohanski et al., 2010; Kohanski et al., 2007;
Kohanski et al., 2008; Kolodkin-Gal et al., 2008; Lee et al., 2010; Mesak et al., 2010; Shaw
et al., 2003). In their natural environments, cells are usually exposed to multiple signals
simultaneously. Though the responses of specific genes to combinations of signals have
been studied (Geva-Zatorsky et al., 2010; Kaplan et al., 2008; Kuhlman et al., 2007; Setty et
al., 2003), there has not been a systematic genome-wide investigation into responses to
combined signals.
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The number of possible combinations of signals a cell can be exposed to is huge even if we
consider only a relatively small set of signals: for a set of N different signals, the number of
pair-wise combinations scales as N2 while the number of possible combinations of m signals
scales as Nm. In contrast, the information processing capabilities of the cellular machinery
which has to detect and respond to these signals are probably rather limited. Hence, it is
implausible that cells have evolved specific responses for each possible combination and
each regulated gene – it is more likely that their response to a combination of signals is
based on their responses to the individual signals. It is therefore possible that relatively
simple, general rules connecting the cellular response to individual signals with the response
to a combination of signals may exist. This possibility is highlighted by a recent study which
revealed that the temporal response of 15 different protein levels in a human lung cancer cell
line to combinations of anticancer drugs is a linear superposition of the individual drug
responses (Geva-Zatorsky et al., 2010). However, to reveal general rules, these issues will
need to be explored in a range of different model systems, including prokaryotes. Moreover,
genome-wide studies of drug combination effects at fine two-dimensional resolution of drug
concentration will be needed to achieve this goal. If it is indeed possible to identify rules that
describe how the response to a combination of signals or drugs is determined by the
responses to each of the individual signals or drugs, this could be extremely helpful in
understanding complex cellular responses in situations such as apoptosis where many
competing signals are often present (Gaudet et al., 2005; Janes et al., 2005; Janes et al.,
2006) and for the rational design of combination therapy.

The general question we set out to address is how gene regulatory conflicts are resolved. We
define a gene regulatory conflict as a situation in which a gene is regulated in opposite
directions by two signals or drugs present in a combination. For example, drug A might lead
to the down-regulation of a gene while drug B leads to its up-regulation (Figure 1A). The
response to the drug combination will certainly depend on the ratio of the two drug
concentrations, but there are many possibilities for how the two responses could be
combined. For example, cells might linearly interpolate (‘average’) the conflicting
individual drug responses (Figure 1B). Alternatively, they might respond to only one of the
drugs, e.g. the drug that is present at the higher effective dose (‘prioritized response’, Figure
1B). The prioritized response may be biased, i.e. genes may respond exclusively to one of
the drugs even when it is only present at relatively low dosage (Figure 1B, see also Geva-
Zatorsky et al., 2010). Finally, it is not clear whether the entire population of cells will
respond uniformly to the drug combination: for example, individual cells could decide
stochastically to prioritize their response to either one of the drugs (Figure 1C).

In bacteria, different antibiotics are known to elicit specific gene regulation programs that
often affect a considerable fraction of the genome (Brazas and Hancock, 2005; Davies et al.,
2006; Fajardo and Martinez, 2008; Goh et al., 2002; Kohanski et al., 2007; Kohanski et al.,
2008; Linares et al., 2006; Shaw et al., 2003; Tsui et al., 2004; Yim et al., 2007). We
therefore expect that many genes will be subject to regulatory conflicts in the presence of
multiple different antibiotics, making this a promising model system for the investigation of
conflict resolution in gene regulation. We used fluorescent reporters in Escherichia coli to
measure the transcription of about 100 genes in response to a complete two-dimensional
gradient of two different pairs of antibiotics which, at the level of growth inhibition, show
additive and antagonistic drug interactions, respectively (Bliss, 1939; Chait et al., 2007;
Loewe, 1928, 1953; Yeh and Kishony, 2007). By simultaneously measuring the effect of the
drugs on growth rate we separated drug-specific effects on gene expression from nonspecific
contributions through growth rate changes. We then applied Principal Component Analysis
to identify characteristic ways in which cells respond to drug combinations.
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RESULTS
Antibiotic combinations lead to gene regulatory conflicts

To identify conflicts in gene regulation, we first investigated the bacterial gene expression
response to three different bacteriostatic antibiotics applied individually: trimethoprim
(TMP), spiramycin (SPR), and tetracycline (TET; Table 1). This selection allowed us to
compare pairs of drugs with similar modes of action (TET and SPR) and unrelated modes of
action (TMP and SPR). We used an automated robotic system and an E. coli library of
fluorescent transcriptional reporter strains (Shachrai et al., 2010; Zaslaver et al., 2006;
Zaslaver et al., 2009), focusing on a genome-wide sample of 103 promoters which represent
key cellular functions including metabolism, stress response, DNA repair, and ribosome
synthesis (Table S1). We simultaneously measured changes in gene expression and growth
rate across a range of antibiotic concentrations. The robotic system measured optical density
and GFP fluorescence at multiple time points during exponential phase. We used antibiotic
concentrations that slow but do not completely stop growth since our main interest here is
the cellular response in conditions where key cell functions are not too severely impaired.
The exponential growth rate was obtained from the increase in OD over time (Figure 2A)
and gene expression level changes (γ) were obtained from the effect of the drug on the
average GFP signal per OD during exponential phase (γ = [GFP/OD] / [GFP/OD]no drug;
Figure 2A and Experimental Procedures). These simultaneous measurements enabled us to
compare the expression level of each promoter in the presence of different drugs at the same
level of growth inhibition (Figure 2B).

When the responses of a given gene to different antibiotics are compared, several
qualitatively different cases appear: some promoters show no response to either of the two
drugs, e.g. minC which plays a role in cell division (Keseler et al., 2009) responds to neither
TMP nor SPR (Figure 2B). Other promoters respond to only one of the drugs, e.g. pheL
which plays a role in amino acid biosynthesis (response exclusively to TMP; Figure 2B).
Promoters that respond to both drugs can show a consistent response in which the sign of the
regulation (up or down) is the same for both drugs. For example, this is the case for soda
which plays a role in the oxidative stress response (Figure 2B). However, there are also
promoters showing conflicting responses: up-regulated by one drug and down-regulated by
the other (e.g., cspA, a major cold shock protein, Figure 2B).

We next asked how frequent conflicting responses to antibiotic pairs are. To this end, we
compared the gene regulation responses to antibiotics at a fixed level of growth inhibition
(normalized growth rate g=0.5, Figure 2C,D, Table S1). Looking globally at the gene
expression response of all promoters in our genome-wide sample, we found that conflicting
responses (in which the directions of gene regulation are opposite) occur almost as often as
consistent responses (in which the direction of gene regulation is the same) for the TMP-
SPR drug pair (compare density of promoters in gray and white quadrants, respectively, in
Figure 2C). In contrast, for the TET-SPR pair the majority of promoters shows consistent
responses to both antibiotics, with a smaller number of promoters showing conflicts (e.g.
slp, dnaX, Figure 2D). TET and SPR are both ribosomal inhibitors, though they act at
different locations (Table 1), while TMP acts through inhibition of folic acid synthesis (folA,
dihydrofolate reductase, DHFR). These observations are in agreement with the simple
expectation that drugs with different modes of action might present more cases of
conflicting responses.

Different promoters show a wide range of regulatory responses to antibiotic pairs
As gene expression responses to different antibiotics can differ substantially (Figure 2C), we
now face the question of how cells respond when both drugs are present simultaneously.
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Even for promoters that do not show regulatory conflicts the response to the drug
combination is unclear: do promoters which show no response to the individual drugs (e.g.
minC, Figure 2B) respond to the combination? Do consistent responses, where a promoter is
e.g. up-regulated in response to both drugs alone typically lead to an amplified up-regulation
in the combination, as would be the case if a ‘separation of variables’ scenario applied
(Kaplan et al., 2008)? To address these questions, we measured the regulatory response of
our genome-wide sample of promoters to the simultaneous presence of two antibiotics. To
resolve the effects of different drug concentration ratios, we set up two-dimensional drug
concentration matrices on 96-well plates and determined growth rates and gene expression
levels in these conditions (103 × 96 = 9,888 time curves, Figure 3A, Experimental
Procedures). We performed these measurements for the antibiotic pair TMP-SPR which
triggers many gene regulatory conflicts (Figure 2C) as well as the antibiotic pair TET-SPR
which has fewer conflicts (cf. Figure 2C,D). These two drug pairs show different drug
interactions (Bliss, 1939; Loewe, 1928, 1953): while TET and SPR show an additive
interaction, i.e. their effect on growth when combined is essentially as if they were the same
drug, the TMP-SPR combination shows an antagonistic interaction, i.e. at high
concentrations of one drug, adding the other one has little effect on growth (Chait et al.,
2007; Yeh et al., 2006).

We observed a wide spectrum of gene expression responses to the TMP-SPR combination
(Figures 3B and S1). In general, the level of promoter expression in response to a
combination of drugs lies between the expression levels it shows in the individual drugs,
whether the drug actions on the promoter are in conflict (e.g. cspA in Figure 3B, hdeA, cysB
in Figure S1A), consistent (e.g. sodA in Figure 3B, nhaA, pykF in Figure S1B), or give no
response (e.g. minC in Figure 3B, tolC, malZ in Figure S1C). For promoters which respond
to only one of the drugs when applied individually, the response to the drug combination is
usually similar to the response to this drug alone (e.g. pheL in Figure 3D, serA, bioB in
Figure S1D). The TET-SPR drug combination shows broadly similar behavior (Figure S2).

The complete response to antibiotic combinations is explained by just few principal
components

Our next goal was to identify general features of the response to these drug pairs. We used
Principal Component Analysis (PCA) to analyze the response of our genome-wide sample
of promoters to the antibiotic pairs. PCA exposes the main modes of responses by removing
redundancy and correlated data (Halabi et al., 2009; Jolliffe, 1986; Pearson, 1901); it
represents the response of each promoter as a sum of a few basic ‘principal component’ (PC)
modes of response. If promoters respond in similar ways, the complete genome-wide sample
of Figure 3 could potentially be represented by only few basic response modes.

We performed PCA on the gene expression response data sets for the TMP-SPR and TET-
SPR drug combinations separately. In this analysis, we treated the expression levels

 at different points in the two-dimensional drug concentration space as
variables (Figure 3A,C) and each different promoter X as an observation (Experimental
Procedures). For both drug pairs, we find that almost all of the variability in the data (97%)
is explained by just three PCs, with the first one capturing more than 70% of the variability,
the second less than 25% and the third about 2% (Figure 3C). Each gene expression
response Ex to the drug combinations can therefore be presented as a linear superposition of
only a few PCs:  (where the same EI, EII, and EIII, are used
for all promoters, Figure 3C). This reduction in the number of variables means that the
complete response of each promoter to the full two-dimensional drug matrix can be
specified by just three numbers or ‘scores’,  – a great simplification compared to the
original representation in which each promoter’s response is described by the full set of
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expression levels at 96 positions in the two-dimensional drug concentration space
 (Figure 3A). Overall, this analysis revealed that the gene regulation response

to antibiotic pairs has a relatively simple structure in that the responses of different
promoters are largely captured by just two or three numbers.

What is the biological meaning of the first PC? Since the drugs affect growth rate which in
turn systematically affects gene expression (Brauer et al., 2008; Bremer and Dennis, 1996;
Fazio et al., 2008; Gonzalez et al., 2002; Hua et al., 2004; Levy and Barkai, 2009; Scott et
al., 2010), we compared the different PCs with the measured growth inhibition in the two-
dimensional drug treatment. We found that for both drug pairs considered here, the first PC
(Figure 4A) tracks the growth rate contour in the two-dimensional drug concentration space
(Figure 4B) remarkably precisely. Plotting the first PC along lines of constant growth rate
shows that it is essentially constant along such growth rate isoboles (Figure 4C). This
finding implies that the first PC can be approximately written as a function of only the
growth rate: EI = F(g). This observation strongly suggests that the first PC captures the
physiologically determined response to growth inhibition. Thus, for the two combinations
we have studied, a large part of the gene regulation response to drug combinations is
explained by growth inhibition rather than the specific effects of the drugs.

To remove growth rate dependent regulation from our analysis, we analyzed expression
level changes along fixed growth rate isoboles in the two drug space. To parameterize the
position along an isobole in a combination of two drugs A and B, we use a dimensionless
measure – the ‘effective drug fraction’ – which measures the relative contributions of the
drugs to growth inhibition (Experimental Procedures). This measure equals zero when only
drug A is present, one when only drug B is present and one half when both drugs are present
at concentrations leading to matched growth inhibition (Figure 4C). Using this growth
independent presentation, we next focused on the 2nd PC as well as the response of
individual promoters.

Cells resolve gene regulatory conflicts by prioritizing or averaging
For both drug pairs, the 2nd PC varies from negative to positive values along a growth rate
isobole (Figure 5A,B). Such a sign change in the expression level is the defining
characteristic of a regulatory conflict. Consequently, this observation suggests that the 2nd

PC captures the general way in which cells resolve gene regulatory conflicts for a specific
drug pair. Thus, it describes how promoters that are down-regulated in one drug, but up-
regulated in the other respond to the simultaneous presence of both drugs at different ratios.
The 2nd PC accordingly explains a larger fraction of the gene expression response for the
TMP-SPR combination (20%, Figure 3C) which shows many conflicts (Figure 2C), than for
the TET-SPR combination (11%, Figure 3C) which shows considerably fewer conflicts
(Figure 2D).

In the TMP-SPR combination, the second PC shows a relatively sharp transition from a low
to a high gene expression level when TMP is increasingly replaced with SPR at fixed growth
rate (Figure 5A). This transition is not perfectly step-like but occurs in a relatively narrow
region in the two-dimensional drug concentration space, dividing this space into two
domains that show qualitatively different responses. These are the characteristic features of a
prioritized response (cf. Figure 1B). In particular, the response to the drug combination is
similar to the response to the drug that has the stronger effect on growth at each given
concentration ratio. In contrast, in the TET-SPR combination, the second PC along a growth
rate isobole shows a much smoother transition, well-approximated by a straight line as TET
is continuously replaced with SPR (Figure 5B) – the characteristic behavior of an averaged
response (cf. Figure 1B). The fact that the second component captures most of the variability
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in the data indicates that the solution of regulation conflicts for a given drug pair is very
similar in all promoters. Indeed, almost all promoters in our genome-wide sample with clear
gene regulatory conflicts show the same characteristic resolution of these conflicts: in TMP-
SPR, 42 out of 44 promoters with clear regulatory conflict show prioritization, and in TET-
SPR all promoters with conflicts show averaging (see Figures 5C,D and S3). Resolution of
regulation conflicts is not promoter specific; it is similar across different promoters genome-
wide.

Response to antibiotic pairs is rarely biased towards either of the two drugs
We next looked for individual promoters whose prioritized responses are biased towards one
of the drugs (cf. Figure 1B). For the TET-SPR pair, there are no such biased responses since
gene regulatory conflicts are smoothly averaged for these drugs. For the TMP-SPR pair,
however, we made use of the fact that the expression level along a growth rate isobole is
well-fit by a sigmoidal function for most promoters. The sigmoidal fit defines a transition
point x0 for each promoter (Figure 5E, inset; Experimental Procedures). We found that the
vast majority of promoters transitions near x0 = 1/2, where each of the drugs’ individual
contribution to growth inhibition is equal (Figure 5E). Thus, the relative impact of these
drugs on growth inhibition coincides with their relative impact on the gene expression
response; the cells primarily respond to the drug that inhibits their growth more severely.

We did find a small number of promoters that show a regulatory response that is biased
towards one of the drugs. In particular, a few promoters are almost fully biased towards
TMP (bars near x0 = 1 in Figure 5E), i.e. they show the response to TMP even if SPR is
present at concentrations that have a stronger effect on growth. These promoters include
hipB which controls a toxin-antitoxin system and the promoters serC, aroH, pheL, and serA
(Figure S4) which all play a role in amino acid biosynthesis (Keseler et al., 2009). The only
promoter in our data set that is biased towards SPR is that of the antitoxin dinJ. In summary,
these observations show that most promoters show an unbiased prioritized response (i.e.
they respond to the drug with the greater effect on growth), with the notable exception of
some genes in amino acid metabolism which respond almost exclusively to the TMP signal.

A few promoters show combination-specific responses to antibiotic combinations
The fact that most promoters show stereotypical behaviors captured by the first two PCs
enabled us to identify promoters which show responses to the two drug environment that
deviate from this norm. To this end, we calculated the scores  of the different
PCs for each promoter (Figure 3C). These scores reflect how strongly each PC contributes to
the promoter’s response. Promoters with responses that are not captured by the first two PCs
have large scores for the higher PCs, such as the third PC (Figure 6A). The third PC exhibits
a clear peak in the TMP-SPR drug combination, i.e. unlike the first two PCs it describes
expression levels in the drug combination that do not fall between the expression levels in
the individual drugs (Figure 6B). This observation suggests that the third PC captures the
drug combination-specific response of promoters whose expression levels in the drug
combination lie outside the range bounded by the expression levels in the individual drugs.
Indeed, promoters with a large score for the third PC show such drug combination-specific
responses (Figures 6C,D and S5A).

An example is the lexA promoter which controls transcription of the master regulator of the
DNA damage (‘SOS’) response (Walker, 1996). This promoter is up-regulated in response
to TMP (Mesak et al., 2008; Walker, 1996) and slightly up-regulated in response to SPR, but
shows no up-regulation or even a slight down-regulation in the drug combination (Figure
6C). This observation could be explained by the idea that adding translation inhibitors like
SPR to TMP leads to a reduction in the amount of DNA damage in the cell. Another
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interesting case is slp, a promoter known to respond to starvation conditions (Keseler et al.,
2009): slp is down-regulated in response to SPR and slightly down-regulated at higher
concentrations of TMP, but shows up-regulation in a combination of both drugs (Figure 6D).
The fact that this promoter is regulated by multiple transcription factors (GadW, GadX, and
possibly MarA) suggests that such drug combination-specific responses usually require the
integration of more than one regulatory input. Consistent with this view the glyA promoter,
which shows a combination-specific response (Figures 6A, S5A), is regulated by two
different transcription factors (PurR and MetR; Keseler et al., 2009). This view is further
supported by the fact that the only promoter which shows a combination-specific response to
the TET-SPR combination (uspA, Figure S5B) is also regulated by two different
transcription factors. In summary, we found that only few promoters do not strictly follow
the general rule set by the 1st and 2nd PCs but instead show drug combination-specific
responses. These promoters often have multiple transcriptional regulatory inputs. Identifying
such genes and their regulation may be important to advance our understanding of cellular
responses to drug combinations.

Increased cell-to-cell variability in gene expression occurs at the transition point of a
prioritized response

We have shown that cells can average the responses to individual drugs in a drug
combination (Figure 5B,D). However, this averaged response was observed at the
population level and could in principle be due to a stochastic response at the single-cell level
(Eldar and Elowitz, 2010; Gefen and Balaban, 2009; Gefen et al., 2008; Rotem et al., 2010)
in which different subpopulations of cells randomly show the response to either one of the
two drugs (cf. Figure 1C). To fully discriminate between different possible response
strategies to drug combinations (Figure 1), we need to investigate cell-to-cell variability in
gene expression responses. To this end, we measured transcriptional responses to drug
combinations in single cells. Specifically, we integrated ten GFP transcriptional reporters
(Zaslaver et al., 2006) into the E. coli chromosome to avoid noise caused by plasmid copy
number variability (Elowitz et al., 2002; Freed et al., 2008; Experimental Procedures). We
selected promoters that show clear regulatory conflicts in either the TMP-SPR or the TET-
SPR drug combination (Figure 5C,D), but also a few promoters that show no clear conflicts,
or unusual behaviors (Figure 6, Table S1). We then grew these strains in two-dimensional
concentration gradients of either TMP-SPR or TET-SPR (Figure 3A), imaged cells at a fixed
time point, and quantified single cell GFP fluorescence using automated image analysis
(Figure 7A, Experimental Procedures). For each promoter, we sampled at least eight
different drug conditions which reflect different drug ratios at fixed growth inhibition.

We found unimodal distributions of expression levels in all conditions. This observation
indicates that bimodal stochastic responses to drug combinations (Figure 1C) are rare, even
when the drugs elicit conflicting responses. Hence, our analysis of population level
measurements (Figures 2-6) does not suffer from this potential complication. Importantly,
for promoters which show a prioritized response to the TMP-SPR combination, we found
that expression level cell-to-cell variability, measured by the variation coefficient, often has
a clear peak in the drug combination (Figure 7B). This peak is located near the point where a
sharp transition in gene expression level occurs (Figure 7B). Near such a sharp transition,
small fluctuations in the detection of the drugs by bacteria (‘input noise’; Tkacik et al.,
2008) may be amplified to yield large fluctuations in gene expression level (‘output noise’).
This role of input noise offers a plausible explanation for the observed increase in cell-to-
cell gene expression variability at the boundary between the two sharply separated response
domains in the two-dimensional drug space. Consistent with this view, cell-to-cell
variability did not exhibit peaks for any promoter showing a conflict in the TET-SPR
combination where conflicts do not lead to sharp transitions between the different
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expression level states but are smoothly averaged (Figure 7C). These observations provide
further support for our conclusion that gene regulatory conflicts lead to two sharply
separated response domains in the TMP-SPR drug combination while they are smoothly
averaged in the TET-SPR combination.

DISCUSSION
We found that regulatory conflicts in which a gene is up-regulated in response to drug A and
down-regulated in response to drug B (Figure 1) play a key role in the bacterial gene
regulation response to combinations of antibiotics. Such conflicts occur for many genes, in
particular when the two drugs have different modes of action (Figure 2). Using PCA, we
found that over 70% of the gene regulation response to antibiotic combinations can be
explained simply as a response to the growth rate change caused by the drugs (Figures 3 and
4). Importantly, the remainder of the response is almost entirely captured by generic ways of
gene regulatory conflict resolution in a given drug combination: (a) Cells can linearly
superpose (‘average’) the responses to the individual drugs, or (b) they can ‘prioritize’ their
response to one of the drugs and essentially ignore the presence of the other drug (Figure 5,
cf. Figure 1). Which mode of conflict resolution is used depends on the drug pair, but applies
to virtually all genes that show conflicting regulation. Only few genes show responses to
drug combinations that are not explained by growth rate effects and conflict resolution alone
(Figure 6). Finally, for the prioritized response, we found that the cell-to-cell variability in
gene expression peaks when both drugs are present, at the location in two-drug space where
the cells switch their response from one drug to the other (Figure 7). Together, these results
show that there are relatively simple, general relations between the transcriptional responses
to drug combinations and those to the individual drugs.

It is striking that just two PCs largely explain the bacterial response to antibiotic
combinations. While these PCs generally have non-trivial shapes that depend on the drug
pair, only two numbers (scores) suffice to characterize the complete response of a given
promoter once the PCs are known (Figure 3C). The first score  quantifies how strongly
promoter X responds to growth rate changes. The second score  measures the extent to
which the promoter shows the drug pair stereotypical conflict resolution. The fact that these
two numbers are enough to capture the response of most promoters implies that the full
response matrix to the two-drug environment can be predicted from a relatively small
number of measurements: once the first two PCs for a given drug pair are identified (which
can be done by measuring the gene expression response to the full two drug environment for
a relatively small number of genes), three measurements (e.g. no drug, single dose of drug
A, and single dose of drug B) would suffice to determine the first two scores  and  for
that gene. From these scores, a prediction for the expression levels across the entire two drug
space can be readily calculated. Hence, our results provide a way to predict the
transcriptional response to a drug combination for most genes from their response to the
individual drugs.

A notable observation we made is that the response of the vast majority of genes is not
biased towards either of the drugs (cf. Figure 1B): the transition between the two sharply
separated response domains of a prioritized responses occurs almost exactly at the point
where growth inhibition by both drugs (TMP and SPR) is equally strong (Figure 5E).
Interestingly, these two drugs have an antagonistic/buffering effect on growth (Bollenbach
et al., 2009; Chait et al., 2007), i.e. adding one drug at low concentration when the other one
is present at higher concentration does not lead to a decrease in growth. These observations
are consistent with a simple scenario in which the cells’ response is primarily determined by
(a) the overall growth inhibition (first PC) and (b) the drug that limits their growth (second
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PC). If present, the third PC may describe promoters that show specific responses to both
drugs, including the drug that does not limit growth. While this picture appears plausible,
more work will be needed to elucidate the mechanism that underlies the observed strategies
of conflict resolution. Specifically, one could measure the levels of factors that act upstream
of promoters (such as guanosine tetraphosphate, ppGpp) in two-drug environments. In
addition, one could study the effects on conflict resolution of targeted genetic manipulations
which affect such global regulators (e.g. relAspoT deletions).

Moreover, it will be interesting to investigate the questions addressed in this article for a
large set of different drugs with a range of different cellular targets (including DNA
replication, cell wall synthesis, translation; Walsh, 2003), and different pair-wise drug
interactions (additive, synergistic, antagonistic; Bliss, 1939; Loewe, 1928, 1953; Yeh et al.,
2006). Further, it is promising to extend our investigation to much higher drug
concentrations of both bacteriostatic and bactericidal drugs. This approach would help to
identify which types of drug pairs lead to conflict resolution by averaging, which ones to
prioritizing, and if there are drug pairs that trigger yet other behaviors. Such a
comprehensive data set might allow us to reveal a general relation between the drug
interaction or mechanism similarity and the cellular strategy for the resolution of regulatory
conflicts in the combination.

The approach presented here, in particular the principal component analysis of gene
expression responses to drug combinations, is generally applicable to other organisms,
including yeast and human cancer cell lines, different types of drugs, and to combinations of
more than two drugs. Extending our approach to yeast would be relatively straightforward
since similar tools for fluorescence based transcriptional measurements (Huh et al., 2003)
and drugs with similar mode of action are available. In other model systems GFP-reporter
libraries covering a considerable part of the genome may have to be constructed first (Cohen
et al., 2008). Alternatively, other methods for genome-wide measurements of mRNA or
protein levels could be adapted to extend the approach described here to other systems.
Independently of methodology, it will be interesting to see to what extent the behaviors
identified in this study extend to other systems. It is quite possible that eukaryotes, in which
transcriptional regulation is more complex than in prokaryotes, may resolve gene regulatory
conflicts in new, unexpected ways. The long-term prospect of predicting the cellular
response to a multi-drug treatment from the responses to the individual drugs may lay the
foundation for controlling cellular gene expression by targeted combinations of drugs
(Geva-Zatorsky et al., 2010). In particular, multi-drug combinations may be designed in
ways that exploit gene regulatory conflicts to restore a healthy cell state in human tissues, to
circumvent cellular defense strategies, or slow down the evolution of drug resistance in
chemotherapy.

EXPERIMENTAL PROCEDURES
Media, strains, and drugs

Experiments were conducted in M9 minimal medium with 0.4% glucose as carbon source
and 0.2% amicase. Drug solutions were made from powder stocks, filter-sterilized, stored at
-20°C in the dark and added as indicated. All strains used were derived from E. coli K-12
strain MG1655. Promoter-GFP constructs for cspA, rmf, rpmE, dps, glyA, slp, recA, rrsA,
wrbA, and ileX (Zaslaver et al., 2006) were integrated into the attTn7 locus of strain
MG1655 as described (McKenzie and Craig, 2006). We used primers
ggggaccactttgtacaagaaagctgggtccgattctgataacaaactagcaacacc and
ggtgaagacgaaagggcctcgtagagcctgcttttttgtacaaacttgtcccc for PCR, and BP
Clonase (Invitrogen) to move promoter-GFP constructs into the delivery plasmid pGRG37.
This plasmid was slightly modified such that the cloning reactions could be performed with
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BP Clonase and attB-flanked PCR products. Wild type MG1655 were transformed with this
plasmid. Integrations at the attTn7 site were verified by colony PCR using primers
gatgacggtttgtcacatgga and cccctatagtgagtcgtattacatgg. Curing of the delivery
plasmid in final strains was verified by testing for ampicillin sensitivity.

Growth rate and gene expression assay
Overnight cultures were diluted ~200-fold and grown on an automated robotic system
(Caliper) at 30°C with rapid shaking in 96-well microtiter plates (Costar) containing 200μl
medium per well. Absorbance at 600nm (A600, proportional to optical density OD600 via
OD600 = 3.1 A600) and GFP fluorescence were recorded by a plate reader (Victor III, Perkin-
Elmer) at intervals of 35-55min for 24h, and background subtracted. Growth rates were
calculated using Matlab (The MathWorks) by linear regression of log(OD600) (Matlab
function ‘regress’) during exponential growth (0.02<A600<0.3). The measurement error was
evaluated as the 95% confidence interval of the linear regression and was typically well
below 10%. The growth rate at each drug concentration was obtained as the median growth
rate over the whole set of GFP reporter strains measured in identical drug conditions. MIC
was defined as the lowest concentration at which background subtracted A600 did not exceed
0.02 after 24h.

GFP background of GFP reporter strains was subtracted as previously described (Zaslaver et
al., 2006). We defined the expression level as the mean GFP/A600 in the interval
0.04<A600<0.3 (Figure 2A). Only promoters with a clearly detectable GFP signal were used
for analysis, reducing the total number to 93 promoters (Figure 2C,D). Expression level
changes γ relative to the drug-free control were normalized to the median expression level
change ⟨γ⟩ of all promoters in the same drug environment. Changes in the median
expression level of all promoters reflect non-specific effects such as pH changes or changes
of the reporter plasmid copy number. We previously verified that the effect of plasmid copy
number on the measured expression level is independent of the GFP promoter (Bollenbach
et al., 2009). Error-bars in Figures 2, 5, S3, and S4 were calculated from day-to-day
variability of replicate measurements as previously described (Bollenbach et al., 2009). The
white regions in the top right of panels that show promoter expression in two-dimensional
dug environments (Figures 4, 5, 6, S1, S2, S3, and S5) reflect no data due to low growth
rates or drug concentrations not sampled.

Two-dimensional drug concentration matrices were set up on 96-well plates (see black dots
in Figure 4A for concentrations used). Expression levels along growth rate isoboles were
calculated by linear interpolation using Matlab functions ‘griddata’ (for the TET-SPR data
set) and ‘interp2’ (for the TMP-SPR data set). The ‘effective drug fraction’ (Figures 4C, 5,
and 7B,C) is defined as ISPR/(ITMP + ISPR) where ID is the relative growth inhibition at the
same concentration of drug D alone: ID = 1 − g with the normalized growth rate g. Linear
fits shown in Figures 5B,D, 7C, and S3B were performed by fitting the function f (x) = mx +
b to the data with m and b as fit parameters using Matlab function ‘fit’. Sigmoidal fits were
performed by fitting the function g(x) = h tanh((x − x0) / w)+r to the data, using x0, w, h, and
r as fit parameters in Matlab function ‘fit’. Here, x0 is the position of the transition (Figure
5E, inset), w is a measure for the width of this transition, h measures the magnitude of gene
regulatory conflict, and r reflects the expression level change due to growth rate. Only
promoters with R2 > 0.8 were used in the analysis of sigmoidal fits (Figure 5E). Lower
values of R2 typically occurred for promoters with no regulatory conflict, such that a
sigmoidal fit to a constant expression level along the growth rate isobole did not yield
meaningful results for the fit parameters x0 and w.
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Single cell fluorescence microscopy assay
Cultures of chromosomally integrated promoter-GFP reporter strains were grown to A600 ~
0.14, mounted on agar pads, and imaged (GFP fluorescence and phase contrast). For each
reporter strain the exposure time was adjusted to ensure that the highest signal was well
below detector saturation. Several hundred cells of each reporter strain were imaged in 8 to
11 different drug conditions and background fluorescence was subtracted. Images were
segmented automatically using custom Matlab code (Figure 7A) and manually verified. GFP
fluorescence per cell (Figure 7) was defined as the maximum GFP intensity detected in the
area of each cell (using the mean or median GFP intensity yielded similar results).

Principal component analysis (PCA)
PCA was performed on the expression level matrices Ex, treating the expression levels at all
positions in the two dimensional drug concentration space as variables and the
corresponding expression levels of the different promoters at these positions as observations
(Figure 3C). PCA was performed independently on the TMP-SPR and TET-SPR data sets
using Matlab function ‘princomp’. Only promoters with a clearly detectable GFP signal
were used for PCA (Table S1). Only drug concentrations at which data was available for all
promoters were used in PCA (at high concentrations of both drugs some reporter strains did
not reach sufficiently high OD values).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Transcriptional response to drug combinations is explained by only two
principal factors

• Cells resolve regulatory conflicts in drug combinations by ‘averaging’ or
‘prioritizing’

• Few promoters show combination-specific responses to antibiotic combinations

• Cell-to-cell variability in gene expression can be increased in regulatory
conflicts
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Figure 1. How do bacteria resolve conflicts in gene regulation caused by simultaneous exposure
to two different drugs?
(A) Schematic example for a conflict in gene regulation: Promoter X is down-regulated in
response to drug A, but up-regulated in response to drug B. How is promoter X regulated
when the cell is faced with a combination of both drugs A and B? (B) In the combination of
two drugs, cells may linearly superpose the response to the individual drugs (‘averaged
response’, top row) or respond only to one of the drugs while ignoring the presence of the
other drug (‘prioritized response’, middle row), depending on the concentration ratio of the
two drugs. In a prioritized response, both drugs may affect the cell’s response equally
(middle row) or one of the drugs may have a stronger impact on the response (‘biased
response’, bottom row; the response is biased towards drug A in the example shown).
Down-regulation is indicated by white cell-interior, up-regulation by green. (C) At the
single cell level, all cells may show the same response to the drug combination
(‘deterministic response’, left) or different cells may randomly respond primarily to only one
of the drugs in the combination (‘stochastic response’, right).
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Figure 2. Gene regulation responses to pairs of antibiotics frequently show conflicts
(A) Example data demonstrating measurement of drug effect on growth rate and
transcription reporters. Optical Density (OD) and GFP expression from various promoters
(shown, as an example, is the cspA promoter) are measured as a function of time for various
drug concentrations. Shown are no drug (black), 65μg/ml SPR (blue), and 1.3μg/ml TMP
(red). Top: Growth rates are defined by linear regression (green lines) to the OD curves.
Bottom: Expression level γ (green lines) is defined as GFP fluorescence intensity per OD,
averaged over an OD range of exponential growth (shaded region) and normalized to no
drug control (thus γ = 1 for the no drug control). (B) Normalized expression levels Ex of
example promoters cspA, sodA, minC, and pheL as a function of growth inhibition in various
concentrations of SPR (blue) and TMP (red). Growth inhibition is the fraction by which the
growth rate in the absence of drug is reduced. For each promoter X, Ex is defined as
expression level γx, normalized to the median expression level ⋨γ⋩ of all promoters in the
same drug concentration (Experimental Procedures). The three larger filled points for cspA
correspond to the drug concentrations shown in A. The promoter cspA shows a clear
regulatory conflict for these two drugs. In contrast, sodA is consistently up-regulated in
response to both drugs while pheL is only regulated in response to TMP and minC shows no
response to either drug. (C) Scatterplot of  versus  (changes in expression at
inhibition level indicated by light magenta bands in panels B, g=0.45-0.5, cf. red and blue
arrows in B) for a genome-wide sample of promoters (Table S1). Promoters with regulatory
conflicts (e.g. cspA, magenta), are located in the gray quadrants. Promoters that respond to
only one of the drugs (e.g. pheL, magenta), are located near the horizontal and vertical
dotted lines. Promoters showing the same qualitative response to both drugs (e.g. sodA,
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magenta), are located in the white quadrants. Note that many promoters show conflicts for
this drug pair. (D) As C but for TET-SPR drug combination. Most promoters lie in the white
quadrants, showing that conflicts occur less frequently for this drug pair. However, some
promoters show conflicts (e.g. slp and dnaX, magenta). Error-bars in (B) correspond to two
standard deviations estimated from replicate measurements done on different days
(Experimental Procedures).
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Figure 3. The gene regulation response to combinations of two antibiotics is largely explained by
just two principal components
(A) Schematic of experimental procedure for measuring gene expression responses to
combinations of two antibiotics. Two-dimensional drug concentration gradients were set up
on 96-well plates (left). One promoter-GFP reporter strain was grown on each plate
(middle). For each condition in the two drug space, the expression level Ex is obtained as in
Figure 2, yielding the matrix of expression levels Ex of promoter X. (B) Examples for
different types of gene expression responses in two-dimensional concentration gradients of
TMP and SPR. Expression level Ex is shown in color code: Blue indicates down-regulation,
red up-regulation, and white no change in gene expression. The promoter cspA shows a
conflicting response, sodA a consistent response, minC no response, and pheL responds only
to TMP (cf. Figure 2B,C). In these examples, the expression level in the drug combination
lies between the levels in the individual drugs which is the case for most promoters.
Responses of other promoters are shown in Figures S1 and S2. Drug concentrations are in
units of the Minimal Inhibitory Concentration (MIC, see Table 1). (C) Principal Component
Analysis (PCA) is performed on the expression level matrices Ex, yielding the principal
components (PCs) EI, EII,…. The scores  capture how strongly each PC contributes
to the total response of promoter X (Experimental Procedures). Bar charts: Variance
explained by the first five PCs for drug combination of TMP-SPR (left bar chart) and TET-
SPR (right bar chart). Most variability is explained by the 1st PC, but the 2nd PC is also
important. Almost the entire data set is explained by the first three PCs which thus capture
the most typical features of the responses of all promoters.
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Figure 4. The first principal component of the gene regulation response captures the effects of
growth rate changes
(A) First Principal Component (PC) of gene expression response to two-drug environments
TMP-SPR (top) and TET-SPR (bottom). Dashed line: line of constant growth rate
(normalized growth rate g=0.5). White region in top right: No data due to low growth rates
(Experimental Procedures). (B) Growth rate in two-drug environments TMP-SPR (top) and
TET-SPR (bottom). Note similarity to corresponding 1st PC shown in B. (C) 1st PC along
isobole g=0.5 (dashed line in A, B) as a function of the ‘effective drug fraction’ (see
Experimental Procedures for formal definition). This PC is approximately constant along
isoboles, showing that the first PC simply captures a generic transcriptional response to
growth rate change, which is drug-independent.
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Figure 5. Bacteria resolve gene regulatory conflicts by prioritizing their response to one of the
drugs or by averaging the responses to the individual drugs
(A) 2nd PC of the global transcriptional response to TMP-SPR in color code (left panel).
Blue indicates down-regulation, red up-regulation, and white no change in gene expression.
Dashed black line: Growth rate isobole g=0.5. The 2nd PC shows a gene regulatory conflict
and how it is resolved in the two-dimensional drug concentration space. Right panel: 2nd PC
along growth rate isobole g=0.5. Note the nonlinear shape of the transition; dashed black
curve, sigmoidal fit (Experimental Procedures). (B) As A but for TET-SPR. Note the linear
shape of the transition in the right panel; dashed black curve, linear fit (Experimental
Procedures). (C) Expression levels of genes dnaK, cspA, osmC, and dps in two-dimensional
drug concentration space of TMP-SPR. Gene expression levels along the growth rate isobole
(dashed black line, normalized growth rate g=0.5) are shown on the right. Magenta lines:
sigmoidal fits (Experimental Procedures). Conflicts in gene expression are resolved in a
prioritized response, leading to a relatively sharp transition between the conflicting
expression levels as TMP is continuously replaced with SPR (cf. Figure 1B). (D) As B, but
for different example genes ileX, dnaX, slp, and dps, which show conflicts in the two
dimensional drug concentration space of TET-SPR. Magenta lines: linear fits (Experimental
Procedures). Conflicts in gene expression are smoothly averaged, leading to a linear
transition between the conflicting expression levels (cf. Figure 1B). (E) Inset: Schematic of
sigmoidal fits to curves from (A,C) with fit parameter x0 characterizing the position of the
transition between the two different gene expression responses. Histogram of fit results for
x0 for drug combination of TMP-SPR (Experimental Procedures). The distribution of x0 is
narrowly localized around 0.5 showing that the response of most genes is not biased towards
either of the drugs (cf. Figure 1C) though a few genes are biased towards TMP (bars near
x0=1). Error-bars correspond to two standard deviations estimated from replicate
measurements done on different days (Experimental Procedures).
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Figure 6. A few promoters show a specific response to the drug combination in which the
expression level does not lie in between the two responses to the individual drugs
(A) Scatterplot of scores of the 3rd versus those of the 1st PC for TMP-SPR drug
combination. While the 3rd PC contributes relatively little to the response of most promoters
(cf. Figure 3C), it plays an important role for a few promoters (including lexA, slp, and glyA;
highlighted in magenta). (B) 3rd PC in two-dimensional drug concentration space of TMP-
SPR shown in color code. The 3rd PC has a clear peak in the drug combination. The few
promoters which show higher or lower expression levels in response to the drug
combination than in response to either of the individual drugs are captured by this
component. (C,D) Promoters lexA (C) and slp (D) which have a relatively large 3rd PC score
(A) indeed show lower (C) or higher (D) expression levels in the drug combination. For
glyA, see Figure S5A.
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Figure 7. Prioritized response coincides with increased cell-to-cell gene expression variability in
the drug combination
(A) Top: GFP fluorescence from E. coli cells. In this example, GFP is driven by the cspA
promoter. Magenta outlines show segmentation (Experimental Procedures). Bottom:
Histogram of GFP intensities per cell in TMP alone (left), SPR alone (right) and the
combination of TMP-SPR (middle). While the distributions of gene expression levels are
unimodal in all conditions, a much wider distribution is observed when TMP and SPR are
present simultaneously (blue arrows). (B) Population average measurements of expression
level Ex (black circles) along growth rate isobole g = 0.5 as in Figure 5C, for promoters
cspA, ileX, and glyA in TMP-SPR drug combination. Black lines are sigmoidal fits (cf.
Figure 5) except for glyA where black line shows cubic spline. Blue circles show variation
coefficient of GFP/cell along a similar growth rate isobole. The coefficient of variation (CV)
is a measure of the relative cell-to-cell variability in gene expression and defined as the
empirical standard deviation of GFP/cell (shown in A) divided by its mean (Experimental
Procedures). Blue lines are cubic splines. Gene expression cell-to-cell variability peaks in
drug combination near the point where a sharp transition between two different responses
occurs. (C) As B but for TET-SPR showing promoters rpmE, ileX, and glyA which have
regulatory conflicts in this drug combination. Note that gene expression cell-to-cell
variability does not peak in the drug combination.
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Table 1

Antibiotics used in this study, abbreviation, MIC of the MG1655 E. coli strain, and main mode of action.

Antibiotic Abbreviation MIC (μg/ml) Mode of action

Trimethoprim TMP 1.5 Folic acid synthesis

Spiramycin SPR 120 Protein synthesis, 50S

Tetracycline TET 1.5 Protein synthesis, 30S
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