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Abstract
This paper highlights the role that reinforcement learning can play in the optimization of treatment
policies for chronic illnesses. Before applying any off-the-shelf reinforcement learning methods in
this setting, we must first tackle a number of challenges. We outline some of these challenges and
present methods for overcoming them. First, we describe a multiple imputation approach to
overcome the problem of missing data. Second, we discuss the use of function approximation in
the context of a highly variable observation set. Finally, we discuss approaches to summarizing
the evidence in the data for recommending a particular action and quantifying the uncertainty
around the Q-function of the recommended policy. We present the results of applying these
methods to real clinical trial data of patients with schizophrenia.
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1 Introduction
There has been a surge of interest in recent years within the medical community regarding
the application of Reinforcement Learning (RL) techniques to optimize treatment policies
(Thall and Wathan, 2000; Ernst et al, 2006; Murphy et al, 2007; Guez et al, 2008; Zhao et al,
2009). Recent efforts have targeted the design of treatment policies for cancer, epilepsy,
depression, and HIV/AIDS, among others. The opportunities for the RL field to have a deep
societal impact in this area are substantial.
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The RL literature provides a number of off-the-shelf methods for automatic optimization of
action sequences; yet, many challenges remain before RL-based policies can be deployed to
inform clinical decision making. In particular, we have identified four key challenges:

1. In many cases, training data is collected during randomized trials, with little or no
opportunity to control exploration or to acquire further data to evaluate policies
(policy evaluation on new data would involve running a new trial, which can be a
massive undertaking).

2. As clinical data is extremely expensive to obtain, both in terms of time and money,
the number of trajectories available to us is modest compared to what is available
in simulation or most traditional RL settings—typically much fewer than 5000
trajectories are collected from any given trial. In addition, the observation space of
most clinical trials is typically continuous, highly variable, and high-dimensional.

3. The few trajectories we do have will frequently have missing observations, and we
often do not have a good understanding of the reasons for this missingness (or
partial observability).

4. Before any recommended policy can be accepted by the medical community, it is
imperative to quantify the evidence for, and the uncertainty around, the
recommended policy. Measures of uncertainty are essential at all decision making
levels, ranging from high level policy makers to the clinicians providing care and
guidance to patients.

This paper provides an in-depth case study of using RL to optimize treatment choices for
people with schizophrenia based on real data from a two-stage clinical trial involving 1460
patients. Throughout the methodology section, we propose and discuss methods for
overcoming the key technical challenges outlined above. We show how these can be used in
the RL setting to handle real clinical data. In particular, we discuss the use of multiple
imputation to overcome the missing data problem. We then present two methods for
quantifying the evidence in the data for the choices made by the learned optimal policy.
These methods are designed to use only the same training data that was available to learn the
optimal policy. The first method, called bootstrap voting, can be used to visually convey the
evidence for the action choices made by the learned policy. From our experience, this
method may be a particularly useful tool for conveying the evidence supporting an action
choice to scientists and clinicians. The second method uses recently developed methodology
to provide confidence intervals for the learned Q-values. This gives us a formal and rigorous
measure of whether the values of two actions are significantly different.

We begin by reviewing the RL framework for use with clinical data in Section 2. Section 3
describes the data set at the core of our case-study, along with some of the particular
challenges of applying RL methods to this type of data. In Section 4, we introduce the core
methodologies used to overcome missing data, learn a policy, and present the evidence for a
particular action choice and uncertainty around an action’s Q-function. The results of
applying these methods to a clinical trial of treatments for schizophrenic patients are
presented in Section 5. Finally, in Section 6, we conclude with a discussion of the results
and methods, detailing some of the limitations of these and other RL methods when applied
to clinical trial data and indicating areas for further research.

2 Reinforcement Learning of Treatment Policies: Notation and Models
The Reinforcement Learning methodology provides a framework for an agent to interact
with its environment and receive rewards based on observed states and actions taken, with
the goal of learning the best sequence of actions to maximize its expected sum of rewards
(Sutton and Barto, 1998). This problem design is similar to the problem of estimating
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treatment policies in the medical sciences (Murphy, 2003; Pineau et al, 2007). Chronic
illnesses like diabetes, epilepsy, depression, HIV/AIDS, among others, require multi-stage
decision making. At each stage, treatment is necessarily adapted to a patient’s response, as
defined by symptom severity, treatment adherence, changes in side-effect severity,
developed drug-resistance, evolution of co-existing medical conditions, and a multitude of
other factors. Thus, the clinician is faced with the task of observing a patient’s history (state)
and recommending a treatment (action) that maximizes the patient’s long-term clinical
outcome (cumulative reward). Clinicians wanting to construct principled (i.e. evidence
based) rules for tailoring treatment have begun to run sequential multiple assignment
randomized trials (SMART) (Murphy, 2005; Dawson and Lavori, 2004; Rush et al, 2004;
Thall and Wathan, 2000).

The data from a SMART study consists of a sequence of treatments together with a
sequence of observations for each patient in the trial. Such data are essentially trajectories of
control inputs (treatments or actions) and outputs (observations or rewards), and fit naturally
into the reinforcement learning framework. Analysis using RL methods enables us to
recover not just an optimal treatment but an optimal sequence of treatments (i.e. a policy)
that is tailored to each individual patient. The use of SMART studies in the medical
community provides substantial opportunities for the use of RL methods to automatically
learn sequences of treatments that optimize expected patient outcomes.

We now describe RL methods as they pertain to data collected from a SMART study. In the
following we use upper case letters to denote random variables, such as S and A, and lower
case letters, such as s and a, to denote realizations or observed values of the random
variables. We also use B, K, J, M, and T as integer constants, this distinction between integer
constants and random variables should be clear from the context. We assume a finite horizon
Markov decision process (MDP) with a total of T stages. The action (treatment) at stage t is
denoted by At ∈ t, and the state by St collected prior to treatment assignment. We assume
a pre-defined reward observed after each action, Rt = R(St, At, St+1), that is a function of the
state at stage t, the action taken at stage t, and the resulting state at stage t + 1. Thus, the data
at stage t, t = 1 : T is comprised of the triplet (St,At,Rt). The goal is to use RL methods to
determine the sequence of actions (treatment assignments) that will maximize the expected
total reward over the study period,

(1)

In a SMART study, the treatment actions are sampled according to a fixed (known) random
exploration policy. This random policy allows us to simply use the state information
measured and actions made to compute an unbiased estimate of the effect of an action on the
total reward. Each of the n individuals in a trial contributes one data trajectory: (S1,i, A1,i,
R1,i, S2,i, A2,i, R2,i ,…, ST,i, AT,i, RT,i). In most SMART studies to date, the number of stages,
T, is small, usually between two to four stages.

We use the standard Bellman equations to define the optimal state-action value function at
stage t. The Q-function is defined as

(2)
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with QT(sT, aT) = RT. The optimal action at stage t, denoted , is defined as the action
that maximizes the state-action value function, Qt:

(3)

We use batch off-policy fitted Q-iteration to learn the optimal treatment policy (Ernst et al,
2005). The optimal action in the last stage of the trial, T, is found by estimating argmaxaT 
RT (ST, AT, St+1)|St = st, At = at]. The optimal actions at earlier stages are then estimated by
rolling the estimated optimal value functions into the earlier state-action value functions.

3 CATIE, A SMART Study
The Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) was an 18 month
multistage clinical trial of 1460 patients with schizophrenia. This study was funded by the
National Institute of Mental Health in order to evaluate the clinical effectiveness of
sequences of specific antipsychotic drugs. As this study is described in detail elsewhere
(Stroup et al, 2003; Swartz et al, 2003), we give a simplified overview of the CATIE study
here. CATIE is a SMART study with two major treatment stages (T = 2). At entry into the
study, participants were randomized to one of five stage 1 treatments: olanzapine,
risperidone, quetiapine, ziprasidone, and perphenazine. Patients were then followed up for
18 months and allowed to switch treatment if their assigned stage 1 treatment was not
effective. The result of this protocol is the time duration for each of the two treatment stages
in CATIE is patient dependent. For example, some patients did well on their initial treatment
and thus remained in stage 1, hence the time duration of stage 1 for these patients is 18
months.

Treatment discontinuation in the first stage was generally due to either a lack of efficacy of
the prescribed treatment (i.e. symptoms remained high), or a lack of tolerability of the
treatment (i.e. side-effects were substantial). If failure of the stage 1 treatment occurred, i.e.
a patient chose to discontinue their stage 1 treatment, patients were given the choice to enter
one of two arms in stage 2: the efficacy arm or the tolerability arm. Patients who chose the
efficacy arm were re-randomized to clozapine (50%) or one of olanzapine, risperidone or
quetiapine (16.6% each). Patients who chose the tolerability arm were re-randomized to
olanzapine, risperidone, quetiapine, or ziprasidone (25% each). We note here that clozapine
can have dangerous side-effects, requiring that patients taking clozapine submit to regular
blood tests and screenings. As a result of a desire to avoid these risks and extra monitoring,
some individuals who discontinued their previous treatment due to lack of efficacy chose to
enter the tolerability arm of stage 2 where clozapine was not an option. The time duration
for stage 2 is 18 minus the month in which the patient entered stage 2.

3.1 Reward definition and state representation
Throughout the 18 month period, patients were scheduled for monthly visits with their
medical practitioner and detailed data was recorded every three months. This collected
information includes approximately twenty demographic variables, recorded at baseline, and
thirty variables measured repeatedly throughout the study. These variables include symptom
levels, quality of life, side-effect burden, and medication compliance, among others. From
these variables, we must extract both a reward function and state representation for each of
the two decision stages.

Throughout this paper, we take as the primary outcome the Positive and Negative Syndrome
Scale (PANSS) score (Kay et al, 1987). The PANSS score is a medical scale designed to
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measure symptom severity in patients with schizophrenia. A low PANSS score indicates few
psychotic symptoms; as an individual’s psychotic symptoms increase, so does their PANSS
score. We would like to learn the optimal sequence of treatments that minimizes a patient’s
schizophrenic symptoms, as measured by the PANSS score, over the course of the entire 18
months of the CATIE study. While not a topic of this paper, it is worth pointing out that a
variety of other functions of symptom measurement or entirely different outcomes could be
considered (e.g. side-effects, treatment cost, etc.). Many open questions remain as to how to
best combine multiple (sometimes competing) outcomes into a single scalar reward, as
required by the traditional RL framework. We define the reward function as the negative of
the area under the PANSS score curve over the 18 month trial, denoted AUCPANSS(18). We
note here that a patient’s PANSS score fluctuates over time (see Section 3.3, Figure 2), even
under treatment, and once a patient’s PANSS score is low, it does not mean that it will
remain low. Using a composite total reward, such as AUCPANSS(18), ensures that the
optimal treatment will be one that not only reduces symptoms quickly, but also helps
maintain a low PANSS score throughout the study.

Defining the state representation for medical applications of RL techniques is a non-trivial
problem; there are often many variables measured on each patient both at the beginning of
the study and throughout the study, of which many have continuous domains. Since
determining the appropriate state representation is not a main topic of this paper, we give a
brief summary and motivation for the state representation we implement. To begin, we
differentiate between two types of state variables. The first type of state variable is thought
to be potentially useful for making decisions concerning treatment, and thus should be used
to inform the learned policy. The second type of state variable may not be useful for making
treatment decisions per se but may be predictive of future rewards nonetheless.

We include the PANSS score, measured at entry into a treatment stage, in this first type of
variable. This score is the primary method of symptom measurement in patients with
schizophrenia; it is monitored closely in practice, and we expect it to be useful in informing
treatment decisions. Regarding the second type of variable, it is often the case that there are
many variables that can aid in the accurate estimation of the Q-function, but that are not
needed to inform the policy because their influence on the Q-function is the same for all
actions. For example, a patient’s age may be helpful for predicting his or her overall
outcome, but it may not be useful for selecting an appropriate treatment action. By including
these variables as part of state space, we can bring our domain representation closer to
satisfying the Markov assumption, that is, the assumption that the reward and state transition
distributions depend only on current state.

We identified five of these second type of variables: a binary indicator for the presence of
the side effect tardive dyskinesia at entry into the CATIE study, a binary variable indicating
whether a patient was hospitalized for a psychotic episode in the three months prior to
enrollment into the CATIE study, a categorical variable indicating what type of site the
patient was treated in (private practice, state mental health clinic, university clinic, VA, or a
multi-function site), the length of time in the CATIE study prior to the current stage, and
previous treatment. The first three variables are state variables for both stages 1 and 2,
whereas the last two variables are included in the state representation only for stage 2.

3.2 Missing data
Schizophrenia is a chronic disease, characterized by abnormalities in a person’s perception
of reality. Symptoms include hallucinations, delusions, and confused speech and thought
processes. The illness places a high level of burden on individuals afflicted with the disease,
as well as those who care for them. In studies of antipsychotics in patients with
schizophrenia, dropout is often high, between 30 and 60 % (Adams, 2002). CATIE was
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designed to be an 18 month longitudinal study with 1460 participants randomized to stage 1
treatment. Of these, 705 patients completed the 18 months of the study, while the remaining
755 (51.7%) dropped out before study completion. While this dropout is the primary source
of missing data, there are a number of instances of item missingness in this particular data
set as well. Item missingness occurs when patients miss a monthly visit (but show up to later
visits), or do not provide all information requested. The pattern of missing data is similar in
all time-varying variables collected during the CATIE study, thus we visually display the
missing data pattern for our variable of interest, PANSS, in Figure 1 as an example. From
this figure, we can see that the proportion of missing data in CATIE due to participant
dropout is high, whereas the amount of item missingness is nominal.

Clearly, patient dropout reduces the amount of available data and thus increases the variance
of the estimates of Q-values and action choices. What may not be immediately apparent,
however, is that dropout can also introduce bias into our learned action values and policies.
When data is missing in trials, it is tempting to simply remove individuals who have missing
data and perform an analysis on the remaining individuals; this is often termed a complete
case analysis in the statistics literature. Unfortunately, in many situations, a complete case
analysis will lead to biased estimates of the treatment effect. This bias can occur in any data
collection procedure, but is especially common in medical trials (Little and Rubin, 1987;
NAP, 2010). In our analysis of the CATIE data, described in Section 4.1 below, we apply
multiple imputation (Little and Rubin, 1987; Rubin, 1996; Schafer, 1999) to use all the
available data (individuals with both complete and incomplete data) in order to reduce bias.

3.3 Variability and small sample size
As has already been discussed, data collection in clinical trials is very expensive, both in
time and money, and because of this, large sample sizes are rare. A recent overview of
studies involving patients with schizophrenia revealed that the average number of people in
such trials was 62 (a median of 60). A mere 58 out of 1,941 trials had sample sizes larger
than 300 (Adams, 2002). In light of this, with a sample size of 1460, we can consider
CATIE a large randomized trial, especially in the field of schizophrenia research.

There are two other factors, besides training set size, that complicate the estimation of the
value function from this type of data. First, the type of information collected on patients can
be extremely variable, both across patients, and within a patient over time. The variability in
the PANSS score is illustrated in Figure 2. Figure 2(a) displays all observed PANSS scores
at each exam using boxplots. The length of the interquartile ranges and the presence of
outliers illustrates the high variability in the PANSS scores in CATIE. Figure 2(b) shows the
PANSS scores for 100 randomly selected CATIE participants over the course of the trial;
each line represents an individual’s observed PANSS scores by month of observation. This
graph shows the fluctuating nature of symptoms in patients with schizophrenia.

A more subtle concern in fitting the Q-function, is that the treatment effects we are trying to
detect are often relatively small; that is most actions are expected to perform nearly equally
well a priori. The main reason for this is because clinical trials must satisfy basic ethical
requirements, including ensuring that patients are always getting the best quality of care and
treatment possible, given our current medical knowledge. For this reason, it is unethical to
include treatments which are a priori known to be worse than others. This suggests that the
measured differences in Q-values between the various treatments are likely to be small,
which only amplifies the problems of variable data and small training set sizes.
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4 Methods
In this section, we detail the methods employed to address the above challenges in using
clinical data to learn sequences of actions and to characterize our uncertainty in these action
choices. The goal of the analysis is to learn the optimal treatment policy for minimizing the
expected area under the PANSS curve over the 18 months of the study. We use the methods
presented in this section to learn the optimal treatment policy and present the evidence in the
training set for our learned policy. In Section 4.1 we discuss multiple imputation methods
that can be used to overcome missing data. Then in Section 4.2 we review linear function
approximation for fitting Q-functions to batch data. In Section 4.3.1, we introduce bootstrap
voting, an exploratory data analysis method that can help to illustrate the evidence for a
recommended action. In Section 4.3.2, we describe a recently developed method for
estimating confidence intervals around the coefficients used to measure the effect of an
action on the value of the Q-function.

4.1 Overcoming Missing Data
As highlighted above, a significant portion of our data set is missing, either due to patient
dropout or item missingness. This problem is not without precedent in the reinforcement
learning literature, where the Partially Observable Markov Decision Process (POMDP)
paradigm was developed to handle cases in which the observation does not fully reveal the
state of the system (Smallwood and Sondik, 1973; Monahan, 1982; Kaelbling et al, 1998).
However, the POMDP model makes specific assumptions about the patterns of missingness
(i.e. which variables represent latent states and which variables represent observations). In
contrast, in a clinical trial data set, almost all variables have missing values for one or more
time points and all variables are observed at some time points. For example, patient i may
have an observed PANSS score at months 0, 1, 2, 3, 5, 6 of the 18 month study, whereas
patient j may have observed PANSS score at months 0, 1, 3, 6, 8, 9, 12 of the 18 month
study. In short, if the main reason for considering latent variables is to deal with
missingness, then there is no clear distinction between which variables should be considered
latent and which should be considered observed.

A common method for handling missing data in the statistics literature is multiple
imputation (Little and Rubin, 1987; Rubin, 1996; Schafer, 1999). As in the POMDP setting,
one builds and learns a model for the complete (e.g. including missing or latent variables)
data. However, instead of using the model (as in POMDPs) to learn a policy, multiple
imputation only uses the model to fill in the missing values. The missing values are filled in
repeatedly to create a collection of imputed training data sets, with observed values left
unchanged. One can then apply standard (fully observable) RL algorithms to learn the Q-
function for each of the training data sets. Parameter estimates, θ̂, are combined across all
imputations in order to obtain one estimate for the parameter of interest via Eq. (4) (Little
and Rubin, 1987).

(4)

where M is the number of imputed data sets.

Bayesian regression techniques are often used to estimate the imputation models. One
specifies a model for the complete data (see below for how we model the complete data),
assumes a prior distribution over the unknown model parameters, and estimates the posterior
of the parameters using the observed data. Missing values are then replaced with samples
from the posterior predictive distribution of the missing data given the observed. This is
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done by plugging in parameter values sampled from the posterior distribution and a sampled
random error value into the complete data model (Gelman et al, 1995).

While multiple imputation methodology is very general, in practice, various structural
assumptions are usually made (depending on the properties of the domain), to preserve
computational tractability and ensure better stability in cases where the observed data is
limited. In the analysis of the CATIE study, we use two techniques for estimating the
complete data distribution and performing the multiple imputations. We first use fully
conditional specification (FCS) (van Buuren et al, 2006; van Buuren, 2007) to estimate all
missing variables. Two benefits of FCS are that it scales reasonably well with the number of
variables and it allows the flexibility to easily use different models for each type of variable,
including binary, categorical and continuous variables. However, it is difficult to implement
a model that enforces smoothness over time in the mean of a time-varying variable such as
PANSS in the FCS framework. Since we expect the mean of the symptom measure PANSS
to be smooth across time, we use a second method, based on a mixed effects model (Schafer,
1997; Schafer and Yucel, 2002), to re-impute individual monthly PANSS scores according
to the desired smoothness constraint. Note that we only use the PANSS scores imputed
through the mixed effect model for Q-learning. The PANSS scores imputed through FCS are
discarded; however, it is desirable to include PANSS in the FCS procedure to allow better
imputation of the other variables.

Overview of the FCS method—Denote all of the variables in the data set by υ0, υ1,
υ2 ,…, υJ; in the imputation process no distinction between state variables, rewards, and
actions is necessary. We order these variables by month, for variables collected at the same
month we order the variables from the fewest number of missing values to the most. We use
υo to denote the set of baseline variables that contain no missing information, υ1 to denote
the variable collected at baseline with the least amount (but at least some) missing
information, with υJ representing the variable collected at month 18 with the greatest
number of missing values. The model for the complete data in FCS is formed via conditional
models for each variable υj given υ0 ,…, υj−1. The parameters in the conditional models are
not shared across models, and their priors are independent. The crucial assumption
underlying the FCS imputation is that these conditional models are able to predict missing
values of the variable υj, despite the fact that the model was built using only those
individuals for whom υj was observed. In order to ensure the validity of this assumption, we
have included as many predictors as possible leading to a rich imputation model. Under this
assumption we can estimate the jth conditional model using only the patients with observed
υj.

Let υjmiss denote the missing observations in variable υj and υjobs the observed values in
variable υj. The estimation of each conditional model is interweaved with the imputations as
follows. First, we estimate a model for the variable υ1 using υ0, the patients with observed
υ1 and the prior. Then we sample from the posterior predictive model for υ1miss|υ0, υ1obs and
fill in missing values of υ1. Then using these imputed values, we estimate the conditional
model for the variable υ2 given υ1, υ0 and the prior using the patients with observed υ2. All
of these patients have a value for υ1 due to the previous imputation. We sample from υ2miss|
υ0, υ1, υ2obs to impute the missing values of υ2, and so on. Each of these conditional models
is estimated using regression techniques chosen to suit the type of υj (i.e. integer-valued,
real-valued, etc.) and the types of the predictors. Using this formulation, the posterior
predictive distribution of the missing data, given the observed, is:
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where

P(υj|υ0, υ1, υ2 ,…, υj−1, θj) denotes the conditional distribution, and πj denotes the prior on
θj.

Overview of the Bayesian Mixed Effects Method—In the following, we use a
subscript i to denote patient i, and the subscript m to denote month. In this method, we
model the PANSS score at each month, m, given treatment, prior PANSS scores, and other
predictors collected both prior to, and at month m, via a mixed effects model. The mixed
effects model includes a random intercept term, gi ~ 0, σg), for each patient, a random
error term, εm,i ~ 0, σε), for each (patient, month) pair, and a piecewise linear regression
spline on the month of observation (Hastie et al, 2001), with knots, ξ, at month 1 and
continuing at monthly intervals until month 17. The random intercept term, gi, models the
correlation between the PANSS symptom scores at different months within an individual
(Diggle et al, 2002). Since the PANSS scores vary independently across individuals, the
random intercept terms, gi, i = 1 ,…, 1460, are independent. The error terms, εm,i, i = 1 ,…,
1460, m = 1, … 18, are also independent. A PANSS score measured for individual i at
month m is modeled by

(5)

where am,i denotes the ith patient’s treatment at month m, s̃m,i denotes the vector of
predictors including PANSS collected prior to month m as well as other variables collected
both prior to and at month m, and the νξ’s are the coefficients for the spline and are
constrained such that Eq. (5) is continuous in m. We fit this model using diffuse priors on
the coefficients using the patients who have observed PANSS at month m, and assume that
the model holds for individuals missing PANSS scores at month m. From this model, we
sample from the posterior predictive distribution to impute the missing PANSS values in 
Algorithm 1 summarizes the full imputation procedure.

Algorithm 1

Algorithm for imputing missing data in CATIE. Note: υ0, υ1 ,…, υJ denote the variables in
 ordered by month; for variables collected at the same month, we order the variables from

the fewest number of missing values to the most. We use υo to denote the set of baseline
variables that contain no missing information.

Input: A training data set that has missing values.

First, impute all variables:

for j = 1:J do

Specify the conditional model υj|υ0, υ1 ,…, υj−1, θj

Using the prior and the conditional model, estimate the posterior distribution of the parameters in the model
for υjmiss|υ0, υ1 ,…, υj−1, υjobs.

Sample values for the parameters in the conditional model from the estimated posterior distributions.

for each patient i in who is missing υj do
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Fill in missing value υj,i with a draw from the posterior predictive distribution of υjmiss|υ1 ,…,
υj−1, υjobs, by plugging the parameter values from the posterior distribution into the conditional
model and sampling a random random error term from the appropriate distribution.

end for

end for

Second, re-impute all missing PANSS variables:

Use observed PANSS score, specified multivariate distribution of PANSS across the months, with mean PANSS

score for individual i at month m equal to (γ0 + gi) + γ˜
Ts̃m,i + ηam,i + ∑ξ=1

17 νξ(m − ξ)+, and a
diffuse prior over the parameters (σg, σε, γ̰, η, ν1, ν2 ,…, ν17) to estimate the posterior distribution over the
parameters.

Sample values for the parameters in the conditional model from the estimated posterior distributions.

for m = 1:18 do

for each patient i in who is missing PANSS at month m do

Fill in PANSS at month m with samples from the posterior predictive distribution by sampling
gi ~ 0, σg) and εi ~ 0, ε), substituting the parameter values from above along with ai,m,
and s̃im, into the above formula.

end for

end for

return A single completed CATIE data set in which all missing values are replaced with imputations drawn from
the posterior predictive distribution.

4.2 Smoothing the Q-function for Highly Variable Data
The next algorithmic challenge is to learn the optimal state-action value function. Since we
are working with a training data set of patient trajectories (or to be more specific, imputed
training sets of patient trajectories), we focus on the fitted Q-iteration approach. The core
idea of fitted Q-iteration is to learn the Q-function via regression. Many regression models
can be considered. Given that data from clinical trials are often highly variable and contain
few trajectories, we favor a simple linear regression function. That is, we use linear function
approximation to estimate the state-action value function (Lagoudakis and Parr, 2003;
Irodova and Sloan, 2005; Ernst et al, 2005; Parr et al, 2008). Suppose there are T stages: For
t = 1 ,…, T, let 𝟙At=k be the indicator function that action At is equal to action k with a 1 if
true and 0 otherwise. Define the feature vector, x(st, at), to be a function of the state and
action at stage t. Let x(st, at) be of length dt ·| t|, where dt is the number of state variables at
stage t:

(6)

We model the state-action value via

(7)

The least-squares estimator at the last stage, β̂T, minimizes the sum of squared errors
between the Q-value at time T, QT = RT, and the fitted Q-function, Q ̂T, over the training data
(Lagoudakis and Parr, 2003; Parr et al, 2008):
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The least squares estimators for earlier time intervals, (T − 1) : 1, are

where Q ̃t,i = Rt,i + maxat+1∈ t Q ̂t+1(st+1, i, at+1). Thus the least squares estimator for βt is:

(8)

As discussed in Section 3.1, some state variables (tardive dyskinesia, recent psychotic
episode, clinic site type, etc.) are included in the state representation to aid in accurately
estimating the Q-function but are not used to inform treatment. We implement this in the
model for the Q-function by constraining the influence of these variables on the Q-function
to be equal across all actions. That is, we include one term for each of these variables as
opposed to multiple terms (i.e., one per each treatment action). Different forms of modeling
the Q-function (i.e. non-linear) may necessitate more complex ways of enforcing this
constraint on the parameters. Including variables in this way can improve the quality of our
Q-value estimates without adding too many parameters to our model.

4.3 Illustrating and Quantifying Uncertainty in Learned Policies
In addition to learning the optimal treatment policy, we need to convey the evidence for this
learned policy and our uncertainty in the estimated Q-functions for this policy. Uncertainty
arises due to small training set size and the variability in the data—we cannot be certain that
our learned optimal action choices are correct. This section outlines two novel methods:
bootstrap voting, for conveying the evidence for action choices and adaptive confidence
intervals, for measuring uncertainty about the expected performance of this policy.

Quantifying uncertainty is important in the medical field, as it is crucial to know if we have
enough evidence to recommend one treatment over another. Especially when the training set
size is small, it is helpful to know if we do not have enough evidence to recommend one and
only one treatment. In such a situation, the best decision may be to report back to clinicians
which treatments are candidates for optimal treatments and which treatments we can
conclude are inferior given the training set collected. Measures of uncertainty can also help
to ensure that we do not produce a treatment policy that is needlessly complex. Some patient
variables may not be very useful in determining which treatment is best. If we can identify
those variables that are helpful and those that are not, we can reduce the burden of
information collection for health care providers.

4.3.1 Bootstrap Voting—Bootstrap voting is an exploratory data analysis method that
graphically presents the evidence in the data for a learned action choice at a given stage
(Lizotte et al, 2009). Furthermore, it illustrates how the evidence for the optimal learned
action changes as a function of state. In this section, we review the methods for computing
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bootstrap vote estimates for each action. Since the methodology described below can be
implemented in the same manner at each stage and for each state, we drop references to both
stage and state. We simply consider K possible actions, and use Q to denote the Q-function
value given a specific stage and state.

Consider the case where we would like to compare K actions. Suppose we do this by

running  “head-to-head” trials comparing each pair of actions. Each action would be
involved in K − 1 of these trials. The parameter of interest in bootstrap voting is the
probability that action k would “win”, i.e. appear to be optimal, in each of the K − 1 trials in
which it participates1. We denote this quantity . Note that for K > 2 we may not have

, since there is some probability that the set of  pairwise trials will produce
a “discordant” result (i.e. intransitivity among pairwise results). The more closely matched
the actions, the smaller the training set sizes, and the more variable the data, the higher the
probability we have of observing a discordant result. We denote the probability of a
discordant result .

Formally, we will estimate, , defined as

(9)

The probabilities in Equation (9) are over the distribution of training sets generated by future
sets of pairwise trials. As discussed above, running future trials is extremely difficult and
expensive, thus we use the training set we already have collected in order to estimate 
for each action. We do this by using the bootstrap, a resampling method which is often
employed to estimate properties of complex statistics (Efron, 1979; Efron and Tibshirani,
1993). A bootstrap sample, b, of training set of size n, is obtained by sampling n
trajectories with replacement from the original training set. The bootstrap is a popular
method because the variability we observe in the resampled datasets can be a good
approximation to the variability we would observe if we were to draw datasets from the true
data generating distribution. Thus, we can use bootstrap samples to gain valuable insight
into the variability of learned parameters from training set to training set.

The simplest way to estimate  using the bootstrap is to first generate B resampled
training sets and calculate Q ̂b(·) for each one. We can then define the estimates:

1One may think that a more natural quantity would be the probability that each action “wins” in a future K-arm trial. However, it can
be shown that this quantity is affected by correlations between the Q estimates in a way that can induce a non-intuitive ranking of the
treatments. In particular, an action may look worse according to this measure even if it has the highest Q-value and the variances of Q
estimates are all equal. In these settings, pwin maintains the natural ordering of actions and also provides information about
uncertainty in the estimates.
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where 𝟙[·] is the indicator function, returning 1 for true and 0 for false. We then compute

. In practice, this estimator can have very high variance from training set
to training set, especially in cases where there is in fact no difference in the true Q-values.
For example, in the case where K = 2 and both actions have equal Q-values: Q(a = 1) = Q(a
= 2); the true probability . However, in this situation the above estimate 
will have a uniform distribution between 0 and 1 from training set to training set. This
means it is very likely for the above estimator to give the impression that there is a
significant difference in Q-values when in fact there may not be. In order to produce an
estimator with lower variance, we use the double bootstrap (Efron and Tibshirani, 1993). A
double bootstrap sample, b,b, is a random sample of n individuals from the bootstrapped
sample b. Using the double bootstrap samples we can compute Q ̂b,b′ (a = k) and Q′b,b′ (a =
k′) and compare them. We can then use a two-level average of these comparisons over the
double bootstrap samples to form our estimates p̂k,k′:

(10)

We then compute  as before.

This procedure produces an estimator with lower variance, while introducing some bias
towards there being no difference between actions—it is effectively a bagged version of the
first estimator (Breiman, 1996). It is in a sense “conservative,” that is, it assumes that there
is a smaller difference between the Q-values of different actions than does the non-bagged
estimator and is less likely to give the spurious results described above. The main drawback
of the double-bootstrap-based estimator is that it is extremely computationally intensive,
especially in our application given that for each double bootstrap sample, we must generate
multiple imputations as described in Section 4.1. In order to help ease the computational
burden, we use an approximation to the double bootstrap estimator (Lizotte et al, 2009). We

replace our double bootstrap estimate of  with

where Φ is the cumulative distribution function for a Gaussian distribution with mean = 0
and variance = 1, and sek,k′ corresponds to the standard error of the estimate Q ̂b (a = k)− Q ̂b
(a = k′). We use the bootstrap to estimate sek,k′ as in Equation (11) below. To compute p̂k,k′ ,

we use Equation (10), replacing . Algorithmic details of our implementation of
the bootstrap voting procedure are given in Algorithm 2. The bootstrap voting methodology
is useful, as we will see in Section 5, for illustrating the evidence for the recommended
policy to clinicians in a way that is interpretable. It is especially helpful for conveying the
evidence for choices among more than two actions; however, it should not be interpreted as
a formal measure of confidence for the effect of the policy.

4.3.2 Adaptive Confidence Intervals—In the clinical trials setting, confidence intervals
are commonly used for providing rigorous statements about the strength of evidence in the
training data for, or against, a particular scientific hypothesis. For example:
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– Is there sufficient evidence in the training data to conclude that the treatment
action recommended by the learned optimal policy is significantly better than
competing actions?

– Is there insufficient evidence for a single best action, and what subset (if any) of
the actions can be excluded as non-optimal?

– Is a particular state variable necessary for making the above decisions?

In summary, the purpose of the confidence interval is to communicate to clinicians the
degree of evidence in the training data for a particular treatment or for the usefulness of a
patient variable in decision making.

In most RL applications, confidence intervals play a very different role. For example, in
Kaelbling et al (1996), Strehl and Littman (2004), and Strehl and Littman (2005), measures
of confidence are used to guide exploration. Their bounds are usually very conservative, and
produce large confidence intervals. Since the most important property of the confidence
interval in that setting is that it successfully pinpoints which action should be tried next, the
exact location of the ends of the confidence intervals are less important; more important is
the relative ordering of actions conveyed by the confidence intervals. In our case, where the
goal of the confidence intervals is to communicate the quality of the learned policy to an
outside audience, not only are the length of the confidence interval and location of the end
points important, but it is also essential that we can specify the fraction of the time the
confidence interval contains the true Q-values (e.g. if the confidence level is 95%, then 95%
of the training sets should lead to a confidence interval that covers the true Q-value).

Algorithm 2

Double bootstrap approximation algorithm for estimating an array of  values, the
probability that action k will win in all pairwise comparisons against all other actions at time
interval t for state value st.

Input: Training set  B the number of bootstrap iterations; M the number of imputations;

T vectors { t} of state values; T sets t, listing all possible actions for each t.

Using each of B bootstrapped training sets, first learn functions Q̂t
b parameterized by β̂t

b∀t :

for b = 1 to B do

Draw bootstrap sample b by sampling trajectories from with replacement.

for m = 1 to M do

Impute missing data in b using Algorithm 1, giving completed training sets b,m.

Apply batch fitted Q-iteration to b,m giving estimated parameters β̂t
b,m of Q̂t

b,m∀t .

end for

Compute bootstrap estimate β̂t
b as average over the β̂t

b,m:

β̂t
b = 1

M ∑
m=1

M
β̂t
b,mt ∈ {1, … , T }.

end for

for t ∈ {1 ,…, T}, st ∈ t, k ∈ t, k′ ∈ t \ k do
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Define Δ̂k,k′
b (st) ≜ Q̂t

b(at = k, st) − Q̂t
b(at = k ′ , st).

Calculate sample mean of the bootstrap action differences

Δ̄k,k′(st) =
1
B ∑
b=1

B
Δ̂k,k′
b (st).

Compute the bootstrap estimate for standard error of action difference using the sample standard deviation

of the Δk,k′
b (st):

sêk,k′(st) =
1

B − 1 ∑
b=1

B
(Δ̂k,k′

b (st) − Δ̄k,k′(st))
2. (11)

Calculate the double bootstrap approximation p̂k,k′
b*  using

p̂k,k′
b* = Φ ( Δ̂k,k′

b ( st)

sêk,k′ (st)
) ≡ Φ ( Q̂tb(at = k, st) − Q̂t

b(at = k ′ , st)

sêk,k′ (st)
, )

where Φ is the cumulative density function for the standard Gaussian distribution.

end for

Estimate p̂k,k′ (x) as average of the B bootstrap estimates

p̂k,k′ (st) =
1
B ∑
b=1

B
p̂k,k′
b* (st).

Calculate

p̂k
win(st) = ∏

k∈�t\k′
p̂k,k′(st).

return An array, p̂k
win(st), of estimates for each action at each time interval t, and for all state values st.

Another line of research in RL, related to confidence intervals, is the estimation of variance,
for example estimating the variance of the value function of a particular policy (Mannor et
al, 2007; Tetreault et al, 2007). These methods are restricted to discrete state spaces, and do
not apply readily to our problem. Furthermore, the clinical trial setting is somewhat different
as we have one (small) training set, thus we are forced to use this training set to learn the
policy and then reuse the same training set to provide measures of confidence concerning
this policy. Resampling methods such as the bootstrap are often used in the clinical trial
setting to provide both approximate variance estimates and confidence intervals (Efron,
1979; Efron and Tibshirani, 1993).

However, there are difficulties in extending standard statistical approaches, such as the
bootstrap, to the Q-learning setting. In particular, because maximization is used in learning
the policy and maximization is a non-differentiable function, extra care must be taken in
constructing a confidence interval. It is known (Shao, 1994) that commonly employed
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results like the consistency of the bootstrap distribution and the Central Limit Theorem do
not hold in cases where the true parameters—in this case the true Q-values—are at or near
these points of non-differentiability. The max operator used in the Bellman equation is
differentiable at a given state s when there is a unique optimal action for that state.
Conversely, the max operator is non-differentiable when, given a state s, the values of two
or more actions are equal and optimal. When the training set is sufficiently small so that it is
difficult to discriminate between an optimal and other nearly optimal actions, adjustments to
resampling methods like the bootstrap are required to produce confidence intervals that
possess the desired confidence level (Andrews, 2000).

In the CATIE study, there are only two stages, thus only stage 1 estimators are impacted by
the non-differentiable maximization. We employ a bootstrap resampling method developed
in Laber et al. to construct confidence intervals for the stage 1 action-value function in the
CATIE study. To aid in the exposition, we outline the method of Laber et al. for a two-stage
SMART study with two possible actions (aj = 1 or 2) at each stage. However, the ideas and
results presented here generalize readily to an arbitrary finite number of stages and
treatments (see Laber et al, 2010).

Recall that the model for the stage t Q-function is Qt(st, at; βt) = x(st, at)⊤βt. Given a state s
and action k, we want to construct a confidence interval for the stage 1 Q-function: Q1(s, k;
β1) = x(s, k)⊤β1. We begin by using a hypothesis test at each realized state, s2 to decide if
multiple stage 2 actions produce an equivalent value. Define the test statistic:

and n is the size of the training data set. This test statistic is a measure of a standardized
difference between values for treatment actions 1 and 2 at state s2. With the exception of the
log(n) term, this test statistic resembles an F statistic in regression (Neter et al, 1996). We
interpret s2) > 1 as there being strong evidence that the values of the actions differ in state
s2; conversely s2) ≤ 1 indicates that the actions may be equivalent. Consider three sets of
states:

1. The set of states for which the s2) > 1; we conclude that for these states the best
treatment action is unique.

2. The set of states for which the s2) ≤ 1 and in truth Q2(s2, 1) − Q2(s2, 2) = 0; these
are states in which the best treatment is not unique.

3. The set of states for which the s2) ≤ 1 and in truth Q2(s2, 1) − Q2(s2, 2) ≠ 0;
these are states in which it appears that the best treatment may not be unique, when
in fact it is unique.

Of course we could only differentiate between the last two sets of states if we knew the true
generative model and thus, the true difference in the Q-functions, Q2(s2, 1)−Q2(s2, 2). To
get around this, we use the Q-function learned on the original (non-bootstrapped) data to
estimate the true Q-function and the bootstrap samples to replicate training data sets.

Algorithm 4 gives the necessary implementation details for constructing the confidence
intervals using the bootstrap. Many of the quantities used in Algorithm 4 are used to produce

a standard bootstrap confidence interval (this includes the terms 𝕎 ̂b,m,  and z1). In the
first set of states, the max operator is not being applied near a point of non-differentiability
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so standard bootstrap methods apply. The vector z1 in Algorithm 4 is used by the standard
bootstrap procedure. The adjustments to the standard bootstrap are contained in the vectors
{z2, z3, z4}. In the second set of states, the max operator is applied close to or at a point of
non-smoothness, and the bootstrap procedure must be modified. Vector z2 is used to modify
the bootstrap for this second set of states. In the third case, the evidence in the data is
insufficient to detect the unique optimal action. The vectors z3 and z4 along with the
maximum in the upper bound (minimum in lower bound) in Algorithm 4 are used to make
the appropriate adjustments for this third set of states. If the second and third sets of states
were empty (z2 = z3 = z4 = 0) then the lower bound ℒb, and upper bound b in Algorithm 4
would be equal, and the confidence interval produced by Algorithm 4 would be a standard
bootstrap confidence interval. Since the CATIE data set has missing data, the bootstrap
samples also have missing data; Algorithm 4 uses Algorithm 1 to impute the missing data in
each of the bootstrap samples.

The adaptive confidence interval described here provides a confidence interval with
guarantees on coverage probability (see Laber (2010) for a full discussion and justification);
in particular, a 95% adaptive confidence interval will cover the true Q-value in about 95% of
training sets. The provision of these types of confidence statements are familiar and
expected in analyses of clinical trial data. These types of confidence statements are used to
decide whether it is worthwhile to conduct future studies of the treatments and state
variables. Furthermore, these confidence statements are used to indicate the shortcomings of
the investigated treatments (a treatment may need adaption if a particular reward is of
interest). The primary drawback of the adaptive confidence interval is that it is complex and
somewhat more computationally intensive than other interval estimators appearing in the RL
literature.

Algorithm 3

Calculate Q function and the pretest statistic given estimates β̂2, Σ ̂2

Input: State s2; Possible treatment sets 2 = {1, 2}; Estimates β̂2, and Σ̂2; Size of training data set n.

�(s2) =
n

(log(n))
(β̂2T(x(s2, 1) − x(s2, 2)))2

(x(s2, 1) − x(s2, 2))
TΣ̂2(x(s2, 1) − x(s2, 2))

.

for a2 ∈ 2 do

Q̂2(s2, a2) = β̂2
Tx(s2, a2)

end for

return {Q ̂2 (s2, a2); a2 ∈ 2}, s2).

5 Results
In this section we apply the methods described in Section 4 to the CATIE data set. We begin
by learning the optimal treatment policy for treating patients with schizophrenia using the
CATIE study, and then go on to quantify the evidence for this policy and estimate the
uncertainty around the expected outcome for patients who follow this policy. The total
reward is the negative of the area under the PANSS score curve over the 18 months of the
CATIE study. This is broken up into a reward for the first time interval (the negative of the
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area under the curve for stage 1) plus the reward for the second time interval (the negative of
the area under the curve for stage 2). Recall that a low PANSS score indicates low symptom
levels, thus for this application we are interested in minimizing the area under the PANSS
curve, or equivilantly maximizing the negative of the area under the PANSS curve.

Recall that in the CATIE study, the possible action choices for initial treatment in stage 1 are
olanzapine, perphenazine, quetiapine, risperidone and ziprasidone. In the stage 2 tolerability
arm, the treatment options are olanzapine, quetiapine, risperidone and ziprasidone. In the
stage 2 efficacy arm, we compare the treatment clozapine with one of the set of treatments
{olanzapine, quetiapine, or risperidone}. We compare clozapine with the set of treatments
for three reasons: 1) the randomization process lends itself to this comparison (50% to
clozapine and 16.6% each to olanzapine, quetiapine and risperidone); 2) very few patients
enter the efficacy arm leaving us with small amounts of data to learn from; and 3) as
previously noted, clozapine is a very different drug from the other three (see Section 3),
which biologically act similarly.

Figure 3 visually displays the optimal treatment policy learned using 25 imputations of the
CATIE data. This learned policy recommends that everyone initially be treated with
olanzapine. In the event that an individual chooses to discontinue treatment, the
recommended second line of treatment depends on an individual’s reason for discontinuing
previous treatment and their PANSS score at that time.

Figure 4 presents the bootstrap voting plots for stage 1 of the CATIE study. The bootstrap
voting plots for the stage 2 efficacy and tolerability arms are shown in Figure 5. In each of
the bootstrap voting plots, the vertical location of the diamonds indicates the estimated value
of the optimal action. The size of the diamonds shows the number of people in the training
set within the range of PANSS scores indicated on the horizontal axis. Figures 4 and 5(b)
both convey information about the relative evidence for five different actions, along with the
estimated value for the optimal action. We can readily see from Figure 4 that there is strong
evidence for olanzapine as the optimal initial treatment. In Figures 5 (a) and (b) it is clearly
seen that the data provides evidence suggesting that the optimal treatment choice should
change as a function of PANSS score. In Figures 4 and 5(b), a portion of the bars is
unshaded. This area represents the estimate for p∅, the proportion of discordant results. In
Figure 4 the estimate for p∅ increases with PANSS (note also that sample size decreases as
PANSS increases in both figures) while in 5(b) the estimated proportion of discordant
results remains fairly constant. This illustrates that it is not only training set size, but also
small treatment effects and variable data, that contribute to the lack of evidence for a unique
optimal treatment. In Figure 4(a) there is no unshaded area; this is because when there are
only two action choices discordant results are not possible: one of the actions must be
optimal.

Algorithm 4

Bootstrap algorithm for estimating the bounds for (95%) confidence intervals for stage 1
treatment effects for state s1, action a1 = k

Input: Training data set of size n; B the number of bootstrap iterations; M the number of desired imputations; 2 is
the state space of all observed states in stage 2 of the training set  a state s1, action k ∈ 1; 2 = {1, 2} is the set of
treatment actions at stage 2.

for m = 1 to M do

Impute missing data in using Algorithm 1, giving completed training set m.

Apply batch fitted Q-iteration to m giving estimated parameters β̂t
m of Q̂t

m∀t .
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end for

Using the average over M imputations of  calculate estimates β̂2
�, Σ̂2

� .

for s2 ∈ 2 do

({Q̂2
�(s2, a2); a2 ∈ �2}, �

�(s2)) ≜ the output of Algorithm 3 having as input 2 = {1, 2}, 2, and

estimates β̂2
� and Σ̂2

�.

end for

for b in 1 : B do

Draw bootstrap sample b from 

for m = 1 : M do

Impute missing data in b using Algorithm 1, giving completed training set b,m.

Estimate β̂t
b,mΣ̂2

b,m using the mth imputation of the bthbootstrap b,m.

for s2 ∈ 2 do

({Q̂2
b,m(s2, a2); a2 ∈ �2), �

b,m(s2)) ≜ the output of Algorithm 3

having as input 2 = {1, 2}, 2, and with estimates β̂2
b,m and Σ̂2

b,m.

end for

Define, for the ithtrajectory in b,m, the following scalars:

ς1,i ≜ (max j∈�2
Q̂2
b,m(s2,i, j) − max j∈�2

Q̂2
�(s2,i, j)) ,

ς2,i ≜ (max j∈�2
(Q̂2b,m(s2,i, j) − Q̂2

�(s2,i, j))) .
Σ̂1
b,m = 1

n∑i=1
n x = (s1,i,a1,i

)Tx(s1,i,a1,i
) .

𝕎
^ b,m = (Σ̂1b,m)−1 n Σi=1

n x = (s1,i,a1,i
)T (r1,i + max

j∈�2

Q̂2
�(s2,i, j) − Q̂1

�(s1,a1,i
)) .

Define the following column vectors:

z1 = 1
n∑i=1

n x(s1,i,a1,i
)T · ς1,i · 𝟙(�

b,m(s2) > 1) .

z2 = 1
n∑i=1

n x(s1,i,a1,i
)T · ς2,i · 𝟙(�

b,m(s2) ≤ 1, ��(s2) ≤ 1) .

z3 = 1
n∑i=1

n x(s1,i,a1,i
)T · ς1,i · 𝟙(�

b,m(s2) ≤ 1, ��(s2) > 1) .

z4 = 1
n∑i=1

n x(s1,i,a1,i
)T · ς2,i · 𝟙(�

b,m(s2) ≤ 1, ��(s2) > 1) .

c = x(s, k).

�b,m = cT𝕎^ b,m + n cT(Σ̂1,n
b,m)−1(z1 + z2) + max{cT(Σ̂1,n

b,m)−1z3, c
T(Σ̂1,n

b,m)−1z4} .

ℒb,m = cT𝕎^ b,m + n cT(Σ̂1,n
b,m)−1(z1 + z2) + min{cT(Σ̂1,n

b,m)−1z3, c
T(Σ̂1,n

b,m)−1z4} .

end for
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ℒb = 1
M ∑m=1

M ℒb,m.

�b = 1
M ∑m=1

M �b,m.

end for

Let l be the 2.5th percentile of ℒ and u the 97.5th percentile of 

Construct 95% confidence interval for value of action, a1 = k for state s1

L (s, k) = Q̂1
�(s1, k) − l / n,

U (s, k) = Q̂1
�(s1, k) + u / n.

Figures 6 and Figure 7 visually present the results of applying the adaptive confidence
interval methodology to the CATIE data. The circles represent the point estimate of the
value for each action and PANSS score, while the confidence interval is indicated by a
vertical line. From Figure 6 it is immediately clear that while the point estimate for value
function of olanzapine is always lowest (recall a low PANSS score is good), its confidence
intervals always overlap with the confidence intervals for at least one other treatment. This
indicates that our uncertainty about the value of choosing olanzapine as the initial treatment
is high, and we cannot with high confidence recommend olanzapine as the sole optimal
initial treatment. At the same time, if we focus on the lowest PANSS score, the confidence
interval for olanzapine does not overlap with risperidone, quetiapine or ziprasidone. Thus,
these three drugs can be excluded as possible candidates for the optimal action for
individuals with low PANSS scores. Even more uncertainty exists for the value function
estimates for the second stage of CATIE. In the efficacy arm, we can see that the point
estimate for clozapine is above the other treatment group at low PANSS values (indicating it
is less effective), but it is below the others at high PANSS values. However, the confidence
intervals around these estimates overlap, indicating a lack of confidence in either treatment.
Similar results hold in the tolerance arm where the point estimate for the value of
risperidone is best for low PANSS scores and for high PANSS scores the point estimate for
the value of quetiapine is better. Again, the overlapping confidence intervals lead us to
conclude that we do not have high confidence that there is one unique best treatment action.

6 Discussion
This paper highlights the role that reinforcement learning can play in the optimization of
treatment policies for informing clinical decision making. We have presented methods for
tackling some of the important issues that often arise when applying reinforcement learning
to data collected in a SMART study. Finally, we showed the results of applying these
methods to real data collected from a SMART study for patients with schizophrenia. We
now conclude the paper by discussing some general applications of these methods, outlining
some of limitations of these methods, and detailing some interesting open questions.

Relevance of RL in sequential treatment design
The use of RL methods to automatically learn good treatment policies for patients with
chronic illnesses is an emerging field, with great opportunities for new research directions.
A number of SMART studies are currently underway in the fields of autism (C. Kasari,
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personal communication), alcoholism (D.W. Oslin, pers. comm.; J.R. Mackay, pers.
comm.), drug abuse (H. Jones, pers. comm.), and attention deficit disorder (W.E. Pelham,
pers. comm.). RL provides the basic principles and mathematical foundations for learning
evidence-based, individualized, treatment policies from clinical data.

While this foundation is a good start, using RL methods to optimize treatment policies is not
as simple as applying off-the-shelf RL methods. Though the planning horizon is very short
(only 2 stages in our particular application) and the exploration policy is fixed, upon closer
inspection, a number of previously unexplored challenges arise when tackling problems in
this domain. In particular, our case study highlights issues such as pervasive missing data,
the need to handle a high-dimensional and variable state space and the need to communicate
the evidence for a recommended action and estimate confidence in the actions selected by
the learned policy. The methods we present in Section 4, and apply to the CATIE data set to
tackle these problems, are of particular interest in this domain. They are likely useful in a
wide range of other domains and may in fact open new avenues of research in the RL field.

Bootstrap Voting Plots and Adaptive Confidence Intervals
The bootstrap voting procedure allows us to clearly illustrate our best estimate of the
probability of selecting a particular action in an analysis on a future training set. While the
bootstrap voting procedure has this meaningful probabilistic interpretation, since we are
only giving a point estimate of this quantity, the results cannot be interpreted as a measure of
confidence. The usefulness of the procedure is in conveying the evidence in our current data
set for the action choices made at different states, and in particular, clearly showing how the
evidence changes with state. One direction for future work would be to produce confidence
intervals for the bootstrap voting estimator and devise a means of augmenting the bootstrap
voting plots with this confidence information. Note that the adaptive confidence intervals
presented in Section 5 show our confidence about the predicted value of each action. In
order to compare two actions, we would construct a confidence interval for the difference in
action value and determine whether that confidence interval included zero. To compare all

of the actions in stage 1 of CATIE would thus require  confidence intervals at each
state value, which becomes unwieldy to present. This is one of the reasons we have
presented both the bootstrap voting plots and the adaptive confidence intervals results.
While the bootstrap voting method does not convey confidence, it does convey evidence for
action selection, and it does so very concisely for any number of actions.

The adaptive confidence interval method presented here assumes that the linear
approximation provides a high quality approximation to the optimal Q-function. The
adaptive confidence interval method has not yet been generalized for use with a nonlinear
approximation to the Q-function such as, for example, trees or a nearest neighbor estimators.
Confidence intervals are particularly useful in evidence-based medical decision-making, but
constructing such intervals could be very beneficial in other areas in which the same training
set must be used to both learn a policy and then evaluate the learned policy. Interesting
extensions of this work would involve extending these results to a richer class of function
approximators.

Problems of Missing Data
As we have pointed out in this paper, data from clinical trials are often characterized by
missing data problems. The patterns and amount of missingness can vary greatly by disease.
For example it is typical for mental illness trials to have higher dropout rates than cancer
clinical trials. While it is tempting to simply ignore trajectories with missing information,
this is not a good strategy. Removing individuals with missing data from a training set
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increases the variance of estimators by reducing the training set size and can add bias to the
estimates of the action effects on the Q-function.

The reinforcement learning community has usually turned to POMDPs to tackle problems of
missing data. While the mathematical framework is appropriate for many domains, the
usefulness of POMDPs in practical applications with many variables remains problematic
due to the complexity of the inference problem. In this paper, we highlight how methods
from the statistical literature can be leveraged to overcome the missing data problem and
produce fully observable (imputed) trajectories. Such methods may be useful in a wider
range of RL applications where missing data occurs.

The multiple imputation framework itself is very general and can be implemented with very
few modeling assumptions. Although, as in the CATIE example, it is often useful to make
appropriate modeling assumptions to ensure tractability. These assumptions also provide an
opportunity for including existing domain knowledge, about the causes of the missingness
and the structure of the data. As with any assumptions made in the modeling process, the
validity of the assumptions should be tested and where they cannot be tested, sensitivity
analyses should be preformed. There is a large literature on testing the validity of the
assumptions made in multiple imputation, as well as a variety of sensitivity analyses (Little
and Rubin, 1987; Robins et al, 1999; Scharfstein et al, 1999; Gelman et al, 2005; Carpenter
et al, 2007; NAP, 2010).

Designing the reward function
As briefly mentioned in Section 3, one of the important open problems in applying RL to
learning treatment policies is the definition of the reward. In our particular example, we
chose to use the negative of the area under the curve of the PANSS score over the 18 months
of the CATIE study. A composite reward that accounts for symptoms over a long period of
time is important in the treatment of schizophrenia. As with many chronic diseases,
symptoms vary over time, and reducing a patient’s symptoms at a single point in time does
not ensure that their symptoms will remain low. The AUC is one example of a composite
score, but other choices for the reward function are possible and could also prove to be
interesting. Choosing the reward function is a non-trivial task and should be done in
collaboration with clinicians to ensure that policies learned are both interpretable and able to
be effectively implemented in practice.

In this paper we focus on learning a policy that minimizes symptoms as measured by the
PANSS score. In most clinical settings, treatment decisions are based on a rich interplay of
factors, including patient response to previous treatment, the development of new symptoms
and illnesses, and side-effects among others. A limitation of applying the traditional RL
framework is that it focuses on a single (scalar) reward. The medical setting stresses the
importance of the development of RL methods that can optimize performance considering a
set of (possibly competing) rewards. A few researchers have explored special cases of this
problem (Bagnell et al, 2001; Shelton, 2001; Doshi et al, 2008; Lizotte et al, 2010) but more
development is required.

Informing data collection
Working with batch data has the obvious advantage that the exploration issue is addressed a
priori. The traditional randomized clinical trial collects data under a pure exploration policy;
however, not all trials follow this strategy. There is a growing interest in the medical
community in conducting Bayesian adaptive clinical trials (Berry, 2006; Thall and Wathen,
2007; Biswas et al, 2009), in which some aspects of the trial design (e.g. randomization
probabilities, trial population) are changed adaptively throughout the trial, based on the
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information collected. This approach can be used to make more efficient use of data and
could help ensure that patients receive the best possible treatment, even during the early
stages of treatment testing. In the reinforcement learning literature, Bayesian approaches
have also been explored for similar reasons (Dearden et al, 1999; Strens, 2000; Wang et al,
2005; Engel et al, 2005); other methods targeting efficient exploration have also been
explored (Kakade et al, 2003; Strehl et al, 2006; Brunskill et al, 2008). The medical domain
is likely to be a fruitful application area for these techniques.

An important concern with training data acquired through clinical trials is the fact that all
actions are potentially equally good. Recall that the ethical issues mentioned in Section 3.3
prohibit the exploration of treatments known to be less effective than existing treatments.
This implies that the difference between Q-values for different actions is likely to be small.
Furthermore, we need to estimate Q-values from relatively few trajectories. There is no easy
solution to this challenge, rather we believe it is particularly important to know what we
don’t know. Clinical trials are expensive to run, yet as new treatments emerge, new trials are
run to compare new treatments to current ones. Ruling out treatments as non-optimal is
informative in the medical setting. For example, in the CATIE study, while we do no have
enough evidence to recommend one optimal treatment, the adaptive confidence intervals in
Figure 6 indicate that quetiapine, risperidone and ziprasidone are all non-optimal for low
PANSS scores. Thus, these three treatments can be ruled out as a best initial treatment for
patients with low PANSS scores. This information can be very important for informing the
design of future clinical trials. Recently, researchers have begun to develop methods for
estimating sets of actions that can be classified as near-optimal in the RL setting (Fard and
Pineau, 2009). Medical applications open the door to these new avenues of research focused
on estimating sets of nearly optimal treatments rather than simply focusing on learning a
single optimal treatment at each stage.
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Fig. 1.
Barplot of missing PANSS scores in the CATIE study. The total height of the bar shows the
absolute number of people who have a missing PANSS score at each of these monthly visits.
The dark grey area represents the number of people who have missing PANSS score
because they dropped out of the study prior to that month. The unshaded area is the number
of missing PANSS scores due to item missingness. The missing data pattern for other time-
varying patient information collected during the CATIE study is similar to the missing data
pattern shown here.
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Fig. 2.
(a) Boxplot of observed PANSS score collected during the CATIE study. The boxes
represent the inter-quartile range of the observed PANSS scores at each of these months, the
line bisecting the boxes is the median score, and the circles represent outlying scores. (b)
Line graph representing the observed PANSS scores of 100 randomly selected CATIE
participants by month of observation.

Shortreed et al. Page 28

Mach Learn. Author manuscript; available in PMC 2011 July 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Optimal treatment policy learned from 25 imputations of the CATIE data, with the total
reward defined as the negative area under the PANSS curve for the 18 months of the CATIE
study. The state representation is defined in Section 3.1 and the Q-function form used is
described in Section 4.2
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Fig. 4. Bootstrap voting results for stage 1 of CATIE study
The vertical location of the diamonds indicate the point estimates for the value function
associated with different stage 1 PANSS scores. The vertical axis on the right hand side
gives the axis for this value function. The size of the diamonds represents the number of
people in the corresponding PANSS bin in the CATIE study. The shaded bar represents the
evidence in the data for each of the action choices as labeled in the legend. The unshaded
portion of the graph is the estimate for p̂∅, the proportion of discordant trials. Recall a low
PANSS score indicates low symptoms of schizophrenia, thus a lower score is better.
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Fig. 5. Bootstrap voting results for stage 2 of CATIE study
Plots for the efficacy and tolerability are in Figures (a. Efficacy Arm) and (b. Tolerance
Arm) respectively. The vertical location of the diamonds in these plots represent the point
estimates for the value function with different stage 2 PANSS scores. The vertical axis on
the right hand side gives the axis for the value function. The size of the diamonds represents
the number of people in the corresponding PANSS bin in the CATIE study. The shaded
regions represent evidence for each of the action choices labeled in the legends, . The
unshaded portion of the graph is the estimate for p̂∅, the proportion of discordant trials.
Recall a low PANSS score indicates low schizophrenia symptoms, thus a lower score is
better.
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Fig. 6.
Estimates and 95% confidence intervals for stage 1 state-action value-function. The circle
represents the point estimate for the value of each action given the PANSS score indicated
on the horizontal axis. The different stage 1 treatments are represented by the colors
indicated in the legend.
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Fig. 7.
Estimates and 95% confidence intervals for stage 2 state-action Q-function. The circle
represents the point estimates of the state-action value function for each action given the
PANSS score indicated on the horizontal axis. The various stage 2 treatments are
represented by the colors indicated in the legend.

Shortreed et al. Page 33

Mach Learn. Author manuscript; available in PMC 2011 July 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


