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■ Abstract 
The critical trace element zinc is essential for normal insulin 
production, and plays a central role in cellular protection 
against apoptosis and oxidative stress. The regulation of zinc 
within the pancreas and β-cells is controlled by the zinc 
transporter families ZnT and ZIP. Pancreatic islets display 
wide variability in the occurrence of these molecules. The 
zinc transporter, ZnT8 is an important target for autoimmu-
nity in type 1 diabetes. Gene polymorphisms of this trans-
porter confer sensitivity for immunosuppressive drugs used 

in islet transplantation. Understanding the biology of zinc 
transport within pancreatic islets will provide insight into the 
mechanisms of β-cell death, and may well reveal new path-
ways for improvement of diabetes therapy, including islet 
transplantation. This review discusses the possible roles of 
zinc in β-cell physiology with a special focus on islet trans-
plantation. 
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Introduction  
 

 ancreatic islet cell transplantation is emerg- 
 ing as a promising treatment for selected 
 patients with type 1 diabetes (T1D). In this 

therapy, cadaveric human donor pancreata are 
enzymatically digested to create islets for infusion 
into the T1D recipient’s liver under immunosup-
pressive drug regimen [1-3]. Shortly after isolation 
and within the first few days of transplantation, 
multiple factors, including apoptosis of trans-
planted islets, contribute by approximately 60% to 
the functional loss of β-cells. Half of this loss oc-
curs within the first three days of transplantation 
[4]. One of the limitations to a wider application of 
islet transplantation for treatment of T1D patients 

is the requirement of more than one donor pan-
creas to obtain an adequate mass of donor islets 
for effective treatment. Long-term success of the 
therapy is compromised by the loss of islets be-
cause of a variety of processes, including islet 
apoptosis, instant blood-mediated inflammatory 
response, toxicity of drug therapy, and recurrence 
of autoimmunity. β-cell apoptosis, either during 
islet isolation or immediately after transplanta-
tion, and the susceptibility of the islets to immu-
nosuppressive toxicity are important long-term 
causes of islet loss [5, 6]. Understanding the fac-
tors and causes that predispose β-cells to apoptosis 
or protect against it, is therefore an important is-
sue with direct impact on the field of islet trans-
plantation. 
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The trace element zinc is known to play an 

important role in pancreatic islets as a specific 
structural component of the insulin molecule and 
also in insulin secretion [7]. Zinc has been shown 
to possess both antioxidant and anti-apoptotic 
properties. The availability of zinc is controlled by 
two major families of transporters, the Zrt- and 
Irt-like protein (ZIP) family (responsible for zinc 
influx into cells) and the ZnT family (responsible 
for intracellular transport of zinc into organelles 
or zinc efflux from cells). Whether alteration of 
zinc transporters contributes to stress and cell 
death during islet cell transplantation is presently 
unknown. However, autoimmunity targeting zinc 
transporter proteins, in particular the ZnT family 
member ZnT8, has been identified as a new auto-
immune pathway in T1D. Polymorphisms for the 
same zinc transporter also confer risk in type 2 
diabetes (T2D). Studies focusing on the regulation 
of zinc transporters in islet transplantation are 
still lacking, but the connection between zinc, 
apoptosis, and autoimmunity makes zinc a rele-
vant element for islet viability in transplantation 
regimens. This review describes the current state 

of knowledge of the role of zinc and zinc transport-
ers in islet biology and the importance of zinc 
transporters in islet regulation. 

Role of zinc in the pancreas 

Zinc is important for a number of functions in 
the pancreas, including synthesis, secretion, and 
signaling of insulin, glucagon secretion, and pan-
creatic digestive enzyme secretion and activity. In 
the exocrine cells, zinc is abundant in the granules 
of acinar cells where digestive proenzymes are 
stored and released via exocytosis [8]. Under nor-
mal conditions, approximately 1-2 mg/day of zinc 
enter the pancreatic acinar cells through the di-
gestive system [9]. In zinc deficiency states, pan-
creatic acinar cells undergo zinc depletion. During 
zinc excess, zinc alters acinar cell structure and 
reduces digestive enzyme secretion [8]. 

Recently, Wagner et al. investigated the 
TRPM3 channel, which regulates the influx of zinc 
into pancreatic β-cells [10]. TRPM3 is expressed 
endogenously in pancreatic β-cells, and is highly 
permeable to zinc ions. Zinc uptake is increased 
through TRPM3 and voltage-gated calcium chan-
nels, if extracellular TRPM3 is activated. This 
process replenishes the intracellular stores of zinc 
in the pancreatic islets. 

The highest zinc content in the body has been 
detected in the islets [11]. Most of the intracellular 
zinc is stored with insulin in the insulin secretory 
vesicles in pancreatic β-cells as a zinc insulin com-
plex. The concentration of zinc in these vesicles is 
very high, approximately 20mM [12]. However, 
zinc transporters are also found in pancreatic α-
cells and are supposed to regulate glucagon secre-
tion [13]. During insulin secretion, zinc is released 
together with insulin into the extracellular islet 
space, and is taken up by neighboring cells [13]. 
Within β-cell insulin granules, each hexameric in-
sulin crystal contains two zinc ions [14]. Zinc-
deficient rats have lower insulin secretion and 
glucose uptake compared to normal rats [15]. 
Faure and colleagues demonstrated that zinc de-
pletion decreased insulin activity in rats [15]. Nu-
tritional zinc supplementation improved fasting 

insulinemia and glycemia in rodents. The mecha-
nism of action of zinc, whether it acts directly on 
insulin receptors and glucose transporters, or in-
directly via intracellular pathways of insulin, is 
unknown [16]. 

During insulin exocytosis, insulin granules 
fuse with the β-cell plasma membrane, and release 
their content into the pancreatic micro-circulation 

Abbreviations: 
 

α-TC cell - simian virus 40 T glucagonoma cell 
BBDR - Bio Breeding diabetes-resistant 
Bcl-2 - B-cell lymphoma 2 
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[17]. The important role of zinc in pancreatic β-cell 
function requires that these cells are equipped 
with sophisticated mechanisms to take up zinc 
and incorporate it into their secretory granules 
[18]. 

Zinc transporter proteins 

Zinc transporters control the influx and efflux 
of zinc within cells, and play an important role in 
maintaining cellular homeostasis between cell 
growth and disease prevention [19, 20]. There are 
two main families of zinc transporters, the ZIP 
and ZnT families. At present, 14 members of the 
ZIP family have been identified in humans, and 10 
members of the ZnT family (or cation diffusion fa-
cilitator family). The latter are designated ZnT1-
ZnT10 [18, 21-24]. 

Variation of zinc transporters in iso-
lated pancreatic islets 

Given the importance of zinc in insulin secre-
tory function, the availability of zinc in donor is-
lets is a potentially critical variable for good islet 
function. Critically ill patients in intensive care 
units are thought to have lower levels of serum 
zinc than healthy persons [25]. To verify this hy-
pothesis we measured plasma zinc in 76 human 
pancreatic organ donors. The mean plasma zinc 
level was 6.48 mmol/l (±2.26), with a range in do-
nors from 0.5-14.4 mmol/l. This finding indicates a 
wide variability in plasma zinc levels in organ do-
nors, which potentially could influence post-
isolation function. Donor zinc levels were lower 
than the reference range for healthy adults (9.0-
21.0 mmol/l), indicating  potential acute zinc defi-
ciency in this population. 

To investigate the expression of zinc trans-
porters in human islet donors, isolated pancreatic 
islets were investigated using real time PCR. We 
identified 19 of the 24 known mammalian zinc 
transporters in isolated human islets, which con-
trasts with previously published findings for the 
pancreas (Tables 1 and 2). Those not expressed in-
cluded two members of the ZnT family, ZnT3 and 
ZnT10, and three members of the Zip family, ZIP2, 
ZIP4, and ZIP12. The islet restricted zinc trans-
porter ZnT8 was the most abundant ZnT family 
transcript within islets, expressed at a level 3 
times greater than ZnT2 and ZnT9, the second 
and third most abundant transcripts, respectively. 
Within the ZIP family of transporters ZIP7 and 
ZIP14 were the most abundant transcripts. The 
expression of ZnT8 and ZIP14 was shown to be 
highly variable across multiple human islet isola-
tions (n = 10) [26]. A possible explanation may be 
that the process of isolating islets can lead to dys-
regulation of these two transcripts and potentially 
lead to perturbations in islet function. 

 
 
 
 

Table 1. ZIP family zinc transporter expression in the pancreas of 
organ donors 
 

 

Zn trans-
porter 

 

α-cells 
 

β-cells 
 

Pancreas 
(location 

unknown) 

 

Acinar 
tissue 

 

No evi-
dence of 

expression
 

ZIP1 x   x  
 

ZIP2     x 
 

ZIP3 x     
 

ZIP4   
 

x x  
 

ZIP5   
 

x x  
 

ZIP6     x 
 

ZIP7   
 

x   
 

ZIP8     x 
 

ZIP9     x 
 

ZIP10 x   x  
 

ZIP11     x 
 

ZIP12     x 
 

ZIP13     x 
 

ZIP14 x   x  
 

 

 
 
 
Table 2. ZnT family zinc transporter expression in the pancreas of 
organ donors 
 

 

Zn trans-
porter 

 

α-cells 
 

β-cells 
 

Pancreas 
(location 

unknown) 

 

Acinar 
tissue 

 

No evi-
dence of 

expression
 

ZnT1    x  
 

ZnT2    x  
 

ZnT3   
 

x   
 

ZnT4   
 

x   
 

ZnT5  x 
 

   
 

ZnT6     x 
 

ZnT7  x 
 

   
 

ZnT8 x x    
 

ZnT9   
 

x   
 

ZnT10   
 

x   
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Islet oxidative stress and zinc as an 
antioxidant 

Oxidative stress 

Islets have a significantly higher proportion of 
pancreatic blood supply compared with pancreatic 
acinar tissue, and are very sensitive to hypoxia 
and hypoxia-induced oxidative stress [27, 28]. The 
chronic hyperglycemia that occurs in diabetes also 
causes oxidative stress and promotes the forma-
tion of reactive oxygen species (ROS) [29], leading 
to mitochondrial dysfunction [30], endoplasmic re-
ticulum stress [31-33], and ultimately to β-cell dys-
function [34]. Oxidative stress also plays an im-
portant role in decreasing islet cell viability during 

isolation and transplantation [35]. During islet 
transplantation procedures, islets undergo hy-
poxia and decreased oxygen consumption [28]. 
This initiates biochemical reactions leading to the 
production of ROS, and subsequent damage and 
injury to the islets [36, 37]. Increased oxidative 
stress in islets during this period is partly due to 
decreased expression of antioxidant enzymes, such 
as glutathione peroxidise, catalase, and xanthine 
oxidase [38]. 

Zinc as an antioxidant 

The antioxidant properties of zinc in organs 
such as skin and lung have been thoroughly inves-
tigated. However, the role of zinc as antioxidant in 
the pancreas has not been extensively studied. 

ZINC

ROS (Haber
Weiss cycle)

SH group protein 
stabilization

Immune-mediated free 
radical attack (ROS)

Stimulation of 
insulin secretion 
of beta-cells

Important for 
the structural 
integrity of 
SOD

H2O2 +OH. →H2O+O2
−+H+ 

H2O2 +O2−→ O2 +OH− +OH.
SH SHMETALLOTHIONEIN

PDX-1 
MAFA
PDX-1 
MAFA

Insulin promoter

Inhibition of xanthine
oxidase preventing 
lipoperoxidation

Stimulation of 
pancreas growth 
(PDX-1), MAFA, 
insulin synthesis

ZINC

ROS (Haber
Weiss cycle)

SH group protein 
stabilization

Immune-mediated free 
radical attack (ROS)

Stimulation of 
insulin secretion 
of beta-cells

Important for 
the structural 
integrity of 
SOD

H2O2 +OH. →H2O+O2
−+H+ 

H2O2 +O2−→ O2 +OH− +OH.
SH SHMETALLOTHIONEIN

PDX-1 
MAFA
PDX-1 
MAFA

Insulin promoter

Inhibition of xanthine
oxidase preventing 
lipoperoxidation

Stimulation of 
pancreas growth 
(PDX-1), MAFA, 
insulin synthesis

 
 
Figure 1. Role of zinc as an antioxidant. The inhibition of ROS by zinc reduces glucose toxicity. Zinc stimulates metal-
lothionein transcription. Metallothionein itself has antioxidant effects. Zinc provides protection against immune-mediated free 
radical attack by protecting sulfhydryl (SH) groups against oxidation and participation in the inhibition of the free radical pro-
duction in the Haber Weiss cycle by competing with transition metals. Zinc contributes to SH stabilization by protecting pro-
teins from oxidation. It has also been shown to reduce directly .O2 and .OH- radicals, H2O2, and xanthine oxidase levels, 
thereby improving mitochondrial function. Decreasing these radicals decreases lipid peroxidation. Zinc also stimulates PDX-1 
insulin promoter activity, and inhibits xanthine oxidase activity, thereby reducing lipid peroxidation. +: stimulation of path-
way. -: inhibition of pathway. 
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Disturbances in zinc homeostasis, and in particu-
lar zinc depletion, in the pancreas have been asso-
ciated with oxidative stress [39]. In some studies, 
zinc supplementation has been found to reduce the 
progression of diabetes by reducing oxidative 
stress and apoptosis [40-42]. Zinc plays a major 
role in the maintenance of the structural integrity 
of copper zinc superoxide dismutase (Cu-Zn SOD) 
[43]. Zinc supplementation increases superoxide 
dismutase activity in vitro. Correspondingly, SOD 
activity in zinc-deficient rats is decreased. Zinc 
supplementation of T2D patients can prevent de-
creased synthesis of the zinc-containing antioxi-
dant enzymes superoxide dismutase and glu-
tathione peroxidase, and thereby reduce albumin 
excretion in microalbuminuric T2D patients [44]. 

Another enzyme important in oxidative stress 
is xanthine oxidase, which catalyses the hydroxy-
lation of xanthine to form superoxide radicals. 
Zinc inhibits xanthine oxidase activity in vitro, 
thereby reducing lipid peroxidation [45]. In hu-
mans, Roussel and colleagues demonstrated that 
30 mg/day of zinc as supplementation reduced 
lipoperoxidation in the blood samples [46]. It was 
proposed that zinc metallothionein complex inhib-
its xanthine oxidase by interrupting the binding of 
iron in the Fenton reaction and subsequent redox 
reaction [47]. Zinc as a component of zinc metal-
lothionein complexes in pancreatic islets provides 
protection against the inflammatory reaction in-
duced by multiple low doses of streptozotocin [48] 
(Figure 1). Mechanistically, zinc-upregulated met-
allothionein inhibits OH generation by inhibiting 
the Fenton reaction through the binding of Fe2+. 
Zinc is involved in protecting sulfhydryl groups 
against oxidation and in inhibiting free radical 
production in the Haber Weiss cycle by competing 
with transition metals [48, 49]. By preventing pro-
teins from oxidation, zinc contributes to sulphy-
dryl SH stabilization [50] (Figure 1). In summary, 
zinc has antioxidant properties mediated through 
SOD and metallotheionein pathways protecting 
proteins from reactive oxygen species and free 
radical attacks. These pathways are summarized 
in Figure 1. 

Zinc is known to act as an antioxidant in many 
organs. However, the role of zinc as an antioxidant 
in the pancreas is limited and not extensively 
studied. Optimizing zinc contents in pancreatic is-
lets may be an important factor in improving their 
survival during transplantation. Zinc may have 
protective effects against oxidative stress that oc-
curs during the progression of diabetes or in islets 
prepared for transplantation purposes. Further 
research is necessary to verify this hypothesis. 

Islet apoptosis and zinc as an anti-
apoptotic factor 

Inflammation and survival of islets after 
transplantation 

After islet isolation and transplantation, it is 
estimated that up to 70% of β-cells are destroyed 
in the early post-transplant period. The major fac-
tor impacting the survival of islets within the liver 
is the inflammatory environment into which they 
are infused. This includes the inflammation-
associated platelet activation, clot formation, and 
post-transplant lymphocyte recruitment. Another 
factor which contributes to the decrease in long-
term islet cell mass is the toxic effect of immuno-
suppressive drugs on islet function [51-53]. 

Zinc and inflammatory cytokines 

Zinc has a concentration-dependent effect on 
peripheral blood mononuclear cells (PBMC). It can 
suppress or stimulate the production of pro-
inflammatory cytokines such as IL-1 and TNF-α 
[54]. Zinc supplementation of human PBMC leads 
to an increased mRNA production and release of 
the cytokines IL-6, IL-1β, and TNF-α. On the other 
hand, several reports indicate that zinc treatment 
suppresses the formation of pro-inflammatory cy-
tokines such as TNF-α, IL-1β and IL-8 [55]. Kee-
Lung and colleagues showed that the effect of zinc 
is concentration-dependent [54]. Zinc administra-
tion of 100 µM stimulated cytokine production and 
expression of caspase-3 and pro-apoptotic genes, 
including Fas (FasL) and c-fos. Zinc concentra-
tions above 100 µM decreased cytokine stimula-
tion and the expression of the anti-apoptotic fac-
tors nuclear factor (NF) κB, Bcl-2, and Bcl-XL in 
PBMC from healthy subjects [54]. Zinc supple-
mentation decreased TNFα-induced NF-κB activ-
ity in PBMC [56]. Zinc supplementation in cell 
lines upregulated anti-apoptotic protein zinc fin-
ger protein A20 in vitro [57]. A20 inhibits the ac-
tivity of proinflammatory cytokines via TNF re-
ceptor-associated factors in cells [58, 59]. A20 is 
expressed in various cell types in response to a 
number of stimuli, such as TNF-α, IL1-β, Epstein-
Barr virus latent membrane protein, and others 
[60]. A20 inhibits the activation of NF-κB by IL-1β 
and TNF-α gene expression in endothelial cells 
[61]. Cooper and colleagues suggested that A20 
may play a role in regulating gene expression of 
IL-1β, IL-8, and TNF-α affected by zinc [60]. 
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In summary, zinc exerts effects in a concentra-
tion-dependant manner in the body. It has direct 
effects on T cells and macrophage cytokine produc-
tion, and indirect negative effects on the transcrip-
tion of pro-apoptotic genes. Thus, zinc is an impor-
tant mediator that may reduce apoptosis in the 
pancreas during diabetes progression. 

Zinc efflux transporters in the pan-
creas (ZIP family) 

The principal ZIP family zinc transporters 
identified in the pancreas are ZIP1, 3, 4, 5, 7, 10 
and 14 (Table 1). 

ZIP1 and ZIP3 

In the literature, information regarding ZIP 
transporter expression in α- and β-cells is limited. 
Real-time quantitative PCR analysis for ZIP tran-
scripts reveals that ZIP1 and ZIP3 expressions are 
present in a glucagon-producing α-cell line (α-TC 
cells) [13]. 

ZIP4 and ZIP5 

ZIP4 is expressed in β-cells. It has been sug-
gested that it plays a role in the uptake of zinc 
into β-cells [62], which is required for the correct 
packaging of insulin. ZIP4 is a major zinc trans-
porter in the gastrointestinal tract responsible for 
adequate zinc homeostasis in humans [63, 64]. It 
has also been shown to play a central role in zinc 
homeostasis in the pancreas [65]. In zinc defi-
ciency states, significant amounts of zinc are re-
leased from the pancreas into the intestinal tract 
by means of the intestinal pancreatic axis [66]. 
ZIP4 is highly expressed in pancreatic acinar cells 
[67]. 

ZIP5 is expressed in organs and tissues in-
volved in zinc homeostasis, including intestine, 
visceral endoderm, and pancreas [62]. Under con-
ditions of zinc deficiency, intestinal absorption of 
zinc is enhanced. ZIP5 is abundantly expressed on 
the basolateral surface of pancreatic acinar cells, 
and is downregulated in response to dietary zinc 
deficiency. These genes have also shown to be 
highly expressed in the murine pancreas. The 
function of ZIP5 is to take zinc from the blood and 
to transport it into pancreatic acinar cells [67-69]. 

ZIP7, 10, and 14 

ZIP7 mRNA is expressed in the pancreas. 
However, its location and function have still not 

been characterized [70]. In mice, ZIP 10 and 14 
transporter genes were found in glucagon-
producing cells [13]. 

Zinc influx transporters in the pan-
creas (ZnT family) 

The principal ZnT family zinc transporters 
identified in the pancreas are ZnT 1, 2, 3, 4, 5, 7, 
8, 9 and 10 (Table 1). 

ZnT1, 2, 3, and 4 

ZnT1 and ZnT2 are expressed in pancreatic 
acinar cells. Dietary zinc intake regulates the ex-
pression of ZnT1 and ZnT2 in the pancreas. Zinc 
deficiency reduced zinc concentration in both the 
cytoplasm and zymogen granule compartments of 
acinar cells. Overexpression of ZnT2 resulted in 
more sequestered intracellular zinc with normal 
zinc efflux rate [71]. 

Clifford and colleagues used RT-PCR to esti-
mate the quantity of mRNAs encoding various 
metal-complexing proteins in the pancreas of 3-
day old animals and in islets from 10 days old and 
adult normal Sprague Dawley and diabetes-
resistant (BBDR) rats [72]. ZnT1 was shown to be 
expressed at all ages tested. However, ZnT4 was 
not found in the pancreas of three days old ani-
mals, but was present in islets from 10 days 
through to adulthood. Genes encoding ZnT2 and 
ZnT3 were not expressed in the pancreas in either 
3-day old or adult animals, but were present in is-
lets of 10-day and 5-week old animals. The pres-
ence of ZnT2 and ZnT3 mRNA was found in islets 
of 10-day and 5-week old animals, a feature of rap-
idly developing islets [72]. This indicates that zinc 
transporters are differently expressed during the 
development period from infant to adulthood, ac-
cording to zinc requirement. 

ZnT3 is expressed in pancreatic β-cells. How-
ever, the sub-cellular location is still unknown 
[73]. Knockdown of ZnT3 in INS-1E cells showed 
that insulin secretion was significantly reduced. 
This indicates that ZnT3 plays a role in the secre-
tion of insulin [74]. However, the mechanism of 
action is unknown. 

ZnT5 

ZnT5 is abundantly expressed in the secretory 
granules of β-cells and some acinar cells [18, 75]. 
Another study showed that ZnT5 protein is abun-
dantly expressed in human pancreatic β-cells, but 
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not in glucagons-secreting α-cells and most acinar 
cells [18]. 

ZnT7 and ZnT8 

Huang and colleagues showed that ZnT7 is 
expressed in pancreatic islets of mice [76]. When 
co-stained with insulin, it is localized in the peri-
nuclear region of β-cells, located close to the Golgi 
apparatus [77-79]. ZnT7 is involved in two trans-
porting mechanisms. Firstly, it facilitates trans-
portation of the cytoplasmic zinc into the Golgi 
apparatus of the cell for zinc storage. Secondly, it 
mediates incorporation of zinc into newly synthe-
sized zinc transporter proteins [80]. ZnT7 overex-
pression in β-cells significantly increased total cel-
lular insulin content and basal insulin secretion 
[76]. 

ZnT8 is highly expressed in β-cells [81, 82], 
and localized in the membranes of the secretory 
vesicles. ZnT8 localized with insulin-containing 
secretory vesicles in cultured rat INS-1 cells [12], 
a pancreatic β-cell line derived from rat insuli-
noma [83], and also in human pancreatic islets 
[82]. Furthermore, ZnT8 is also expressed in α-
cells [13, 84], and subcutaneous fat tissue [84]. 
Chimienti and colleagues reported that over-
expression of ZnT8 (SLC30A8) enhanced the insu-
lin capacity of a β-cell line [82]. ZnT8 knockdown 
in the INS-1 β-cell line showed reduced insulin 
content and decreased insulin secretion in re-
sponse to a hyperglycemic stimulus. 

ZnT8 knockout mice also had fewer dense core 
vesicles in insulin producing β-cells (as determined 
by electron microscopy). ZnT8 gene deletion 
showed modest impairment in insulin secretion 
without affecting glucose metabolism [85]. De-
creased secretion of insulin was due to decreased 
ZnT8 expression, which may be attributed to re-
duced transport of zinc into secretory vesicles. 
This may impair the packaging of insulin as 
hexamers around zinc cores, and thereby alter in-
sulin secretion [86, 87]. Complete loss of ZnT8 ex-
pression in mice homozygous for null mutation of 
SLC39A8 leads to decreased zinc accumulation in 
islets [11, 88, 89]. 

ZnT8 is involved in the pathogenesis of type 1 
and 2 diabetes [8, 69, 73, 88-93]. It is a major tar-
get of T1D, humoral autoimmunity [94-96]. 
Achenbach and colleagues were the first to report 
humoral autoimmune responses against ZnT8 
(SLC30A8) genotype in a large cohort of children 
with a first-degree family history of T1D [69]. 
They also reported that the COOH terminal in 
ZnT8A was found to be an epitope for T1D rather 

than the NH2-terminal of this protein [95]. ZnT8A-
COOH-positive children who carried homozygous 
SLC30A8 SNP rs13266634 genotypes progressed 
faster to diabetes than those who were heterozy-
gous [69]. Another study investigated two major 
isoforms of ZnT8, ZnT8-arginine (ZnT8R) and 
ZnT8-tryptophan (ZnT8W) on type 1 diabetes pa-
tient cohorts with different age distributions at 
onset. Most of the type 1 diabetic patients tested 
positive for ZnT8Ab to both isoforms. However, 
ZnT8Ab titers were significantly higher in the 
younger age group (148 and 29 U/ml) [97]. 

In T2D, genetic polymorphisms for ZnT8 in-
fluence the level of expression and function of the 
protein [98, 99]. Population studies revealed a 
strong association of single nucleotide polymor-
phism (SNP) RS13266634, a nonsynonymous [92] 
arg325Trp (C>T) variant in SLC30A8 with type 2 
diabetes [100-102]. The C allele variant was sug-
gested to be the risk allele for type 2 diabetes [103-
107]. Genome-wide association studies (GWAS) 
[108] identified that single nucleotide polymor-
phisms are associated with increased risk of T2D 
[100, 102]. Other studies reported that variations 
in SLC30A8 may effect zinc accumulation in insu-
lin granules, which influence insulin stability and 
insulin trafficking [82, 106]. The R325W mutation 
in SLC30A8 is associated with T2D and decreased 
first-phase insulin secretion in non-diabetic sub-
jects bearing at least one copy of the risk allele 
[108, 109]. 

The handling of immunosuppressive drugs 
necessary for islet transplantation is also influ-
enced by ZnT8 polymorphisms. The calcineurin 
inhibitor cyclosporine did not suppress glucose-
stimulated insulin secretion in islets with the 
ZnT8 W325 variant expressed in insulinoma cells. 
Whereas, cells expressing ZnT8 R325 were sup-
pressed by these drugs. This indicates that the 
structure of the ZnT8 variant W325 is important 
for protection against post-transplant diabetes 
[90]. Kang and colleagues reported that a poly-
morphism in the zinc transporter gene SLC30A8 
confers resistance against post-transplant diabe-
tes in renal transplant recipients [110]. In addi-
tion, Kim and colleagues reported that the ZnT8 
R325 expressed in the INS-1E cell line showed re-
duced insulin content and secretion when treated 
with cyclosporine A (CsA) [90]. When ZnT8 vari-
ant W325 expression was treated with CsA, insu-
lin content and secretion was not affected. [91]. 
This indicates that by altering the ZnT8 structure, 
as in the W325 variant, cells are protected from 
immunosuppressive drug toxicity. Studies in islet 
transplantation have not yet been performed to 
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examine the effect of these polymorphisms on islet 
function post transplantation. These studies would 
require multi-center collaborative effort. 

ZnT9 and ZnT10 

ZnT9 and ZnT10 mRNA is expressed in the 
pancreas. However, their functional roles are still 
unknown [73]. 

Conclusions 
Zinc plays a fundamental role in the structural 

integrity of insulin. The availability of zinc is cru-
cial for normal insulin formation and secretion. 
Zinc also stabilizes the enzymes that protect 
against apoptosis. It is thus an important antioxi-

dant. Zinc transporters are also important pro-
teins, which regulate the availability of zinc. They 
show a wide variation in isolated pancreatic islets. 
Understanding the role of these transporters in 
pancreatic islets may provide new pathways to 
improve islet survival and function after islet iso-
lation and transplantation. 
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