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In several investigations of molecular imaging of angiogenic neovasculature using a targeted con-

trast agent, Renyi entropy [If ðrÞ] and a limiting form of Renyi entropy (If ;1) exhibited significantly

more sensitivity to subtle changes in scattering architecture than energy-based methods. Many of

these studies required the fitting of a cubic spline to backscattered waveforms prior to calculation

of entropy [either If ðrÞ or If ;1]. In this study, it is shown that the robustness of If ;1 may be

improved by using a smoothing spline. Results are presented showing the impact of different

smoothing parameters. In addition, if smoothing is preceded by low-pass filtering of the waveforms,

further improvements may be obtained.
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I. INTRODUCTION

We have reported previously on application of several

“entropies” for molecular imaging of tumor neovascula-

ture.1–3 These investigations extend the scope of earlier stud-

ies of molecular targeting4 in order to achieve greater

sensitivity to the accumulation of molecularly targeted per-

fluorocarbon nanoparticles binding to sparse targeting sites

in vivo. We propose that the development of novel types of

signal processing schemes sensitive to the signatures of such

nanostructures could enhance detectability in inherently

noisy environments.1,3 Moreover, these contrast agents have

demonstrated therapeutic potential with the incorporation of

drugs into their lipid outer layer. Thus successful concurrent

development of contrast-agent and contrast-agent-detection

technology would produce a “theragnostic” suitable for si-

multaneous ultrasonic monitoring and noninvasive treatment

of cancer.5

Unlike the conventional application of entropy for post-

processing,6 our analysis is based on application of a

“boxcar,” or moving window, entropy analysis directly to

backscattered radio frequency (RF) ultrasound segments for

construction of entropy images. In this approach, each pixel

corresponds to a windowed section of RF, and that pixel

value is the entropy of the windowed RF. Compared with

conventional gray scale, significant improvements in sensi-

tivity of detection of nanoscale molecular imaging agents

have been obtained.1–3 Moreover, the same boxcar analysis

may be applied to obtain “energy” or “log-energy” images

[Eq. 3], which are a generalization of conventional gray scale

imaging. However, these are also usually less sensitive than

their entropic counterpart. A qualitative basis for this outcome

has been discussed previously based on the geometry of the

high dimensional function space in which the digitized RF

“lives.”7,8 In very rough terms, the energy is the length of the

n-dimensional vector representing the digitized waveform,

whereas the entropic measures (specifically Hf ) correspond to

the logarithm of the volume of the n-dimensional rectangle

subtended by this vector. While signal energies of waveforms

backscattered from a biological specimen are usually con-

strained to lie on a thin spherical shell, and hence have

roughly the same lengths, the phases of these vectors may

vary significantly. Consequently, the volumes of the rectan-

gles they subtend may vary from finite values to zero with the

logarithms of these volumes varying from a finite value to

minus infinity. This explains only the possibility of greater

entropic sensitivity to subtle changes in scattering architec-

ture. The realization of this possibility in any given experi-

mental situation is another matter, requiring theoretical and

numerical study and becoming worthwhile after the means of

efficient and reliable calculation and scope of applicability of

various entropic measures have been established by

experiment.

Our most recent report described an entropy, If ;1 [see

Eq. 2], which may be calculated by an algorithm suitable for

real-time implementation. There remains, however, room for

significant improvement in the algorithm by suppressing

noise. The purpose of the current study is to investigate the

effect of replacing the simple cubic spline fit employed pre-

viously with an optimal smoothing spline algorithm.9 While

this involves a sacrifice in speed (up to a factor of 10 to
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obtain optimum smoothing), a comparison of smoothed and

unsmoothed If ;1 results can be expected to shed light on

impact of noise on the real-time (i.e., unsmoothed) results.

From the standpoint of clinical relevance, the loss in speed

will easily be recovered by speed improvements in the next

generation of multi-core processors. Moreover, significant

and unexpected advantages, beyond suppression of spurious

critical points (we use the phrase “critical point” to refer to

any time t at which f 0ðtÞ ¼ 0), follow from smoothing. As

shown below for bandpass filtered RF, an optimal smoothing

spline applied in conjunction with the If ;1 algorithm pro-

vides a means to mask noise-dominated RF segments. More-

over, this masking is automatic in the sense that it follows

from the choice of signal-to-noise ratio (the dyi discussed in

the following text) and the optimality of the smoothing fit.

There is no need for choice of a signal-to-noise cutoff

criterion.

While this study is based on a relatively large cohort of

animals divided into positive and negative control groups,

our primary goal is to compare the effects of different types

of signal processing on the robustness of nanoparticle detec-

tion using backscattered RF. This is accomplished in a multi-

step process involving, first, the production of either entropy

or energy images followed by, second, analysis of these

images to extract a single number used to decide whether or

not nanoparticle accumulation has occurred. The post-proc-

essing is based on the cumulative distribution function

(CDF) of either the entropy or energy images and is com-

pletely free of subjective hand-drawn regions of interest

(ROI). The CDF is used to segment the image into two parts,

those either below (corresponding to pixels in the image con-

taining nanoparticles) or above (corresponding to pixels in

the image not containing nanoparticles) a certain analysis

threshold (this process is described in the following text in

connection with Fig. 8). This threshold is the only free pa-

rameter in our analysis, and our approach is to essentially

evaluate all of them. Qualitatively, we define robustness of a

signal processing scheme as insensitivity to choice of analy-

sis threshold. The summary findings of this study are that

application of bandpass filtering combined with fitting of

optimal smoothing splines increases robustness of If ;1 proc-

essing, application of bandpass filtering combined with fit-

ting of optimal smoothing splines does not increase

robustness of log½Ef � processing, and If ;1 is more robust

than log½Ef � processing.

II. APPROACH

Our approach is based on the density function, wf ðyÞ of

the continuous function y ¼ f ðtÞ, assumed to underlie the

sampled RF data. As described in previous studies, wf ðyÞ
corresponds to the density functions used in statistical signal

processing.2 In contrast to statistical signal processing, wf ðyÞ
may be calculated directly from the measured “random”

variable f ðtÞ using,

wf ðyÞ ¼
X

ftk jf ðtkÞ¼yg
1= f 0ðtkÞj j; (1)

where the domain of f ðtÞ has been mapped into the unit

interval.

By a limiting procedure described in detail previously,3

we obtain a limiting form of the “Renyi” entropy

If ;1 ¼ log
X

ftk jf 0ðtkÞ¼0g

1

jf 00 tkð Þj

2
4

3
5; (2)

which is one of the quantities investigated in this study.

Previous studies have shown that If ;1 can be more sen-

sitive to subtle changes in scattering architecture than what

is found in more commonly used energy-based measures.1–3

We base our current study on a comparison of If ;1 and

log½Ef �, which is given by

log½Ef � ¼ log
XN

i¼0

f ðtiÞ2dt

" #
; (3)

where N is the number of data points within our moving win-

dow (N ¼ 128 in the current study).

As will be shown in the following text (Figs. 4 and 5),

optimal smoothing splines (when fit individually to filtered,

boxcar-windowed data) are able to provide nearly complete

suppression (i.e., masking) of noise-dominated RF segments,

eliminating spurious ripple left over from frequency domain

filtering and replacing it with a (to within floating point pre-

cision) completely flat baseline. As a result, the optimal

smoothing spline may be used to automatically partition

images into two parts: that which is composed of “real” sig-

nal and that where the returned echo is primarily noise. In

the case of If ;1, this is achieved by masking any return pixel

where the sum appearing in the log of Eq. 2 is less than the

double precision limit of the computer used to analyze the

data (i.e., DBL EPSILON), which will happen for any RF

segment that is flat. These pixels may then be excluded from

all subsequent image post-processing. The same criterion is

applied to the calculation of Eq. 3. Thus both the If ;1 and

log½Ef � results presented in the following text have been

computed using the same thresholding condition.

A. Numerical computation of If ;‘

Calculation of If ;1 via Eq. 2 is accomplished by fitting a

smoothing spline to the experimentally acquired data array

using the algorithm described by Reinsch in 1967.9 Given a

set of N values yi at times ti, which in our case represent

sampled points of representing backscattered RF between

times t1 and tN , the corresponding smoothing spline approxi-

mation to those values is gðtÞ minimizing

ðtN

t1

g00ðtÞ2dt; (4)

subject to the constraint that

XN

i¼0

gðtiÞ � yi

dyi

� �
� Ŝ; (5)
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where, operationally, dyi > 0 is the standard of deviation of

the measured data point yi (taken to be dyi ¼ 0:002 for our

data sets using statistics from the water-only regions of our

backscattered data). For aesthetic reasons, the smoothing pa-

rameter Ŝ is divided by the number of points, N to define a

new smoothing parameter S ¼ Ŝ=N. With this normalization,

S ¼ 0 corresponds to no smoothing: the output of the algo-

rithm is identical to a cubic spline fit. As S!1, the output

approaches the best fit line to the data. The optimum fit, cor-

responding to the minimum defined by Eqs. 4 and (5) occurs

somewhere near S ¼ 1.

As discussed by Reinsch, these equations may be com-

bined into the problem of minimizing the functional

ðtN

t0

g00ðtÞ2dtþ p
XN

i¼0

gðtiÞ � yi

dyi

� �
þ z2 � S

( )
; (6)

where z is an auxiliary variable, which is needed in addition

to the expected Lagrange multiplier p, since Eq. 5 is an in-

equality instead of an equality. Minimization with respect to

p and z may be performed as described by Reinsch after writ-

ing gðtÞ as a cubic spline and substituting this expression

into Eq. 6 to obtain a N � N matrix minimization problem

that may be solved iteratively. We have found, for the data

presented in this study, that at most 10 (and on average 9)

iterations are required to compute the optimal smoothing

spline. As is often the case in matrix minimization problems,

the solution requires use of an algorithm with an operation

count of N3 (in this case, Cholesky decomposition) at each

iteration. Consequently, we expect the smoothing spline

approach to be slower by a factor of N2 than the simple cubic

spline algorithm. In previous studies,2 upsampling of N to

values of 4096 or 8192 was required to improve the accuracy

of computed zeros of the derivatives of f ðtÞ. In the current

approach, this is not necessary, as described in the following

text, so that N ¼ 128, thus mitigating the impact of Cholesky

decomposition.

The resulting gðtÞ will replace the raw time domain

function, f ðtÞ appearing in Eqs. 2 and (3).

The Reinsch algorithm computes the values of gðtÞ,
g0ðtÞ, and g00ðtÞ at the ti. Thus it is easy to identify the loca-

tion of critical points by finding zero crossings of the g0ðtÞ
array and subsequently solving a quadratic equation. This is

done as described in Press et al.10 (2nd ed., Chapt. 5, sect. 6)

to avoid loss of precision. This also enables our implementa-

tion to return the locations of the critical points, and the val-

ues of the smoothing spline, and its first and second

derivatives at these points.

III. MATERIALS AND METHODS

A. Nanoparticles for molecular imaging

For in vivo imaging, we formulated nanoparticles tar-

geted to avb3-integrins associated with neovascularity in

cancer by incorporating an “Arg-Gly-Asp” mimetic binding

ligand into the lipid layer. Methods developed in our labora-

tories were used to prepare perfluorocarbon (perfluorooctyl-

bromide, PFOB, which remains in a liquid state at body

temperature and across the range of acoustic pressures used

in this study11) emulsions encapsulated by a lipid-surfactant

monolayer.12,13 The nominal sizes for each formulation were

measured with a submicron particle analyzer (Malvern

Zetasizer, Malvern Instruments, Worcestershire, United

Kingdom). Particle diameter distribution is unimodal with a

peak measured at 200630 nm.14

B. Animal model

The study was performed according to an approved ani-

mal protocol and in compliance with guidelines of the Wash-

ington University institutional animal care and use committee.

Human MDA 435 cancer cells were implanted in the in-

guinal fat pad of 15 athymic nude mice between 19 and 20

days prior to acquisition of data. Five of these animals were

injected with avb3-targeted nanoparticles, five were injected

with nontargeted nanoparticles, and five were injected with

saline. In addition, 15 athymic nude mice not implanted with

tumors were imaged in the same region following the same

imaging protocol: five were injected with avb3-targeted

nanoparticles, five were injected with nontargeted nanopar-

ticles, and five were injected with saline. Mice were preanes-

thesitized with a ketamine=xylazine cocktail. Mice were

then placed on a heated platform maintained at 37| �C and

injected by tail vein with 0.030 ml avb3-targeted nanopar-

ticle emulsion, 0.030 ml non-targeted nanoparticle emulsion,

or 0.030 ml saline (equivalent to a whole body dose of

approximately 1 ml=kg). Anesthesia was administered con-

tinually with isoflurane gas through a nose cone. Subse-

quently, ultrasound data were acquired at 0 through 60 mins

in 5 min intervals. After the ultrasound data were collected,

the tumor was extracted for histological staining. The entire

procedure was approved by the Washington University ani-

mal care committee.

C. Ultrasonic data acquisition

A diagram of our apparatus is shown in Fig. 1. RF data

were acquired with a research ultrasound system (Vevo 660,

Visualsonics, Toronto, Canada). The tumor was imaged with

FIG. 1. A diagram of the apparatus used to acquire backscattered RF data,

in vivo, (A) a typical ultrasonic gray scale image together with (B) a

histologically stained section of the tumor indicating portions where

avb3-targeted nanoparticles nanoparticles could adhere, and (C) a further

enlarged section indicating more precisely the location of viable target sites

(red by b3 staining).
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a 35 MHz center frequency single element “wobbler” probe,

and the RF data corresponding to single frames were stored

on a hard disk for later off-line analysis. The frames con-

sisted of 384 lines of 2048 12-bit words acquired at a sam-

pling rate of 200 MHz using a Gage 12400 digitizer card

(connected to the analog-out and sync ports of the Vevo) in

a controller PC. Each frame corresponds spatially to a region

1.5 cm wide and 0.8 cm deep. At the bottom left of Fig. 1 is

a close-up schematic of the imaging probe and its relation to

the coupling gel, skin, and tumor capsule. A conventional

image from one of the mice used on our study is shown in

this part of the figure. Also indicated is the region where

neovasculature resulting from angiogenesis is present. As

the figure indicates, significant neovasculature develops

between skin and tumor capsule. This is due to recruitment

of new vessels from the highly vascular skin. To the right of

the close-up is an image of a histological specimen extracted

from a mouse model. At the top of the slide is a section of

skin (the elliptical structures in this area are hair follicles),

below which is a thin angiogenic layer identified by immu-

nohistochemical staining, and below that is a portion of the

tumor capsule. The close proximity of neovasculature to the

skin-transducer interface is one of the primary obstacles that

must be overcome by any quantitative detection scheme

intended to determine the extent of this region.

D. Ultrasonic data processing

A moving window analysis was performed on each

waveform by moving a rectangular window (128 points

long, 0.64 ls) in 0.08 ls steps (16 points), resulting in 121

window positions within the output data set. In previous

investigations, we have found that choice of window length,

which was constrained by digitizer sampling rate of 500

MHz, involves trade-offs between resolution and sensitivity.

Larger window sizes tended to produce greater sensitivity at

the expense of resolution with the optimum for these studies

(found by experimentation) near 0.512 ls for window length

and 0.064 ls for step size. Consequently, for this new study,

performed using a 200 MHz digitizer, we chose values close

to the “best” values used previously.

A smoothing spline was fit to each window. [We point

out that we have applied the smoothing spline fit to each 128

point window and not to the entire 2048 point raw RF wave-

form because attempts to fit the entire waveform sometimes

resulted in erroneous (i.e., complete) flattening of all por-

tions of the 2048 point waveform occurring after the large

echo from the water-tissue interface. The fitting routine also

returned an array of first and second derivatives at the loca-

tions of any critical points in the window.] The arrays were

used to compute If ;1 according to Eq. 2. This produced an

image for each time point in the experiment (i.e., 0, 5, …, 60

min).

E. Data analysis

1. RF waveform analysis

All RF data were processed off-line to reconstruct If ;1
images. Total analysis time using the new algorithm was

roughly 45 min on an eight core desktop computer (com-

pared to less than 5 min for the cubic spline algorithm for

If ;1 and roughly 1 week for analogous Hf , or If ð1:99Þ analy-

sis on a cluster of just over 20 computers that was reported

previously2). A representative set of these images is shown

Fig. 2. The top row shows If ;1 images made using the raw

backscattered RF acquired at 0 min post-injection of avb3-

targeted nanoparticles (the direction of insonification is from

the left). The results of no smoothing and smoothing using

S ranging from 0:5 to 2:0 are shown. The gray scale lookup

table used to make these figures has been inverted to match

the display of conventional B-Mode gray scale images where

interfaces are bright. This inversion between entropy and

energy images has been observed in all previous studies.3 In

all images, the gel-skin and skin-tumor interfaces are visible

as is the tumor capsule (labeled in figure). We have also

investigated the effects of lowpass filtering the raw entire

2048 point RF waveform prior to computation of If ;1 and

log½Ef � using the frequency-domain filter function Fðf Þ given

by,

Fðf Þ ¼ 1

4
1:0þ tanh alðf � flower cutoff Þ

� �� �
� 1:0þ tanh auðfupper cutoff � f Þ

� �� �
; (7)

where al ¼ 0:75, au ¼ 0:25, flower cutoff ¼ 0 MHz, and

fupper cutoff ¼ 36 MHz. The upper cutoff was chosen to corre-

spond to the 6 dB point of our apparatus. This function, Fðf Þ
has the shape of a smoothed rectangular window turning on

near flower cutoff and turning off near fupper cutoff . The coeffi-

cients al and au govern the sharpness of these transitions.

This function was chosen as a gate function because it is

infinitely differentiable. We have investigated other window

functions (various pole number Butterworth filters) and find

that all perform in a roughly equivalent way. The second

FIG. 2. Subsets (middle portion: 0:75� 0:55 cm) of smoothing spline If ;1
images based on unfiltered (top row) and low-pass filtered (bottom row) RF

obtained from a MDA435-implanted mouse injected with avb3-targeted

nanoparticles. (A) Smoothing parameter S ¼ 0, (B) S ¼ 0:5, (C) S ¼ 1:0,

(D) S ¼ 2:0. The RF used to construct these images was acquired immedi-

ately after injection.
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row shows If ;1 images made using the lowpass filtered RF.

As discussed following Eq. 3, pixels corresponding to noise

are “masked.” These masked pixels are black in the images

above (the gray scale look up table of which has been

inverted to match the conventions used in medical ultrason-

ics). In both rows, there is an evident increase in the number

of masked pixels as smoothing is increased. However, this

trend is more pronounced in the second row, so that, surpris-

ingly, for smoothing parameter S ¼ 1:0, there is a partition-

ing of the image into noise-dominated and signal-dominated

portions. These masked pixels will be excluded from all sub-

sequent analysis of the image.

The same raw RF data were processed using Eq. 3 to

construct log½Ef � images. These are shown in Fig. 3, which

exhibits the same structures visible in Fig. 2. However, there

are no masked pixels in any of these images and, conse-

quently, no effective partitioning of image into signal- and

noise-dominated portions.

From Fig. 2 we may conclude that the combination of

lowpass filtering prior to smoothing spline computation pro-

vides effective image partitioning into signal- and noise-

dominant components. This is shown more clearly in Fig. 4.

The top row shows unfiltered time domain segments

extracted from a gel-path-only portion of data (left column)

and RF backscattered from tissue (right column). Each panel

contains three graphs corresponding to no smoothing (i.e.,
S ¼ 0:0), S ¼ 0:5, and S ¼ 1:0 (near optimum according to

Reinsch9), plotted as a function of time over a 0:32 ls win-

dow corresponding to half of our moving window length.

The effects of smoothing are evident in the left panel. How-

ever, in the right panel, they are not because, operationally,

the effect of smoothing is limited in magnitude by the value

of dyi ¼ 0:002 used in our data analysis (this value was

measured from the experimental data by computing the

standard deviation of the gel-only part of filtered RF for a

representative subset of data sets). In the second row are the

corresponding first derivative plots; the third row shows the

corresponding second derivatives. As for the raw RF plots,

the effects of smoothing are most evident in the lower ampli-

tude plots from the gel-path-only segments of the backscat-

tered RF.

FIG. 3. Subsets (middle portion: 0:75� 0:55 cm) of smoothing spline

log½Ef � images based on unfiltered (top row) and low-pass filtered (bottom

row) RF obtained from a MDA435-implanted mouse injected with atb3-tar-

geted nanoparticles. (A) Smoothing parameter S ¼ 0, (B) S ¼ 0:5, (C)

S ¼ 1:0, (D) S ¼ 2:0 The RF used to construct these images was acquired

immediately after injection.

FIG. 4. Effects of smoothing parameter S on smoothed spline output for

representative segments of unfiltered RF data.

FIG. 5. Effects of smoothing parameter S on smoothed spline output for

low-pass filtered versions of the same RF data shown in Fig. 4.
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The corresponding plots, using the same raw data after

lowpass filtering as described in the preceding text, are

shown in Fig. 5. The impact of the filtering is obvious in all

plots as the water-only plots show total suppression of the

signal for smoothing parameter S ¼ 1:0.

While we have adopted the current combination of low-

pass filtering at the 6 dB point of our apparatus, followed by

optimal smoothing spline fit, on the basis that all analysis pa-

rameters may be chosen objectively, it is possible that more

aggressive low-pass filtering might achieve the same level of

noise suppression. To evaluate this possibility, we have com-

puted the Fourier transform magnitudes of two the traces

shown in the left columns of Figs. 4 and 5 (the unsmoothed

and the optimally smoothed). These are shown in Figs. 6

and 7, respectively.

The top row, left column, of Fig. 6 shows the magnitude

of the Fourier transform of two of the unfiltered RF segments

appearing in the top left panel of Fig. 4; immediately to the

right of this panel is a plot of the unsmoothed magnitude

minus the smoothed magnitude. The slight upward trend of

this curve implies that the smoothing operation does perform

some low-pass filtering, consistent with the smoothing

observed in Fig. 4. However, this filtering is never more than

2.5 dB in magnitude, which is rather low for a typical low-

pass filter. We ignore frequencies above 45 MHz because we

have chosen to perform the Fourier transforms for this exam-

ination without use of window functions (e.g., a Hamming

Window). Consequently, the discontinuity between initial

and final points of the RF segments will introduce spurious

energy in the higher frequencies. This is not a major concern

because we are primarily interested in the behavior of the

magnitude plots at or below 36 MHz. In the next two rows

are similar plots for the first and second derivatives that are

used in Eq. 2. In these panels, we also observe weak, low-

pass filtering.

A similar comparison of magnitudes based on low-pass

filtered RF is shown in Fig. 7. Comparing this figure with

Fig. 6 shows that when applied to low-pass filtered RF, the

optimal smoothing performs almost no low-pass filtering as

indicated by the practically flat D curves in the right column

of the figure. Moreover, whether or not the data are low-pass

filtered, there is little difference in magnitudes of smoothed

or unsmoothed data (top rows of Figs. 6 and 7). The effect of

optimal smoothing is, however, discernable for the first and

second derivatives as may be seen by comparing the second

and third rows of Figs. 6 and 7. This may partially explain

the results we will present in the following text that show

that the combination of low-pass filtering of the entire RF

waveform prior to optimal smoothing of the RF segments

within the moving boxcar produces the greatest sensitivity to

the presence of accumulating nanoparticles. However, we

emphasize again that our primary motive for adopting this

analysis strategy is that it allows for completely objective

choice of all analysis parameters (in this case the low -pass

cutoff frequency, which is measured experimentally, and the

FIG. 6. Effects of smoothing parameter S on smoothed spline output for

unfiltered RF data. Left column: Comparison of log magnitude of Fourier

transforms of smoothed (i.e., S ¼ 1) and unsmoothed (i.e., S ¼ 0) data from

the left columns of Fig. 4. Right column: Plots of the unsmoothed log mag-

nitude minus the smoothed log magnitude.

FIG. 7. Same comparison as Fig. 6 but applied to the low-pass filtered data

of, Fig. 5.
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smoothing parameter, which is determined theoretically by

the optimality criterion).

On the basis of these comparisons, we conclude that it is

unlikely that more aggressive low-pass filtering could

achieve the same level of noise suppression obtained using

optimal smoothing splines. This observation has been tested

by analyzing the data with low-pass cutoffs as low as 24

MHz. Thus it appears that in addition to making possible

data analysis by purely objective means, the optimal smooth-

ing spline analysis yields greater noise suppression than lin-

ear frequency-domain filtering. Perhaps this result is not too

surprising given that Eq. 6 is manifestly nonlinear in its de-

pendence on the input RF.

2. Image analysis

As stated previously, the segment of RF within the box-

car, or moving window, is processed either by Eq. 2 or (3) to

produce a pixel value for either an If ;1 or log½Ef � image. For

each mouse used in this study, this is done using RF data

acquired at 0; 5; � � � ; 60 min post-injection to produce an

image at each time point. For this study, in which the same

portion of the anatomy was imaged at successive intervals, a

major objective was to quantify changes in these image fea-

tures as a function of time. Consequently, we require a

means of identifying changes in the images. Because our

goal is to identify and quantify the accumulation of targeted

nanoparticles, which occurs preferentially at targeting sites,

this suggests that segmenting the image into “targeted” and

“non-targeted” regions will be required as part of the analy-

sis. One of the chief goals of our research has been to de-

velop objective algorithms that do not require user input

(e.g., hand-drawn ROI).

Figure 8 displays the steps of such an algorithm graphi-

cally. For each mouse used in this study, a histogram of the

image pixel values appearing over the entire time course

(i.e., 0, 5, 10, …, 60 min) was constructed and normalized to

obtain the probability density function (PDF) of these values

and then integrated to obtain the CDF. This is shown in the

top panel of the figure. Next, pixel values corresponding to

“analysis thresholds” at the lower 2%; 4%;…; 98% of the

CDF were then used to segment the images at each time

point into two regions corresponding to targeted and

“untargeted tissue.” The figure shows the segmentation for

an example analysis threshold of 44%. The blue lines, shown

in the second panel of the figure, indicate the boundary

between targeted (inside the blue boundaries) and

non-targeted (outside the blue boundaries) regions. Subse-

quently, the mean value of pixels in the targeted region are

computed as a function of time post-injection. This is indi-

cated in the bottom panel of the figure in which the mean

value of If ;1 found at each time, denoted in the figure by

hIf ;1ii, i ¼ 1; � � � ; 12, is shown immediately below the

thresholded image. Subsequently, the change in these mean

values,

DIf ;1i ¼ hIf ;1ii � hIf ;1i0; (8)

is computed (DIf ;10
¼ 0). The analysis diagrammed in

Fig. 8 was performed for all animals in all groups and the

results averaged by group. We will drop the subscript i in the

remaining discussion and refer only to the DIf ;1. It is these

DIf ;1, for instance, that are plotted in Fig. 10, which is an

example of the time course of DIf ;1 corresponding to a 44%

analysis threshold and which we will discuss in more detail

shortly.

Before discussing results, we mention that we have veri-

fied that automatic segmentation based on the procedure of

Fig. 8 is consistent with the biochemical processes underly-

ing avb3-targeting. An example of this is shown in Fig. 9.

The pixels colored red (using the procedure of Fig. 8) are in

a region that are known from independent immunohisto-

chemical assay to coincide with the region where avb3-tar-

geted nanoparticles will accumulate. Moreover, the fact that

the brightening is collocated with the tumor-skin interface is

consistent with recruitment of angiogenic neovasculature

from the highly vascularized skin where there is typically a

relatively elevated amount of naturally occurring angiogene-

sis. However, it does raise the question about the source of

image brightening observed in the MDA435-implanted mice

FIG. 8. Analysis steps for If ;1 images from a single mouse. Step 1: the cu-

mulative distribution function (CDF) of all 12 images aquired from the ani-

mal are computed. Step 2: The CDF is used to segment the image into

targeted (inside the blue boundaries) and non-targeted (outside) segments

according to pixel value being above or below the threshold level (44% in

this case). Step 3: The mean value, hIf ;1ii, of If ;1 is computed for each

“targeted region. Step 4: These are used to calculate DIf ;1i
¼ hIf ;1ii�

hIf ;1i0 for each time point in the study. This procedure is repeated for all

mice in each group. An example of the resulting averages at each time point

for two of the groups studied (using the 44% analysis threshold) is shown in

Fig. 10, where the subscript i has been suppressed in DIf ;1i
.
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that were injected with avb3-targeted nanoparticles. To

address this concern, a second group of controls, non-tumor-

implanted mice, were studied in three groups: five mice

injected with avb3-targeted nanoparticles, five injected with

non-targeted nanoparticles, and five injected with saline. As

discussed in Sec. IV, for some analysis thresholds, there is a

slight enhancement of the skin due to accumulation of avb3-

targeted nanoparticles. However, both the rate of change and

the maximum of DIf ;1 are less than that occurring in

MDA435-implanted mice, and significance is observed at

different analysis thresholds than in the MDA435-implanted

group injected with avb3-targeted nanoparticles, indicating

that clinical detection of tumor associated angiogenesis

using avb3-targeted nanoparticles is possible.

IV. RESULTS

Based on measured values reported in Figs. 5–9, we first

discuss DIf ;1 results obtained using optimal smoothing

splines (i.e., S ¼ 1:0) followed by an identical analysis per-

formed without smoothing. Finally, we present the results of

a analysis for D log½Ef � using smoothing splines.

A. Typical evolution of DIf ;‘

Representative time course plots for the change in If ;1
using the 44% analysis threshold are shown in Fig. 10 [we

present this analysis threshold because it corresponds

roughly to the maximum confidence value, defined in Eq. 9,

obtained using If ;1 analysis; see Figs. 12 or 15]. These plots

compare the change in the average for the group of

MDA435-implanted mice injected with avb3-targeted nano-

particles with the change in the average for the group of

non-implanted mice injected with avb3-targeted nanopar-

ticles (top row), the group of MDA435-implanted mice

injected with non-targeted nanoparticles with the change in

the average for the group of non-implanted mice injected

with non-targeted nanoparticles (middle row), and the group

of MDA435-implanted mice injected with saline with the

change in the average for the group of non-implanted mice

injected with saline (bottom row). The plots are representa-

tive of the result obtained over a broad range of analysis

thresholds in showing that the group of MDA435-implanted

mice injected with avb3-targeted nanoparticles exhibit a

greater decrease in If ;1 than does the group injected with

non-targeted nanoparticles. Standard error bars are also

shown on all plots and, typical for a broad range of CDF

thresholds, in the MDA435-implanted mice injected with

avb3-targeted nanoparticles, they are, on average, signifi-

cantly smaller those in the control groups.

B. Global assessment of receiver performance:
Confidence analysis

For the purposes of detection, it is actually the ratio of

the mean value to the standard error that is significant. We

have plotted an example of these ratios (for the MDA 435

implanted group injected with avb3-targeted nanoparticles)

in the right panel of Fig. 11; the left-hand panel reproduces

the plot shown in the upper right-hand corner of Fig. 10. To

shorten subsequent discussion of our results, we will define

this ratio (confidence) as15

FIG. 10. (Color online) Average time course of DIf ;1 images obtained from

the five MDA435-implanted (left, top) and five non-implanted mice (right,

top) injected with avb3-targeted nanoparticles, five MDA435-implanted

(left, middle),and five non-implanted mice (right, middle) injected with non-

targeted nanoparticles, and five MDA435-implanted (left, bottom) and five

non-implanted mice (right, bottom) injected with saline. These data were

obtained for the CDF threshold set to include the lower 44% of pixel values

in the If ;1 from each of the images in each group. Standard error bars for

each group are also shown.

FIG. 9. Closeup of thresholded smoothing spline If ;1 images. (Left) Image

based on backscattered RF obtained from MDA435 tumor implanted mouse

(same RF data used in Figs. 2–5) immediately after injection of avb3-tar-

geted nanoparticles. (Right) Image based on backscattered RF obtained

from the same region 60 min after injection, “colorized” so that all pixels in

the bottom 44% of the histogram (constructed using the 0-60 min If ;1
images obtained from this mouse) are red.
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c ¼ mean

standard error
: (9)

As the left panel shows, for an analysis threshold of 44%,

the mean value of DIf ;1 is at all times roughly twice the

standard deviation or more from zero.

As stated in the preceding text, an analysis like that

shown in Fig. 11 was performed for all even CDF thresholds

between 0% and 98%. This enables a global evaluation of

the performance of entropic and log-energy processing that

is not compromised by use of subjective (e.g., hand-drawn)

ROI, which we would like to stress are never employed in

our analysis. A summary of all resulting values of c for the

MDA435-implanted mice injected with avb3-targeted nano-

particles group is shown in image format in Fig. 12. The

color of each pixel in this image is mapped from the value of

c according to the calibration bar to the right of the image

that shows that c ranges from the unit less values 2 to nega-

tive 7. While it is conventional in medical image processing

to apply the “two-sigma” criterion to determine statistical

significance (corresponding to c ¼ 2, emphasized by text

label and arrows), it is possible that other criteria may be

more suitable for specific applications. In this regard, the

data contained in a “confidence” image such as Fig. 12 may

be used to quickly assess the impact of different analysis

thresholds (by masking all pixels above or below a given

value of c, which is discussed in the following text) so that

the sensitivity of DIf ;1 at various analysis thresholds may be

globally assessed.

If ;1 confidence panels, like that shown in Fig. 12, have

been made for all six groups used in our study. These are

shown as a stack in Fig. 13 together with a color calibration

bar. Inspection of the confidence stack shows that the top

confidence panel corresponding to the MDA435-implanted

group injected with avb3-targeted nanoparticle exhibits con-

fidence ratios with the greatest magnitude.

The use of masked confidence panels to establish selec-

tion criteria that uniquely identify the tumor-implanted

group injected with targeted nanoparticles (to the exclusion

of all other control groups) is demonstrated in Fig. 14. This

array of confidence panels is our final form of display for

results. We point out that it is a five-dimensional presenta-

tion having three dimensions within each confidence panel

(i.e., post-injection time in the vertical direction, analysis

threshold in the horizontal direction, and confidence c in the

out-of-plane or color direction), another dimension for ani-

mal group (the vertical direction within the array), and a fifth

dimension being the masking level for the absolute value of

confidence ratio c (the horizontal direction within the array).

Thus the unmasked color regions indicate analysis thresh-

old=time combinations at which the mean value of DIf ;1 is

statistically different from zero according to the

r ¼ 2; 3; � � � ; 7 statistical criterion. In spite of the high

dimensionality of the display, it permits rapid evaluation of

If ;1 or log½Ef � processing as well as the impact of various

RF preprocessing steps, i.e., low-pass filtering or smoothing

spline fitting. For instance, if we focus our attention on the

column in the array labeled “jcj ¼ 4,” we observe in the top

row an “extensive” (meaning contiguous, wider than three

columns over at least half the height of the confidence panel)

FIG. 11. (Color online) Average time course of DIf ;1 images obtained from

the five MDA435-implanted mice injected with atb3-targeted nanoparticles

and the corresponding confidence ratios (c) as a function of time post-injec-

tion. The left panel is the same panel appearing in the top right column of

Fig. 10.

FIG. 12. Confidence panel for avb3-

targeted nanoparticle group proc-

essed using optimal smoothing

splines applied to low-pass filtered

RF data. This image is composed of

data like that shown in the right side

of Fig. 11.

FIG. 13. Confidence panel stack comprised of confidence panels for all

groups processed using optimal smoothing splines applied to low-pass fil-

tered RF data. This panel is comprised of confidence summary images like

that shown in Fig. 12.
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region near the middle of the panel corresponding to analysis

thresholds centered around 54% (indicated in the figure by

the labeled rectangle). The remaining confidence panels in

this rectangle are devoid of extensive unmasked (i.e., not

“blacked” out) regions in the same range of analysis thresh-

olds. Consequently, the criteria jcj ¼ 4, with analysis thresh-

old between 44% and 62%, becomes a means of

distinguishing the targeted=tumor-implanted group from all

others. We note that these criteria exhibit the presence of

accumulating, targeted, nanoparticles within 5 min of

injection.

C. If ;‘ Confidence results

Figure 15 compares confidence arrays obtained using ei-

ther low-pass filtered data (top half) or unfiltered data (bot-

tom half). In this figure, the array includes masking levels

ranging from c ¼ 2; 3; :::; 7. The fact that the color region in

row A covers over two-thirds of the confidence image for

c ¼ 2; 3 and approximately 50% for c ¼ 4 indicates the

robustness of the DIf ;1 in the face of changing analysis

thresholds. This observation is consistent with the partition-

ing into signal- and noise-dominated regions provided by the

smoothing spline as discussed in Fig. 9.

The remaining rows, B–F, are composed of control

group confidence panels: MDA 435 implanted mice injected

with non-targeted nanoparticles in row B and MDA 435

implanted mice injected with saline in row C. Non-

implanted mice injected with avb3-targeted nanoparticles,

non-targeted nanoparticles, or saline are summarized in rows

D, E, and F, respectively. These control group panels are

composed of mostly masked pixels (i.e., masked analysis

threshold=time combinations) for confidence c ¼ 2, while

for c ¼ 4, all control groups are masked almost completely.

Finally, we note that there are extensive ranges of analysis

thresholds where the avb3-targeted=MDA 435 implanted

panel is not masked, but where the corresponding pixels in

the panels for the control groups are masked, implying that

there exist ranges of analysis parameters where the incidence

of “false” positives would be low. In fact, for the c ¼ 4 col-

umn, there are practically no color pixels below (i.e., in rows

B–F) those appearing in row A, as discussed previously in

connection with Fig. 14.

Confidence panels obtained using the same RF but with-

out bandpass filtering prior to smoothing spline computation

are shown in rows A0—F0. As for rows A–F, the smoothing

parameter was set to S ¼ 1. We note that the color regions in

row A are larger than those in row A0, while the color

regions in rows B–F are typically smaller than those in B0F0,
implying that the application of low-pass filtering of the raw

RF prior to computation of smoothing splines can be used to

increase chances of detecting true positives while reducing

the probability of false positives.

Figure 16 shows the same comparison shown in Fig. 15

for RF data segments that have not been smoothed. The con-

fidence arrays indicate that the same criteria may be chosen

to exclusively separate the tumor-implanted=targeted group

from the controls: jcj ¼ 4 with analysis threshold between

FIG. 15. Confidence, c, panels from DIf ;1 for all groups used in our study.

Pixels with absolute value below c ¼ 2; 3; ; 7 are masked (colored black).

Panels A–F were obtained using unfiltered RF: (A) MDA435-implanted

mice injected with avb3-targeted nanoparticles (N ¼ 5), (B) MDA435-

implanted mice injected with non-targeted nanoparticles (N ¼ 5), (C)

MDA435-implanted mice injected with saline (N ¼ 5), (D)–,(F) same injec-

tions into N ¼ 5 tumor-free mice. Panels A0 through B0 are the correspond-

ing panels obtained using low-pass filtered RF. The smoothing spline

parameter S ¼ 1:0 in all cases.

FIG. 16. Confidence, c, panels from DIf ;1 for all groups used in our study.

Pixels with absolute value below c ¼ 2; 3; � � � ; 7 are masked (colored

black). Panels A–F were obtained using unfiltered RF: (A) MDA435-

implanted mice injected with avb3-targeted nanoparticles (N ¼ 5), (B)

MDA435-implanted mice injected with non-targeted nanoparticles (N ¼ 5),

(C) MDA435-implanted mice injected with saline (N ¼ 5), (D)–(F) same

injections into N ¼ 5 tumor-free mice. Panels A0 through B0 are the corre-

sponding panels obtained using low-pass filtered RF. The smoothing spline

parameter S ¼ 0 in all cases.

FIG. 14. Confidence panel summary composed of confidence panel stacks

for all groups, masked at successively greater confidence levels (labels A–F

defined in Fig. 13). The left most (unmasked) stack of this image is shown

in Fig. 13 and presents confidence panels in the same order. Also indicated

is a conservatively chosen range of analysis thresholds (44%–62%) that pro-

duce an “extensive” region of confidence ratios, c, having an absolute value

greater than 4 only for the tumor-implanted group injected with avb3-tar-

geted nanoparticles. Thus this range of analysis thresholds combined with

the requirement that jcj � 4 comprises selection criterion permitting identifi-

cation of this group.
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44% and 62%. However, reference to the calibration bar

shows that the low-pass filtering followed by smoothing

spline fit analysis procedure achieves this with greater values

of confidence.

D. log[Ef] confidence results

Corresponding results obtained using D log½Ef � analysis

are shown in Fig. 17. We note that the calibration bar in this

figure spans values from 2 to �7, which is roughly the nega-

tive of the range of values spanned in Fig. 15. As discussed

in the preceding text, this inversion is consistent with other

studies.3

V. DISCUSSION

A. Application of bandpass filtering combined with
fitting of optimal smoothing splines increases
robustness of If ;‘ processing

We note that in Fig. 15 there are relatively few color

pixels in the control confidence panels for masking levels

jcj > 4 and that above this level of masking the color regions

in row A are much smaller in width (i.e., number of adjacent

analysis thresholds) and that the color regions no longer

have a single analysis threshold that extends from 5 to 60

min (i.e, it is not possible to draw a single vertical line from

top to bottom of confidence panel A that lies exclusively

within the unmasked region). We will take the width of the

color region in confidence panel A, as a measure of robust-

ness of DIf ;1 analysis. Consequently we will limit our dis-

cussion of DIf ;1 panels to the first four columns of the

figure, where the analysis is “robust.”

Comparison of the widths of the color regions of the fil-

tered of row A vs row A0, (Fig. 15) shows that they are wider

in the filtered case for all masking levels jcj � 4. This might

have been anticipated from the If ;1 images constructed using

filtered vs unfiltered RF data (shown in Fig. 2) that exhibit a

striking difference in the completeness of baseline suppres-

sion. As these “suppressed” pixels are excluded by automatic

CDF-based analysis, the confidence panels of Fig. 15 are

based on significantly different contributions from the back-

scattered RF. In the filtered case, these come almost exclu-

sively from the signal-dominated portions of the RF, which,

as Fig. 2 shows, correspond to the RF backscattered from

tissue. The robustness is also influenced by differences in

shape in the signal-dominated portions of RF. Comparison

of the left columns of Figs. 4 and 5 reveal the values of the

second derivatives in the optimal smoothing spline analysis,

g00ðtÞ tends to be reduced, as we might expect, after filtering

of higher frequencies. This will have the effect of increasing

the magnitude of terms appearing in Eq. 2. Thus not only

will there be a reduced contribution from non-tissue portions

of backscattered RF, but contributions from RF backscat-

tered from tissue will be larger after application of both fil-

tering and spline smoothing. Both of the effects are

consistent with the observed greater widths of the color

regions in Row A vs Row A0 of Fig. 15, which demonstrates

the greater robustness of the combination of bandpass filter-

ing and fitting of optimal smoothing splines vs fitting of opti-

mal smoothing splines alone.

B. Application of bandpass filtering combined with
fitting of optimal smoothing splines does not increase
robustness of log[Ef] processing

Inspection of the widths of columns A vs A0’, B vs B0, …,

F vs F0 in Fig, 17 shows that (unlike Fig. 15) there is little dif-

ference between filtered and unfiltered results on a per group

basis.

C. If ;‘ is more robust than log[Ef] processing

Using the same conventions as in the preceding text,

comparison of the widths of unmasked regions in rows A

and A0 in Figs. 15 and 17 demonstrate that in the current

study, DIf ;1 is more robust than D log½Ef � processing.

The results shown in Fig. 3 may provide a partial expla-

nation. They show that there can be significant contribution

from gel-only RF segments. The contribution of these seg-

ments will increase in importance as the analysis threshold is

lowered. This points out a significant benefit offered by the

masking observed with DIf ;1 processing. When masking

occurs the image CDF, which is the foundation for all subse-

quent processing of either D log½Ef � or DIf ;1 images, enco-

des effects almost exclusively from tissue, which is the only

place in the image where the effects of targeted nanoparticle

accumulation could possibly be measured. Without masking,

the CDF must also account for the effects of noise. The

impact this has on a confidence panel, such as that shown in

the column labeled c ¼ 4 of Fig. 15, would be to combine

the broad band of colored pixels into a narrower band of pix-

els having larger amplitude as observed in the corresponding

column of Fig. 17.

It seems obvious that imposition of an additional mask-

ing step in the analysis of D log½Ef � images could be used to

reduce the impact of noise from noise-dominated segments

of RF. However, the masking level would become an addi-

tional parameter in the analysis that would have to be chosen

by imposition of additional assumptions on the data (e.g.,
choice of a signal-to-noise ratio cutoff level in addition to

measurement of signal-to-noise ratio, which is essentially

what we have done with the choice of dyi). The advantage of

DIf ;1 processing is the economy of assumptions it affords,

FIG. 17. D log½Ef � confidence panels, corresponding to those shown in Fig.

15. Both figures were made using the same RF.
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eliminating the need to choose the cutoff level by replacing

it with the optimality criterion of the smoothing spline fit.

VI. CONCLUSION

The confidence ratio analysis described in the preceding

text has focused on robustly detecting accumulation of avb3-

targeted nanoparticles in tumors at all CDF thresholds (0%–

98%), while avoiding false positives in the control groups.

This choice was made in order to identify a robust set of val-

ues for the confidence ratio and to execute a rigorous assess-

ment of the utility of If ;1 imaging of nanoparticle targeted

neovasculature.

The results presented in this paper extend earlier studies

where it was shown that entropy based measures, Hf , If ðrÞ,
and If ;1, were able to detect targeted nanoparticles in tumor

neovasculature.1–3,8

ACKNOWLEDGMENTS

This study was funded by NIH EB-002168, NIH HL-

042950, HL-087847-02, and CO-27031 and NSF DMS

0966845. The research was carried out at the Washington

University Department of Mathematics and the School of

Medicine.

1M. S. Hughes, J. E. McCarthy, J. N. Marsh, J. M. Arbeit, R. G. Neumann,

R. W. Fuhrhop, K. D. Wallace, D. R. Znidersic, B. N. Maurizi, S. L. Bald-

win, G. M. Lanza, and S. A. Wickline, “Properties of an entropy-based

signal receiver with an application to ultrasonic molecular imaging,” J.

Acoust. Soc. Am. 121, 3542–3557 (2007).
2M. S. Hughes, J. E. McCarthy, J. N. Marsh, J. M. Arbeit, R. G. Neumann,

R. W. Fuhrhop, K. D. Wallace, T. Thomas, J. Smith, K. Agyem, D. R. Zni-

dersic, B. N. Maurizi, S. L. Baldwin, G. M. Lanza, and S. A. Wickline,

“Application of Renyi entropy for ultrasonic molecular imaging”,

J. Acoust. Soc. Am. 125, 3141–3145 (2009).
3M. S. Hughes, J. E. McCarthy, M. Wickerhauser, J. N. Marsh, J. M.

Arbeit, R. W. Fuhrhop, K. D. Wallace, T. Thomas, J. Smith, K. Agyem,

G. M. Lanza, and S. A. Wickline, “Real-time calculation of a limiting

form of the renyi entropy applied to detection of subtle changes in scatter-

ing architecture,” J. Acoust. Soc. Am. 126, 2350–2358 (2009).
4C. S. Hall, J. N. Marsh, M. J. Scott, P. J. Gaffney, S. A. Wickline, and G.

M. Lanza, “Time evolution of enhanced ultrasonic reflection using a

fibrin-targeted nanoparticulate contrast agent,” J. Acoust. Soc. Am. 108,

3049–3057 (2000).
5G. M. Lanza, P. M. Winter, S. D. Caruthers, M. S. Hughes, G. Hu, A. H.

Schmieder, and S. A. Wickline, “Theragnostics for tumor and plaque

angiogenesis with perfluorocarbon nanoemulsions,” Angiogenesis 13,

189–202 (2010).
6J. Gull and S. F. Skilling, “Maximum entropy method in image processing,”

IEE Proc. F, Commun. Radar Signal Process. 131, 646–659 (1984).
7M. S. Hughes, J. N. Marsh, C. S. Hall, D. Savy, M. J. Scott, J. S. Allen,

E. K. Lacy, C. Carradine, G. M. Lanza, and S. A. Wickline,

“Characterization of digital waveforms using thermodynamic analogs:

Applications to detection of materials defects,” IEEE Trans. Ultrason. Fer-

roelectr. Freq. Control 52, 1555–1564 (2005).
8M. Hughes, J. Marsh, A. Woodson, E. Lacey, C. Carradine, G. M. Lanza,

and S. A. Wickline, “Characterization of digital waveforms using thermo-

dynamic analogs: Detection of contrast targeted tissue in MDA 435 tumors

implanted in athymic nude mice,” in Proceedings of the 2005 I.E.E.E.
Ultrasonics Symposium (2005) pp. 1609–1616.

9C.H. Reinsch, “Smoothing by spline functions,” Num. Math. 10, 177–183

(1967).
10W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Nu-

merical Recipes in C, 2nd ed. (Cambridge University Press, Cambridge,

UK, 1992), pp. 113–116.
11M. Hughes, J. Marsh, C. Hall, R. W. Fuhrhop, E. K. Lacy, G. M. Lanza,

and S. A. Wickline, “Acoustic characterization in whole blood and plasma

of site-targeted nanoparticle ultrasound contrast agent for molecular imag-

ing,” J. Acoust. Soc. Am. 117, 964–972 (2005).
12S. Flacke, S. Fischer, M. J. Scott, R. J. Fuhrhop, J. S. Allen, M. McLean,

P. Winter, G. A. Sicard, P. J. Gaffney, S. A. Wickline, and G. M. Lanza,

“Novel MRI contrast agent for molecular imaging of fibrin implications

for detecting vulnerable plaques,” Circulation 104, 1280–1285 (2001).
13G. M. Lanza, K. D. Wallace, M. J. Scott, W. P. Cacheris, D. R. Abend-

schein, D. H. Christy, A. M. Sharkey, J. G. Miller, P. J. Gaffney, and S. A.

Wickline, “A novel site-targeted ultrasonic contrast agent with broad bio-

medical application,” Circulation 94, 3334–3340 (1996).
14P. Winter, S. Caruthers, A. Kassner, T. Harris, L. Chinen, J. Allen, H.

Zhang, J. Robertson, S. Wickline, and G. Lanza, “Molecular imaging of

angiogenesis in nascent vx-2 rabbit tumors using a novel avb3-targeted

nanoparticle and 1.5 tesla MRI,” Cancer Res. 63, 5838–5843 (2003).
15D.L. Sackett, “Why randomized controlled trials fail but needn’t: II. fail-

ure to employ physiological statistics, or the only formula a clinician-tria-

list is ever likely to need (or understand!),” Can. Med. Assoc. J. 165,

1226–1237 (2001).

J. Acoust. Soc. Am., Vol. 129, No. 6, June 2011 Hughes et al.: Improved signal processing to detect cancer 3767


	s1
	cor1
	s2
	E1
	E2
	E3
	s2A
	E4
	E5
	E6
	s3
	s3A
	s3B
	s3C
	F1
	s3D
	s3E
	s3E1
	E7
	F2
	F3
	F4
	F5
	F6
	F7
	s3E2
	E8
	F8
	s4
	s4A
	s4B
	F10
	F9
	E9
	F11
	F12
	F13
	s4C
	F15
	F16
	F14
	s4D
	s5
	s5A
	s5B
	s5C
	F17
	s6
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	B12
	B13
	B14
	B15

