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Dynamical averages based on functionals of dynamical trajectories, such as time-correlation func-
tions, play an important role in determining kinetic or transport properties of matter. At temperatures
of interest, the expectations of these quantities are often dominated by contributions from rare events,
making the precise calculation of these quantities by molecular dynamics simulation difficult. Here,
we present a reweighting method for combining simulations from multiple temperatures (or from
simulated or parallel tempering simulations) to compute an optimal estimate of the dynamical prop-
erties at the temperature of interest without the need to invoke an approximate kinetic model (such as
the Arrhenius law). Continuous and differentiable estimates of these expectations at any temperature
in the sampled range can also be computed, along with an assessment of the associated statistical un-
certainty. For rare events, aggregating data from multiple temperatures can produce an estimate with
the desired precision at greatly reduced computational cost compared with simulations conducted at
a single temperature. Here, we describe use of the method for the canonical (NVT) ensemble us-
ing four common models of dynamics (canonical distribution of Hamiltonian trajectories, Andersen
thermostatting, Langevin, and overdamped Langevin or Brownian dynamics), but it can be applied to
any thermodynamic ensemble provided the ratio of path probabilities at different temperatures can be
computed. To illustrate the method, we compute a time-correlation function for solvated terminally-
blocked alanine peptide across a range of temperatures using trajectories harvested using a modified
parallel tempering protocol. © 2011 American Institute of Physics. [doi:10.1063/1.3592152]

I. INTRODUCTION

Dynamical properties, such as diffusion constants,
position and velocity autocorrelation functions, rotational
correlation times, frequency-dependent dielectric constants,
and reaction or isomerization rates play a critical role in our
understanding of various phenomena in chemistry and biol-
ogy. Besides providing physical insight, calculation of these
properties from simulations is often necessary for making
comparison with spectroscopic experiments (such as FTIR,
2DIR, NMR, dynamic light scattering, or neutron correlation
spectroscopy) or to make predictions about material or struc-
tural properties under conditions difficult to access experi-
mentally or of substances yet to be created in physical form.

When these phenomena involve enthalpic barriers or en-
tropic bottlenecks in systems obeying classical statistical me-
chanics, averages of these properties can be extremely slow to
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converge in standard molecular dynamics simulations, requir-
ing tediously long simulations to produce estimates with the
desired statistical precision. Additionally, the temperature-
dependence of these properties is often of interest, requiring
either the use of simulations at numerous temperatures, where
each simulation must be long enough to ensure the difference
in estimates between different temperatures is statistically sig-
nificant, or the assumption of a kinetic model, such as Arrhe-
nius behavior for rate processes.

In recent years, a number of algorithmic advances have
helped ameliorate difficulties for the computation of equi-
librium expectations or thermodynamic properties caused by
the presence of significant enthalpic and entropic barriers.
Chief among these have been simulated1–3 and parallel4–7

tempering, in which the time required to cross enthalpic (en-
tropic) barriers is reduced by allowing the system to access
higher (lower) temperatures during the simulation. The use
of random temperature-switching proposals and a Metropolis-
like criterion for their acceptance embeds the simulations in
a Markov chain that ensures, in the long run, the station-
ary distribution at thermal equilibrium is sampled at each
temperature.8 The advantages of this procedure are twofold:
convergence times for averages at a single temperature can
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often be reduced by appropriate choice of temperatures to
enhance mixing,8–11 and data from all temperatures can be
combined to produce superior estimates of equilibrium ex-
pectations over a range of temperatures using histogram
reweighting12–15 or histogram-free16, 17 statistical analysis
methods.

While helpful in the calculation of equilibrium expecta-
tions of mechanical observables that are functions only of the
atomic coordinates and momenta, the data produced by sim-
ulated and parallel tempering simulations are generally not
directly useful for the computation of dynamical quantities.
This is due to the fact that replica trajectories include un-
physical changes in temperature, and permuting the data to
separate trajectories by temperature results in discontinuous
trajectories for each temperature, with a complicated correla-
tion structure entangling the temperatures.15, 18 The short tra-
jectory segments generated between exchanges, however, are
valid dynamical trajectories that can be used to estimate dy-
namical properties, as in Ref. 19.

Here, we show how trajectories from multiple tempera-
tures (including those harvested from tempering simulations)
can be reweighted to produce optimal estimates of dynami-
cal quantities at the temperature(s) of interest, and how these
estimates might be superior to those from single-temperature
simulation if the crossing of enthalpic barriers or entropic bot-
tlenecks is accelerated at some of the replica temperatures.
Application of this reweighting scheme to simulated and par-
allel tempering simulations requires little, if any, modification
of the simulation protocol. We require only that the time be-
tween exchanges is long enough to compute dynamical ex-
pectations of interest, the model of dynamics used to propa-
gate the replica samplers in between exchanges is of a form
amenable to reweighting, and the temperature spacing is close
enough to permit estimation of appropriate normalization
constants. We illustrate this approach by estimating a slowly-
convergent property—the normalized fluctuation autocorrela-
tion function for a conformational state of terminally-blocked
solvated alanine peptide that is only sparsely populated at
300 K—and show that dynamical reweighting provides sig-
nificant advantages over standard estimates from single tem-
peratures alone.

II. THEORY

We now lay out the main theoretical tools necessary for
estimating dynamical expectations by making use of simu-
lations at multiple temperatures. In Sec. II A, we provide a
precise definition of the dynamical expectations we can es-
timate through reweighting schemes. Next, in Sec. II B, we
review the generalized path estimator for making optimal use
of trajectories sampled from multiple ensembles. As this es-
timator requires we compute path action differences at dif-
ferent temperatures for every trajectory sampled, Sec. II C
presents simplified, convenient forms of these quantities for
several common models of dynamics within the canonical en-
semble. Finally, Sec. II D describes a modified parallel tem-
pering protocol that can be used to easily sample trajectories
from multiple temperatures in a way that they can easily be
used with this estimation-by-reweighting procedure.

A. Dynamical expectations

The equilibrium thermodynamic expectation of some
static (non-kinetic) property A for a system obeying classical
statistical mechanics can be written as

〈A〉 ≡
∫

dx p(x) A(x), (1)

where x denotes the instantaneous configuration of the sys-
tem (such as the coordinates and momenta of all particles),
A(x) is often referred to as a phase function or mechanical
observable, and p(x) is the equilibrium probability density,
given by

p(x) = Z−1 q(x) ; Z ≡
∫

dx q(x), (2)

where Z is a normalizing constant or partition function, and
q(x) > 0 is an unnormalized probability density. (Here, we
will choose q(x) to contain terms that depend explicitly on
x ; x-independent multiplicative terms will generally be ab-
sorbed into Z throughout.) In the canonical ensemble, for ex-
ample, the system is in contact with a heat bath and held at
fixed volume, and we have q(x) = e−β H (x), where H (x) is the
Hamiltonian and β = (kB T )−1 is the inverse temperature.

We can write an analogous expression for equilibrium dy-
namical expectations of a kinetic property A as

〈A〉 =
∫

d X p[X ]A[X ], (3)

where A[X ] now denotes a functional of a trajectory
X ≡ x(t), p[X ] is the probability density of trajectories, and
the integral is taken over the space of all such trajectories with
respect to an appropriate measure d X . Analogous to the case
of phase space probability densities, p[X ] can also be written
in terms of an unnormalized density q[X ] > 0,

p[X ] = Z−1 q[X ] ; Z ≡
∫

d X q[X ]. (4)

As we will see in Sec. II C, the precise definition of p[X ] will
depend on the dynamical model under consideration.

While the expectation of any trajectory functional can,
at least formally, be computed this way, the most common
dynamical quantities of interest are time-correlation functions
of the form

CAB(t) ≡ 〈A(0) B(t)〉 , (5)

for some pair of phase functions A and B. This corresponds
to the choice

A[X ] ≡ A(x(0)) B(x(t)). (6)

For practical purposes, we will henceforth presume that the
functional A[X ] is temporally local, in that it can be ex-
pressed in a way that operates on a finite time interval that
can be bounded by some fixed duration τ . We can then restrict
ourselves to considering trajectory objects X ≡ x(t) of fixed
length τ , so that x(t) is defined only on the interval t ∈ [0, τ ].
In the case of time-correlation functions CAB(t) above, for
example, t ≤ τ .

Expectations with respect to some altered trajectory
probability density p∗[X ] can also be computed within this
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equilibrium expectation framework by simply incorporat-
ing the weighting factor p∗[X ]/p[X ] into the trajectory
functional A. For example, to compute time-correlation
functions such as Eq. (6) with respect to nonequilibrium
initial conditions, A[X ] could be redefined to include a
factor of ρ[X ]/p[X ] to account for non-equilibrium (or even
non-canonical) initial phase space density ρ[X ].20

B. Dynamical reweighting

The groundwork for reweighting trajectories sampled
from multiple thermodynamic states in order to produce
an optimal estimate of some dynamical expectation was
laid in work by Minh and Chodera.21 Though presented in
the context of nonequilibrium experiments (in which the
consequences of the Crooks fluctuation theorem22, 23 were
explored), the estimator is sufficiently general that it applies
to equilibrium trajectories sampled from different equilib-
rium thermodynamic states within the same thermodynamic
ensemble, producing an asymptotically optimal estimate
of properties within the thermodynamic state of interest.
The generalized path ensemble estimator21 is in turn based
on the statistical inference framework of extended bridge
sampling,24–26 which provides a solid statistical foundation
for earlier estimation and reweighting schemes found in
statistical physics and chemistry.12–14, 16, 27

Here, we briefly review the general estimator formal-
ism and examine its application to common schemes used to
model dynamics at constant temperature. While we restrict
our consideration to the canonical (NVT) ensemble, exten-
sion to other thermodynamic ensembles (such as the isobaric
and semigrand-canonical ensembles) and other schemes for
generating trajectories within the canonical and other thermo-
dynamic ensembles is operationally straightforward.

Suppose we have K path ensembles at different ther-
modynamic conditions, indexed by i ∈ {1, . . . , K }, character-
ized by trajectory probability densities

pi [X ] = Z−1
i qi [X ] ; Zi ≡

∫
d X qi [X ], (7)

where qi [X ] > 0 is an unnormalized density and Zi an un-
known normalization constant, from which we have collected
Ni trajectories of duration τ . We denote these trajectories Xn ,
where the trajectory index n runs from 1 to N ≡ ∑K

k=1 Nk ,
with the trajectories from different path ensembles indexed in
arbitrary order. The association of a trajectory with the path
ensemble from which it was sampled will not be relevant in
the estimating equations.

The optimal estimator for a dynamical expectation,

〈A〉i =
∫

d X pi [X ]A[X ], (8)

was shown by Minh and Chodera21 to be given by

Âi =
N∑

n=1

wni A[Xn], (9)

where the N × K weight matrix W ≡ (wni ) containing the
appropriate trajectory weights for all trajectories n in all path

ensembles i is given by

wni = Ẑ−1
i

[
K∑

k=1

Nk Ẑ−1
k qk[Xn]/qi [Xn]

]−1

. (10)

Here, wni denotes the weight contribution from trajectory n
in the aggregated pool of N trajectories for estimating expec-
tations for state i . The presence of the leading normalizing
factor Ẑ−1

i ensures that the weights are normalized such that∑N
n=1 wni = 1 for any state i . The unnormalized path densi-

ties qk[Xn]/qi [Xn] represent the ratio of how likely a partic-
ular trajectory Xn is to appear in path ensemble k over path
ensemble i , up to some ratio of normalizing constants Zi/Zk

that is trajectory-independent. Importantly, the estimator ex-
pression in Eqs. (9) and (10) holds even if no trajectories are
sampled from some of the path ensembles, such that Ni = 0
for these unsampled ensembles, but there are still samples
from other path ensembles such that N > 0.

The normalizing constants {Ẑi }, determined only up to an
arbitrary multiplicative constant, are determined by solving
the coupled set of K nonlinear equations for i = 1, . . . , K ,
under the constraint that

∑N
n=1 wni = 1:

Ẑi =
N∑

n=1

[
K∑

k=1

Nk Ẑ−1
k qk[Xn]/qi [Xn]

]−1

. (11)

This can be done efficiently through a number of
methods.17, 21 For example, the simplest such approach is to
iterate a form of Eq. (11) to self-consistency. Suppose we
choose an initial guess Ẑ (0)

i = 0, i = 1, . . . , K . We can em-
ploy an iterative update procedure

Ẑ (n+1)
i =

N∑
n=1

[
K∑

k=1

Nk[Ẑ (n)
k ]−1qk[Xn]/qi [Xn]

]−1

(12)

to generate a new set of estimates {Ẑ (n+1)
i } from a previ-

ous set of estimates {Ẑ (n)
i }. Each iteration of the update pro-

cedure requires only that we be able to compute the ratio
qk[Xn]/qi [Xn] for all trajectories in the pool of N trajecto-
ries; these ratios can be precomputed and stored. This itera-
tive procedure is continued until these estimates converge to
within some specified tolerance.17, 21 For numerical stability,
it is convenient to work with ln Z (n)

i instead of Z (n)
i directly.17

In the canonical ensemble, the probability distributions
are parameterized by a temperature T , or equivalently, the
inverse temperature β ≡ (kB T )−1. The expectation of ob-
servable A at some arbitrary inverse temperature β, 〈A〉β ,
estimated from simulations at fixed inverse temperatures
β1, . . . , βK , can then be estimated as

Â(β) =
N∑

n=1

wn(β)A[Xn], (13)

where the temperature-dependent trajectory weights wn(β)
are

wn(β) = Ẑ (β)−1

[
K∑

k=1

Nk Ẑ−1
k q[Xn|βk]/q[Xn|β]

]−1

,

(14)
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with normalization constants Zk ≡ Z (βk), and

Ẑ (β) =
N∑

n=1

[
K∑

k=1

Nk Ẑ−1
k q[Xn|βk]/q[Xn|β]

]−1

. (15)

Once the normalizing constants {Ẑk} have been determined
by solving the coupled nonlinear equations in Eq. (11), no
further nonlinear equation solution iterations are necessary to
estimate Â(β) at other temperatures of interest.

Perhaps surprisingly, Eqs. (10) and (14) do not contain
any information linking a trajectory Xn with the path ensem-
ble p j [X ] from which it was sampled; this fact is a direct,
if unobvious, consequence of the extended bridge sampling
formalism.25, 26

The unnormalized trajectory probability density q[X |β]
will depend on the model of dynamics within the canoni-
cal ensemble used in the simulations; we give expressions
for several popular models in Sec. II C. In all the cases
treated here, however, q[X |β] is a continuous and differen-
tiable function of β, meaning that A(β) will also be continu-
ous and differentiable. The utility of this estimate will depend
on a number of contributing circumstances; the estimate is
only expected to be reliable within the range of temperatures
sampled, but estimates can, in principle, be obtained for any
temperature.

The statistical uncertainty in Â(β) can be computed in a
straightforward manner from an estimate of the asymptotic
variance of Â(β).17, 21 Briefly, the estimating equations are
linearized about the optimal estimator and the variance in
the estimating equations is propagated into the corresponding
variance in the estimator (see, for example, the Appendix in
Ref. 26). Operationally, the N × K weight matrix W is aug-
mented by two additional columns, indexed (for convenience)
by a and A, consisting of

wna = wn(β) ; wn A = A[Xn]

Â(β)
wna, (16)

where β is the temperature of interest.
The variance in Â(β) can be computed from the asymp-

totic covariance matrix �, which is estimated by

�̂ ≡ WT · [IN − WNWT]+ · W, (17)

where IN is the N × N identity matrix,
N = diag(N1, N2, . . . , NK , 0, 0), and A+ denotes the
pseudoinverse of a matrix A. For cases where the columns
of W are linearly independent (which will be the case when
β �= βi for all i ∈ {1, . . . , K } and βi �= β j for i �= j), a
simpler expression that requires pseudoinversion of only
O(K ) × O(K ) can be used:

�̂ = [(WTW)+ − N]+. (18)

Efficient computation of �̂ by other means is discussed in the
Appendix of Ref. 17.

The uncertainty in Â(β) is then estimated as

var Â(β) ≡ 〈(Â(β) − 〈Â(β)〉)2〉
≈ [Â(β)]2[�̂aa − 2�̂a A + �̂AA]. (19)

Near Â(β) ≡ 0, the uncertainty estimation in Eq. (13) may
run into numerical issues; in this case, it is recommended

that the relative uncertainty var Â(β)/[ Â(β)]2 be computed
instead.

Similarly, the covariance between two estimates Â(β)
and B̂(β ′) at respective temperatures β and β ′ (which may
be the same or different) can be computed by augmenting W
with additional columns,17, 21

wnb = wn(β ′) ; wnB = B[Xn]

B̂(β ′)
wnb, (20)

yielding

cov(Â(β), B̂(β ′))

≡ 〈(Â(β) − 〈Â(β)〉)(B̂(β ′) − 〈B̂(β ′)〉)〉
≈ Â(β) B̂(β ′)[�̂ab − �̂aB − �̂Ab + �̂AB]. (21)

This can be extended to more than two expectations if the
covariance of many such pairs is desired simultaneously.17, 21

For purposes of numerical stability, it is convenient to
work with the logarithms of quantities like q[X |βi ]/q[X |β j ]
and Ẑi/Ẑ j . We therefore define a trajectory action functional
S[X |β] as

S[X |β] ≡ − ln q[X |β]. (22)

Note that this definition differs from standard definitions
(e.g., Ref. 28) in that only terms that depend on both trajectory
X and temperature β are included in q[X |β] and S[X |β]—
any remaining multiplicative terms in the path probability
density p[X |β] are subsumed by the normalization constant
Z (β) to simplify the subsequent development. Inclusion of
explicit multiplicative terms that depend on β but not X could
reduce the variance of dynamical reweighting estimates, but
this is not done here for simplicity.

For all of the models of dynamics considered in Sec. II C,
the trajectory- and temperature-dependent action S[X |β] is
linear in the inverse temperature β, having the form

S[X |β] = βH[X ], (23)

where the quantity H[X ] plays the role of a generalized
path Hamiltonian that operates on trajectory space, analo-
gous to the role of the standard Hamiltonian H (x) that op-
erates on microstates in phase space. We note that the path
Hamiltonian can be trivially computed from the action
S[X |β] or unnormalized path density q[X |β] as

H[X ] = β−1S[X |β] = −β−1 ln q[X |β]. (24)

We also define the dimensionless path free energy fi of
path ensemble i as

fi ≡ − ln Zi . (25)

The logarithms of the trajectory weights wn(β) can then be
written in terms of the path Hamiltonians H[X ] and dimen-
sionless free energies fi as

ln wn(β) = f̂ (β) − ln
K∑

k=1

Nke f̂k−(βk−β)H[Xn ], (26)
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where the temperature-dependent dimensionless free energy
f̂ (β) is given by

f̂ (β) = − ln
N∑

n=1

[
K∑

k=1

Nke f̂k−(βk−β)H[Xn ]

]−1

, (27)

and the f̂k ≡ f̂ (βk). Practical notes about working with
the estimation equations in a numerically stable and effi-
cient manner are given in.17, 21 Due to the analogous na-
ture of estimating static equilibrium expectations using the
Bennett acceptance ratio (MBAR) method,17 PYMBAR, the
PYTHON package for performing MBAR analysis (available
at http://simtk.org/home/pymbar), can be used for the com-
putation of dimensionless path free energies f̂i , expectations
Â, and covariances cov( Â, B̂) by using path actions S[X ] in
place of the reduced potential energy u(x). This scheme was
used for the calculations presented here.

C. Models of dynamics in the canonical ensemble

While the path ensemble estimator (described for
temperature-dependent dynamics in Sec. II B, and more gen-
erally in Ref. 21) can be applied to dynamics in any thermody-
namic ensemble in which the unnormalized trajectory proba-
bility density ratios qi [X ]/q j [X ] are finite and nonzero over
the same domain, we restrict our consideration to the canoni-
cal (NVT) ensemble in classical statistical mechanics. As the
concept of a thermodynamic ensemble is a purely equilibrium
construct, it specifies only the relative probability p(x |β) with
which a configuration or phase space point x is observed at
equilibrium. To write a probability density over equilibrium
trajectories at inverse temperature β, p[X |β], we must further
specify a particular scheme for modeling dynamics within this
ensemble. The choice of model used to simulate dynamics
within this ensemble is not unique—many schemes can be
employed that will generate the same equilibrium density in
phase space p(x |β), but will have different trajectory proba-
bility densities p[X |β]. This choice must therefore be guided
by both a desire to mimic the relevant physics for the sys-
tem of interest (such as whether the system must be allowed
to exchange energy with an external heat reservoir during the
course of dynamical evolution), balanced with computational
convenience (e.g., the use of a stochastic thermostat in place
of explicitly simulating a large external reservoir).

We consider four common models for simulating dy-
namics within the NVT ensemble for which the ratio of un-
normalized trajectory probability densities q[X |βi ]/q[X |β j ]
can be computed: (i) Hamiltonian dynamics with canonically-
distributed initial conditions, (ii) an Andersen thermostat,29

(iii) Langevin dynamics, and (iv) overdamped Langevin
(sometimes called Brownian) dynamics. Notably, the deter-
ministic nature of the Nosé-Hoover thermostat30, 31 and the
way that the inverse temperature β appears in its equations
of motion means a trajectory X ≡ x(t) generated at inverse
temperature βi will have identically zero probability p[X |β j ]
at inverse temperature β j �= βi , preventing its use in the
reweighting scheme described here. The same is true of the
Berendsen weak-coupling algorithm,32 though any usage of
this form of thermal control is highly discouraged because

of its failure to generate a canonical ensemble33–35 or be
ergodic.34

1. Canonical distribution of Hamiltonian trajectories

Consider a collection of trajectories of length τ in which
initial phase space points x0 ≡ x(0) are sampled from the
canonical density p(x0|β), and whose dynamical evolution
is governed by Hamiltonian mechanics. Physically, this cor-
responds to the statistics of a situation where the system is
initially in contact with a thermal reservoir at inverse temper-
ature β, but the evolution time τ is short enough that effec-
tively no heat is exchanged with the reservoir during this time.
Practically, an ensemble of these trajectories can be generated
in a number of ways: For example, the initial configurations
x0 could be generated from the desired canonical ensemble
p(x0|β) ∝ e−β H (x0) by a form of Metropolis-Hastings Monte
Carlo36 or hybrid Monte Carlo.37

The trajectory probability density p[X |β] is given by

p[X |β] = Z (β)−1 e−β H (x0), (28)

where H (x) denotes the Hamiltonian for the system and
x0 ≡ x(0) is the initial phase space point. While the normal-
ization constant can be written as

Z (β) =
∫

dx e−β H (x), (29)

we do not need to compute it for use in dynamical
reweighting.

The path Hamiltonian H[X ] can then be identified (via
Eq. (24)) as being identical to the Hamiltonian

H[X ] = H (x0). (30)

We note that, while the Hamiltonian is invariant along the tra-
jectory for true Hamiltonian dynamics, numerical integrators
will not exactly preserve this property.

2. Andersen thermostat

The Andersen thermostat29, 38 allows the system to ex-
change heat with an external thermal reservoir through
stochastic collisions with virtual bath particles. These “col-
lisions” simply cause the real particle’s velocity to be reas-
signed from a Maxwell-Boltzmann distribution correspond-
ing to the thermostat temperature, ensuring that the canonical
ensemble is sampled.29

Two schemes are commonly used. In the first scheme, the
system undergoes so-called massive collisions, in which all
momenta are reassigned from the Maxwell-Boltzmann distri-
bution at fixed intervals; evolution between collisions occurs
by normal Hamiltonian dynamics. This collision interval can
have a large effect on the kinetic properties of the system, so
this scheme is usually used only for studying static thermody-
namic properties.

In the second scheme, each particle has a fixed prob-
ability per unit time ν of having its momenta reassigned.
This corresponds to a scenario in which each particle un-
dergoes independent stochastic collisions with fictitious bath

http://simtk.org/home/pymbar
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particles, with the system evolving according to Hamilto-
nian dynamics between collisions. Andersen suggested a
physically-motivated collision frequency ν could be selected
based on the thermal conductivity κ of the sample29

ν = 2aκ

3kBρ1/3 Np
2/3 , (31)

where a is a dimensionless constant that depends on the
shape of the system, ρ is the density, and Np is the number
of particles. Note that, as the system size increases with Np,
the collision frequency ν decreases as N−2/3

p , such that the
dynamics will approach that of a Hamiltonian system for
large systems. Further elaborations of this thermostatting
scheme attempt to model physically realistic dynamics of
large solutes, such as solvated biological macromolecules, by
coupling the thermostat only to solvent degrees of freedom
(see, e.g., Ref. 39). Systems with constraints will require
the velocity components along the constraints to be removed
prior to integration by an algorithm such as RATTLE.40

For either thermostatting scheme, the probability of sam-
pling a trajectory X ≡ x(t) at inverse temperature β is there-
fore determined by the probability of selecting the initial
configuration x0 ≡ x(0) from equilibrium and the probabil-
ity of generating the resulting sequence of random collisions.
Up to irrelevant temperature-independent multiplicative con-
stants that simply determine the probability that a given se-
quence of Nc particle collisions occurred, this probability is

p[X |β] ∝ e−β H (x0)
Nc∏

n=1

πv (vn|mn, β), (32)

where the index n in the product runs over all particle colli-
sions that occurred during integration (either at regular inter-
vals or stochastically determined), indexed in arbitrary order.
vn is the velocity of the particle after the nth massive colli-
sion, mn its mass, and πv (v|m, β) is the Maxwell-Boltzmann
distribution for the velocity vector of a particle of mass m at
inverse temperature β:

πv (v|β, m) ∝ e−βmv2/2. (33)

The path Hamiltonian H[X ] can therefore be identified
as the Hamiltonian for the initial phase space point x0 plus
the new kinetic energies of all particles that have undergone
collisions during the course of integration:

H[X ] = H (x0) + 1

2

Nc∑
n=1

mnv2
n, (34)

where again, vn is the new velocity of the particle that had
undergone collision indexed by n, and mn is its mass.

3. Langevin dynamics

In Langevin dynamics, stochastic forces are used to
mimic the influence of degrees of freedom that are not ex-
plicitly represented by particles in the system, such as solvent
molecules whose influence is incorporated into the potential
by mean-field interactions. The memoryless Langevin equa-
tions of motion for phase space point x ≡ (r, v), consisting of

Cartesian atomic positions r and velocities v, are

ṙi (t) = vi (t),

mi v̇i (t) = Fi (v(t)) − γi vi (t) + Ri (t), (35)

where mi is the mass associated with degree of freedom i ,
Fi (q) ≡ −∂ H/∂qi is the systematic force component, and
γi is an effective collision frequency or friction coefficient
for that degree of freedom, with units of inverse time (e.g.
91 ps−1 for water-like viscosity). γi is related to the
temperature-dependent diffusion constant Di (β) by

Di (β) = (βγi mi )
−1. (36)

The stochastic force Ri (t) has zero mean and satisfies the
fluctuation-dissipation theorem,

〈Ri (t) R j (t
′)〉 = 2β−1miγiδi jδ(t − t ′). (37)

The Langevin Leapfrog integrator41 is an accurate and
stable algorithm for integrating the Langevin equations of mo-
tion. Updating of positions rt and velocities vt by a discrete
timestep �t is handled by the following scheme:

vi,t+ 1
2

= ai vi,t + bi�t m−1
i Fi (Xt ) + ci m

−1/2
i ξi t ,

ri,t+1 = ri,t + �t vi,t+ 1
2
, (38)

vi,t+1 = ai vi,t+ 1
2
+ bi�t m−1

i Fi (Xt+1) + ci m
−1/2
i ξi(t+1),

where we have defined the dimensionless constants ai , bi , and
ci associated with each degree of freedom i as

ai ≡ e−γi �t/2,

bi ≡ (1 − e−γi �t/2)/(γi�t),

ci ≡ (1 − e−γi �t )1/2.

As the collision rate γi → 0, we have ai → 1, bi → 1/2, and
ci → 0, resulting in the standard leapfrog integrator scheme.

ξi t is a unit-bearing random normal variate with zero
mean and variance β−1 = kB T , simply denoted

ξi t ∼ N (0, β−1). (39)

Note that ξi t has units of the square-root of energy.
Propagation for Nt steps of Langevin leapfrog integration

from initial configuration x0 ≡ (r0, v0) for a system with Nd

degrees of freedom requires generating the sequence of ran-
dom variates ξi t . Ignoring multiplicative factors not involving
both trajectory X and temperature β, the unnormalized equi-
librium probability of sampling a trajectory X which origi-
nates at x0 and has noise history ξi t at inverse temperature β

is given by

q[X |β] = e−H (x0)
Nt∏

t=0

Nd∏
i=1

φ(ξi t ; 0, β−1), (40)

where φ(x ; μ, σ 2) is the normal probability density,

φ(y; μ, σ 2) ∝ exp

[
− 1

2σ 2
(y − μ)2

]
. (41)
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The path Hamiltonian can therefore be computed from
the initial phase space point x0 and unit-bearing noise history
ξi t , as

H[X ] = H (x0) + 1

2

Nt∑
t=0

Nd∑
i=1

ξ 2
ti , (42)

which can easily be accumulated during integration.
Note that, if γi = 0 for a degree of freedom i , the corre-

sponding noise term ξ 2
ti does not contribute to the integration

in Eq. (38) and can be omitted from the path Hamiltonian
above.

4. Overdamped Langevin (Brownian) dynamics

At high friction, momentum relaxation becomes fast
compared to particle motion, such that inertial motion may be
neglected. A common integrator for this overdamped regime,
in which only coordinates q are explicitly integrated, is given
by Ermak and Yeh42, 43

rt+1,i = rti + �t

γi mi
Fi (xt ) +

√
2

(
�t

γi mi

)1/2

ξti , (43)

where the stochastic component ξti is again a unit-bearing
normal random variate with zero mean and variance β−1

= kB T ,

ξti ∼ N (0, β−1), (44)

with units of the square-root of energy, and γi is a collision
rate of friction constant for degree of freedom i , with units
of inverse time, where the temperature-dependent diffusion
constant Di is again related by Eq. (36).

Ignoring irrelevant multiplicative factors that do not de-
pend on both trajectory X and temperature β, the unnormal-
ized probability functional for a realization of Nt steps of this
process is then

q[X |β] = e−βU (x0)
Nt∏

t=1

Nd∏
i=1

φ(ξti ; 0, β−1), (45)

where U (x) = U (r) denotes the potential energy and
φ(y; μ, σ 2) again denotes the normal probability density. This
allows us to identify the path Hamiltonian as

H[X ] = U (x0) + 1

2

Nt∑
t=1

Nd∑
i=1

ξ 2
ti . (46)

D. Modified parallel tempering protocol

An especially convenient way to harvest trajectories
from multiple temperatures is through the use of parallel
tempering.4–7 As illustrated by Buchete and Hummer,44 the
trajectory segments generated in between exchange attempts
are valid dynamical trajectories sampled from the correspond-
ing replica temperatures. Simulated tempering can likewise be
employed, though we will not discuss this here.

Below, we enumerate several considerations that must be
taken into account for the use of a parallel tempering protocol
to collect trajectories for use in dynamical reweighting.

First, the dynamics in between exchange attempts must
use a scheme amenable to reweighting, such as one of the
models of dynamics within the canonical ensemble described
in Sec. II C. While this means some popular choices, such
as Nosé-Hoover dynamics30, 31 and the Berendsen weak-
coupling algorithm45 cannot be used, considerable flexibility
remains in which dynamical schemes are permitted, including
Hamiltonian, Andersen, Langevin, and overdamped Langevin
(Brownian) dynamics, as discussed in Sec. II C.

Second, the time between exchange attempts should
be at least as long as τ , the time over which the computed
dynamical observable A[X ] is temporally local. For example,
if a correlation function CAB(t) ≡ 〈A(0)B(t)〉 is desired for
t ∈ [0, τ ], the time between exchanges should be at least τ .
This may, in some circumstances, impact the efficiency of
parallel tempering in producing uncorrelated samples. For
functions A that require a large τ , much of the benefit of the
exchanges in parallel tempering may be lost if few exchange
attempts occur during the simulation. Often, the best choice is
to make this time exactly τ , since the enhanced mixing prop-
erties of parallel tempering simulations diminish as the time
between exchanges grows (for fixed total simulation time).46

Thirdly, it is necessary that there is sufficient overlap in
the distribution of path Hamiltonians sampled from neighbor-
ing temperatures for dynamical reweighting to be effective.
While the standard replica-exchange acceptance criteria7 will
lead to the correct distribution of trajectories at each tempera-
ture, the fraction of accepted exchange attempts reports on the
quality of overlap of potential energies, rather than the over-
lap of path Hamiltonians; as a result, poor reweighting perfor-
mance may be obtained despite a high exchange acceptance
fraction. A simple way to ensure both good overlap in path
Hamiltonian between neighboring temperatures and correct
sampling of the equilibrium distribution is to use a modified
exchange criterion based on the trajectory action:

Pexch(βi , β j ) = min

{
1,

p[Xi |β j ]p[X j |βi ]

p[Xi |βi ]p[X j |β j ]

}

= min
{
1, e−(β j −βi )(H[Xi ]−H[X j ])

}
, (47)

where, again, H[X ] = β−1S[X |β] = −β−1 ln q[X |β] de-
notes the path Hamiltonian for trajectory X defined in
Eq. (24). The resulting procedure can be considered a form
of parallel tempering transition path sampling,47 with the dif-
ference that new trajectories are generated from old ones in
the more conventional fashion of integrating equations of mo-
tion from the final configuration xT of the previous trajec-
tory, rather than some form of transition path sampling.28, 48

Note that, even for the case of a canonical distribution of
Hamiltonian trajectories, the modified acceptance criteria of
Eq. (47) differs from the standard acceptance criteria,7 as the
total Hamiltonian in the modified criteria replaces the poten-
tial energy in the standard criteria.

Attempting to swap temperatures βi and β j for an arbi-
trarily chosen pair of replicas (i, j) will ensure that the trajec-
tories are correctly distributed from equilibrium at their new
(or old) temperatures after the exchange attempt guarantees
each replica visiting temperature βi samples from p[X |βi ] in
the long run;8, 49, 50 as a result, their individual timeslices xt
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will also be distributed from the corresponding equilibrium
distribution p(x |βi ). If there is poor overlap between the tra-
jectory action distributions, then the exchange attempts be-
tween these temperatures will rarely succeed; on the other
hand, if the overlap is good, then the exchange rate will be
accepted with significant probability. Because the cost of a
single exchange attempt is insignificant compared to the com-
putational cost of propagating all K replicas by another time
τ , it is recommended that many swaps between pairs (i, j)
chosen with uniform probability be attempted in order to en-
sure the replicas are well-mixed. Monitoring of attempted and
accepted exchanges early in the simulation can help diagnose
whether there is sufficient coupling between all temperatures
for successful reweighting.

While it is not strictly necessary to employ this modi-
fied acceptance probability, some care must be taken to en-
sure that a canonical distribution is actually obtained. For ex-
ample, swapping using an exchange criteria based only on
potential energies (as suggested by Sugita et al.7) and fail-
ing to rescale velocities may lead to an incorrect distribution.
On the other hand, rescaling the velocities by (βold/βnew)1/2

as recommended,7 or subsequently redrawing the initial ve-
locities from a Maxwell-Boltzmann distribution at the new
temperature6, 51—a process equivalent to “massive collisions”
for the Andersen thermostat, is not problematic. However, ex-
tra care must be taken to ensure the temperatures are spaced
such that there is sufficient overlap in trajectory action be-
tween neighboring temperatures.

Finally, we note that the temporally sequential trajecto-
ries produced by each replica will have some degree of cor-
relation in the observable A[X ]. If this correlation is signif-
icant, the uncertainty estimate produced by Eq. (19) will be
an underestimate of the true statistical error, as the samples
used in the estimation are assumed to be uncorrelated. A sim-
ple way to remove this correlation is to construct the time-
series At ≡ A[Xt ] over the sequentially-sampled trajectories
Xt from a single replica (without having permuted the repli-
cas to collect trajectory data by temperature) and estimate the
statistical inefficiency gA from the integrated autocorrelation
time of the timeseries At , t = 0, 1, . . ..17, 52–55 If an equally-
spaced subset of N/gA trajectories from the replicas is gen-
erated, these samples will be effectively uncorrelated. Alter-
natively, the time between exchanges τ can be increased to
ensure that sequential At are decorrelated.

III. CORRELATION FUNCTIONS OF A SOLVATED
TERMINALLY-BLOCKED ALANINE PEPTIDE

To illustrate the application of dynamical reweighting
to a condensed-phase system, we consider the estimation
of the normalized fluctuation autocorrelation function for a
long-lived conformational state of terminally-blocked ala-
nine peptide in water that is sparsely populated at 300 K.
Additional simulation details are given in Appendix A. All
code, datasets, analysis scripts, and plotting scripts used
for this application are made available for download at
http://simtk.org/home/dynamical-reweighting.

The modified parallel tempering protocol described
in Sec. II D was used to sample many 10 ps trajectories

from each of 40 exponentially-spaced temperatures spanning
300–600 K, using the “canonical distribution of Hamiltonian
trajectories” model of dynamics described in Sec. II C 1.
Replica temperatures were chosen to be exponentially spaced
so that Tk = (Tmax − Tmin) exp[(k − 1)/(K − 1)] + Tmin for
k = 1, . . . , K ; this is equivalent to geometrically-spaced
replicas, which would achieve equal acceptance rates among
replicas if the system being simulated was an ideal gas. These
temperatures may not be optimal in terms of reducing replica
correlation times or equalizing acceptance probabilities
for the system studied here. While numerous schemes for
intelligently choosing or adapting temperatures exist,56–60

no attempt was made to do so here. The modified protocol
makes use of the exchange criteria of Eq. (47), where path
Hamiltonians instead of potential energies are used in com-
puting the probability of accepting a proposed temperature
swap between replicas; this amounts to simply using the
total energies H (x) in the exchange criteria, the sum of
potential and kinetic energies, instead of only the potential
energies in standard parallel tempering protocols. A total
of 6720 iterations were conducted (67 ns/replica, or 2.7 μs
aggregate), where each iteration consisted of a temperature
exchange phase, assignment of new velocities from the
Maxwell-Boltzmann distribution at the appropriate replica
temperature, and generation of a 10 ps trajectory segment.

To ensure thorough mixing of the replica associations
with temperatures, 403 = 64 000 exchange attempts among
randomly selected pairs of replicas were attempted each par-
allel tempering iteration. Because exchanges are attempted
among all temperatures, and not just neighboring ones, the
probability any two temperatures are exchanged during the
simulation is diagnostic of whether there is sufficient overlap
among temperatures for successful reweighting; in particular,
if no swaps occur between specified subsets of temperature,
reweighting will produce highly uncertain estimates. Over
the course of the simulation, 31.5% of proposed neighbor
swaps were accepted, 4.5% of next-neighbor swaps, and 1.1%
of more remote proposed exchanges accepted. The second-
largest eigenvalue of the empirical temperature exchange ma-
trix was less than unity—estimated to be 0.99801—indicating
that the set of temperatures did not decompose into two or
more subsets with extremely poor exchange properties be-
tween them; were there two subsets of temperatures with no
transitions in between, this eigenvalue would have been unity.
This indicates that a sufficient number of replicas were cho-
sen to span the range of temperatures with reasonably good
exchange among temperatures.

A statistically uncorrelated subset of trajectories gen-
erated from the modified parallel tempering simulation
were extracted according to the procedure described in
Sec. II D. The statistical inefficiency g of the timeseries un

was computed, where un is defined as the effective reduced
potential for the replica ensemble, defined in terms of the
instantaneous joint configuration of all replica conformations
X ≡ {X1, . . . , X K }:

un ≡ u(Xn) =
K∑

k=1

βkH[Xkn]. (48)

http://simtk.org/home/dynamical-reweighting
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FIG. 1. Terminally-blocked alanine in explicit solvent and potential of mean
force of ψ torsion at 300 K. The dark shaded region denotes a 95% confi-
dence interval (two standard errors) in the free energy difference between the
plotted ψ torsion and the lowest point on the potential of mean force (near
ψ = 150 degrees). The labeled light shaded region denotes the αR confor-
mation. The PMF and error bars were estimated from the parallel tempering
dataset using MBAR as described in the text.

Here, Xkn denotes the trajectory sampled from the replica
at temperature βk at iteration n of the parallel temper-
ing simulation, and H[X ] the path Hamiltonian. As the
quantity un denotes the log-probability of the overall
replica-exchange joint probability distribution function
P(X1, . . . , X K |β1, . . . , βK ), and the statistical inefficiency of
the timeseries un , n = 1, . . . , N roughly corresponds to the
number of parallel tempering iterations required to generate
an independent set of samples. After discarding the first 50
iterations to equilibration, the statistical inefficiency was
estimated to be 3.1 iterations.

We define the αR conformation as ψ ∈ [−124, 28) de-
grees, based on examination of the one-dimensional potential
of mean force (PMF) in the ψ torsion at 300 K (Figure 1),
which was estimated using the multistate Bennett acceptance
ratio (MBAR) (Ref. 17) and a Gaussian kernel density estima-
tor with a bandwidth of 20 degrees. This state has a low pop-
ulation at 300 K (9.6 ± 0.5% as estimated by MBAR), but
a relatively long lifetime compared to other conformational
transitions in this peptide model. As an observable, we chose
the indicator function for the αR state:

h(x) =
{

1, ψ(x) ∈ [−124, 28) degrees,

0, else.
(49)

We compute the normalized fluctuation correlation function
C(τ ; β),

C(τ ; β) ≡ 〈δh(0)δh(τ )〉β
〈δh2〉β , (50)

where we use the shorthand δh(t) ≡ h(x(t)) − 〈h〉β . We note
that, while the correlation function C(τ ; β) describes the re-
laxation dynamics out of the defined region ψ ∈ [−124, 28)
degrees, this correlation function may contain multiple expo-
nential timescales due to the simplistic definition of the αR

stable state. Estimation of accurate rate estimates would re-
quire calculation of a quantity robust to imperfect definition
of dividing surface, such as examination of the reactive flux

correlation function61, 62 or the Markov model described in a
companion paper.63

Because C(τ ; β) is not easily expressed as a single ex-
pectation, we write it as a combination of two elementary path
expectations. For a fixed choice of τ , we define the path func-
tionals A and B as

A[X ] ≡ h(x(0))h(x(τ )),

B[X ] ≡ h(x(0)). (51)

The correlation function C(τ ; β) can then be written as

C(τ ; β) = 〈A〉β − 〈B〉2
β

〈B〉β − 〈B〉2
β

. (52)

and hence its estimator, in terms of Â(β) and B̂(β), is

Ĉ(τ ; β) = Â(β) − B̂(β)2

B̂(β) − B̂(β)2
, (53)

where we have used the fact that (B[X ])2 = B[X ] because
[h(x)]2 = h(x). The statistical uncertainty in Ĉ(τ ; β) is deter-
mined by simple propagation of error. Suppressing the func-
tional dependence on β, we have

δ2Ĉ =
[

∂Ĉ

∂Â

]2

δ2Â+
[

∂Ĉ

∂B̂

]2

δ2B̂+2

[
∂Ĉ

∂Â

] [
∂Ĉ

∂B̂

]
δÂδB̂,

(54)

where the partial derivatives are given by

∂Ĉ

∂Â
= 1

B(1 − B)
;

∂Ĉ

∂B̂
= A − 1

(B − 1)2
− A

B2
. (55)

Where the quantities δ2Â ≡ var Â, δ2B̂ ≡ var B̂, and
δÂδB̂ ≡ cov(Â, B̂) represent the statistical errors (variance
or covariance) of the estimators Â and B̂.

Estimates for C(τ ; β) were computed using either the
pool of uncorrelated trajectories at each replica tempera-
ture, or for a superset of temperatures (including the simula-
tion temperatures) by dynamical reweighting as described in
Sec. II B. For the former case, statistical error estimates
were computed using sample (co)variances; for the latter
case, statistical errors were computed using covariances ob-
tained using Eqs. (19) and (21). Figure 2 compares correla-
tion functions estimated for a few temperatures using single-
temperature data and multiple-temperature data using dynam-
ical reweighting.

To demonstrate how dynamical reweighting produces a
smooth estimate throughout the temperature range, even at
temperatures not sampled, Figure 3 shows the estimate of
C(τ ; β) for τ = 10 ps. Clearly, the reweighted estimate pro-
duces a smoother, continuous estimate across all tempera-
tures, with a uniformly reduced statistical uncertainty com-
pared to the estimates computed from individual tempera-
tures. While some features in the reweighted estimate are
likely spurious, the 95% confidence interval envelope (shaded
region) still permits a smooth, well-behaved curve within its
boundaries.

Finally, we compare the bias and variance of single-
temperature estimates with the dynamical reweighting
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FIG. 2. Normalized fluctuation autocorrelation functions for indicator func-
tion on αR conformation. In both plots, single-temperature estimates are
shown as points with error bars, and the dynamical reweighting estimate is
shown as a solid line with shaded error interval. Error bars denote 95% con-
fidence intervals (two standard errors).

estimate in a manner independent of the statistical error
estimator. The replica-exchange trajectory was divided into
20 contiguous blocks of equal length, and C(τ ; β) estimated
independently on each block. Using the dynamical reweight-
ing estimate over the entire dataset as a reference, the bias and
variance of the single-temperature and dynamical reweight-
ing estimators were assessed by computing the estimators for
each of 20 consecutive subsets of the simulation, and comput-
ing the mean deviation or standard deviation of the estimates
over the blocks. The bias, which is defined as the expectation
over many independent realizations of the experiment of the
deviation of the estimate from the true value, was estimated
as the sample mean of the block estimates minus the estimate

FIG. 3. Temperature dependence of the normalized fluctuation autocorrela-
tion function C(τ ; β) for τ = 10 ps. Single-temperature estimates are shown
as points with error bars denoting a 95% confidence interval; the dynamical
reweighting estimate is shown as a solid line with shaded confidence interval.

computed using all data; the variance, which represents
the expected squared-deviation of the estimator from its
expectation over many independent realizations of the exper-
iment, was estimated by the sample variance over the blocks.
Figure 4 depicts the estimated bias and variance in Ĉ(τ ; β)
for all times τ ∈ [0, 10] and all simulation temperatures
βk . The advantage of dynamical reweighting is clear. Bias
is minimized by virtue of the fact that contributions to the
dynamical property can occur at any temperature and are in-
corporated with their appropriate weight, rather than relying
upon small-number statistics where the events of interest may
occur few or no times within the simulation at the temper-
ature of interest. Similarly, inclusion of data from multiple
temperatures reduces the overall variance component of
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FIG. 4. Bias and variance of single-temperature estimate versus dynamical reweighting estimates. The estimated bias (left) and variance (right) of the estimated
normalized fluctuation correlation function estimated by dividing the simulation into 20 blocks of equal length. The left half of each color block shows the
statistic for single-temperature estimates, while the right half shows the statistic for dynamical reweighting estimates employing data from all temperatures.
Each horizontal row represents the estimated bias or variance for the correlation function C(τ ; β) over τ ∈ [0, 10] ps for one temperature; temperatures are
ordered from lowest (top) to highest (bottom).
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FIG. 5. Logarithmic total weight contributed from all trajectories at each
sampled temperature to various temperatures. The base-10 logarithm of the
sum of weights wn(β) from all trajectories sampled from each contributing
temperature is shown for each target (reweighted) temperature correspond-
ing to inverse temperature β. The contribution from the target temperature is
normalized in this plot to have a total weight of unity (zero logarithm).

the statistical error, resulting in improved estimates at all
temperatures.

Figure 5 shows the total trajectory weight contributing
from each sampled temperature as a function of target temper-
ature β, where the per-trajectory weight wn(β) from Eq. (14)
is summed over all trajectories from the contributing sampled
temperature and plotted on a base-10 logarithmic scale, nor-
malized so that the target temperature has a total contributing
weight of unity (zero on log scale). After the target tempera-
ture, neighboring temperatures contribute the most trajectory
weight to averages at the target temperature, with the contri-
bution rapidly falling off for more distant temperatures. Note
that this does not mean that distant temperatures are unhelp-
ful, as they may still serve to reduce the effective replica cor-
relation time if correlation times at high temperatures are es-
pecially short.8

Normalizing the total trajectory weight contributed from
each temperature to the weight contributed from the target
temperature allows us to roughly estimate how much useful
data in total we are extracting by making use of reweight-
ing in this system by summing this total relative weight over
all temperatures. This quantity, averaged over all target tem-
peratures, is ∼ 2.4, suggesting that approximately 2.4 times
as much data is provided in this system by making use of
reweighting instead of just the data collected from the repli-
cas that visit the target temperature. Increasing the quan-
tity of data collected by a factor of 2.4 should decrease
the standard error by ∼ √

2.4 ≈ 1.6, an amount consistent
with the difference in confidence interval widths depicted in
Figure 2.

IV. DISCUSSION

The dynamical reweighting scheme outlined here
provides a convenient way to estimate equilibrium dynam-

ical properties from simulations at multiple temperatures,
complementing reweighting schemes for estimating static ex-
pectations [such as the related multistate Bennett acceptance
ratio, or MBAR, method,17 or the histogram-based WHAM
(Refs. 13, 15, and 18)]. Dynamical reweighting provides a
way to make use of all the data from a parallel or simu-
lated tempering simulation, provided the dynamical model
employed is amenable to reweighting by the unnormalized
density ratios q[X |β]/q[X |β ′] being both finite and nonzero.
This condition is fulfilled for the common models of dy-
namics in the canonical ensemble—canonical distribution
over Hamiltonian trajectories; Andersen, Langevin, and over-
damped Langevin/Brownian stochastic dynamics, reviewed
in Sec. II C—but not Nosé-Hoover or Berendsen.

While not all properties will benefit greatly from the use
of reweighting, some dynamical expectations—particularly
those that involve large contributions from trajectories that
are rare at the temperature of interest, but more plentiful at
elevated (or reduced) temperatures—will especially benefit in
terms of reduced variance. For example, though not shown
here, transitions along the φ torsion for terminally-blocked
alanine involve conformational states with high free energy
which may not even be sampled at some temperatures in sim-
ulated or parallel tempering simulations of typical length, ne-
cessitating the use of reweighting to provide an estimate of
rates involving these states (illustrated in detail in a compan-
ion paper).63 Even in the case where little or no temperature-
dependent enhancement of the phenomena is expected, neigh-
boring temperatures from a simulated or parallel tempering
simulation often carry a reasonably large amount of informa-
tion about the temperature of interest, and their inclusion will
further reduce the expected statistical error in the estimated
expectation if the data is available anyway.

The variety of models of dynamics within the canon-
ical ensemble presented in Sec. II C, all of which lead to
the same static equilibrium distribution of configurations,
naturally leads one to ask which model is most appropri-
ate. In some regimes—such as the low-friction regime of
Langevin dynamics and the canonical distribution of Hamil-
tonian trajectories containing large baths of explicit solvent—
these models may give nearly identical expectations, while
in other regimes—those where the Andersen collision rate ν

or Langevin collision rate γ is large—the expectations for dy-
namical properties may differ considerably. Which situation is
more physically reasonable will undoubtedly depend on both
the system under study and the properties of interest, but a
detailed investigation of this is beyond the scope of this work.

The efficiency of reweighting—that is, the degree to
which temperatures β ′ �= β contribute to expectations at
temperature β—will depend both on the size of the system
and, for stochastic dynamics, the trajectory length. To under-
stand this behavior, consider a standard parallel tempering
simulation using the conventional exchange criteria based
on potential energies7. In order for the ensembles at two
temperatures to have good potential energy overlap, and
hence good exchange acceptance rates, their temperatures
should be spaced roughly the half-width of the potential
energy distribution, δU ∼ 〈(U − 〈U 〉)2〉1/2 = T

√
kBCv ′ . The

heat capacity for the potential energy, Cv ≡ (∂/∂T ) 〈U 〉T ,
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tells us that the temperature shift δT corresponding to this
energy shift δU is roughly T

√
kB/Cv .

Analogously, good path Hamiltonian overlap [and good
exchange acceptance rates using the modified acceptance cri-
terion in Eq. (47)] can be assured with a temperature spacing
of roughly T

√
kB/Cv , where Cv is a generalized form of the

heat capacity for path Hamiltonians H[X ]:

Cv ≡ ∂ 〈H〉T

∂T
= kBβ2 〈(H − 〈H〉)2〉β (56)

For the canonical distribution of Hamiltonian trajectories,
this generalized path heat capacity Cv is identical to the heat
capacity for the total energy, (∂/∂T ) 〈H〉T = Cv + NdkB/2,
which grows linearly with the number of degrees of freedom
Nd .

For Andersen, Langevin, and Brownian dynamics, the
generalized path heat capacity Cv differs from the thermo-
dynamic heat capacity Cv . Because the variance of a sum of
uncorrelated random variables is simply the sum of the vari-
ances, we can compute this difference analytically. For Ander-
sen dynamics, Cv = Cv + NckB/2, where Nc is the number of
collisions that occur during realization of the trajectory, where
roughly Nc ∼ Nd Ntν, with ν is the per-step collision proba-
bility and Nt is the number of integration timesteps in the tra-
jectory. For Langevin dynamics, Cv = Cv + Nd (Nt + 1)kB/2,
and for Brownian dynamics, Cv = Cv + Nd Nt kB/2 (where
Cv here denotes the heat capacity for the potential energy con-
tribution only for Brownian dynamics). For constant, nonzero
collision rates, the generalized heat capacity is therefore ex-
tensive in Nd Nt ; as the systems grow larger or the trajecto-
ries grow longer, the efficiency of reweighting is therefore ex-
pected to diminish.

The form of the path Hamiltonians suggests a further
analogy with the equilibrium statistical mechanics governing
single configurations. For Hamiltonian dynamics, a path is
uniquely identified by its initial phase space point. For the
stochastic forms of dynamics (Andersen, Langevin, Brown-
ian), a trajectory given an initial phase space point can be
thought of as an ideal polymer consisting of Nt “monomers”
that are replicates of the Np-particle system, one replicate per
trajectory timeslice, where the only interactions are “bonds”
between corresponding atoms in sequential timeslices. The
interaction energies for these “bonds” are harmonic in the
noise variables ξt i corresponding to the atomic displacement
between sequential timeslices.

Surprisingly, the path Hamiltonians and generalized path
heat capacities are independent of the choice of collision rate
γi for Langevin and Brownian dynamics, except when γi is
identically zero, at which point the particles with zero asso-
ciated collision rates no longer contribute to the path Hamil-
tonian or heat capacity since they evolve by deterministic dy-
namics. This is analogous to the fact that the heat capacity
of an ideal polymer is independent of the spring constant and
particle masses. Only in the case of Andersen dynamics will
the collision rate ν modulate the heat capacity through deter-
mining the number of particle collisions observed in a trajec-
tory of fixed length Nt .

It should be noted that there is often additional informa-
tion available that could be incorporated into the reweighting

scheme through the use of control variates.26 For example, for
the model of Hamiltonian trajectories with randomized mo-
menta, the normalization constants Ẑi that are inferred dur-
ing the procedure actually contain the temperature-dependent
momentum partition function, which can be computed analyt-
ically. Incorporation of this as a constraint, or other integrals
of the dynamics that are known exactly, can further reduce
the variance in the estimated properties of interest, though the
degree to which this may occur will be problem-dependent.
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APPENDIX A: ADDITIONAL SIMULATION DETAILS
FOR ALANINE DIPEPTIDE

Using the LEAP program from the AMBERTOOLS 1.2
molecular mechanics package,64 a terminally-blocked ala-
nine peptide (sequence ACE-ALA-NME, see Figure 1) was
generated in the extended conformation, with peptide force
field parameters taken from the AMBER PARM96 parameter
set.65 The system was subsequently solvated with 749 TIP3P
water molecules66 in a cubic simulation box with dimensions
chosen to ensure all box boundaries were at least 9 Å from
any atom of the extended peptide. The system was subjected
to energy minimization using L-BFGS67, 68 to reduce the
root-mean-square force to less than 1 kJ/mol/nm, and then
equilibrated for 1 ns with a leapfrog Langevin integrator41 at
a control temperature of 300 K, using a 2 fs timestep and col-
lision rate of 5/ps. During equilibration, an isotropic Monte
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Carlo barostat with a control pressure of 1 atm was applied,
with volume moves attempted every 25 timesteps, and the
range of volume change proposals automatically adjusted to
give an approximate acceptance probability of approximately
50%.69 All bonds to hydrogen, and hydrogen-hydrogen dis-
tances in waters, were constrained by the CCMA (Ref. 70) and
SETTLE (Ref. 71) algorithms, as appropriate. The particle-
mesh Ewald (PME) method72 was used to treat electrostatics,
using a real-space cutoff of 9 Å. PME parameters were
automatically selected by an algorithm that attempts to find
the most efficient set of parameters for which an error bound
is less than a specified error tolerance,69 which was set to the
default of 5 · 10−4. Lennard-Jones interactions were truncated
at 9 Å without switching, and a homogeneous analytical long-
range dispersion correction73 was employed to compensate
for dispersion interactions outside the cutoff. The resulting
system had a box volume of 23 073.7 Å3, and the box volume
was fixed in the subsequent parallel tempering simulation.

A custom Python code making use of the GPU-
accelerated OPENMM package74–76 and the PYOPENMM
Python wrapper77 was used to conduct the simulations.
Because OPENMM lacks a velocity Verlet integrator, a hybrid
velocity Verlet78/leapfrog79, 80 integration scheme was used
for integration of the equations of motion, implemented as
follows. At the beginning of the dynamical propagation phase
of parallel tempering iteration, on-step velocities were first
generated from the Maxwell-Boltzmann distribution at the
current replica temperature. Components of the velocity along
constrained bonds (all bonds to hydrogen and the hydrogen-
hydrogen bonds of TIP3P water) were removed using the
RATTLE algorithm40 with 10−16 relative tolerance, and a 1 fs
“half-kick backwards” applied to the modified velocities us-
ing the force evaluated at the current positions. The OPENMM
Verlet integrator was then used to evolve the positions by
0.5 ps (250 steps with a 2 fs timestep) on the GPU, and a
1 fs “half-kick forwards” was applied to the velocities to
synchronize them with the positions after again applying the
RATTLE algorithm. During leapfrog integration, the CCMA

and SETTLE algorithms were used to constrain bonds, as
appropriate.
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