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A common theme of studies using molecular simulation is a necessary compromise between compu-
tational efficiency and resolution of the forcefield that is used. Significant efforts have been directed
at combining multiple levels of granularity within a single simulation in order to maintain the ef-
ficiency of coarse-grained models, while using finer resolution in regions where such details are
expected to play an important role. A specific example of this paradigm is the development of hybrid
solvent models, which explicitly sample the solvent degrees of freedom within a specified domain
while utilizing a continuum description elsewhere. Unfortunately, these models are complicated by
the presence of structural artifacts at or near the explicit/implicit boundary. The presence of these
artifacts significantly complicates the use of such models, both undermining the accuracy obtained
and necessitating the parameterization of effective potentials to counteract the artificial interactions.
In this work, we introduce a novel hybrid solvent model that employs a smoothly decoupled particle
interface (SDPI), a switching region that gradually transitions from fully interacting particles to a
continuum solvent. The resulting SDPI model allows for the use of an implicit solvent model based
on a simple theory that needs to only reproduce the behavior of bulk solvent rather than the more
complex features of local interactions. In this study, the SDPI model is tested on spherical hybrid do-
mains using a coarse-grained representation of water that includes only Lennard-Jones interactions.
The results demonstrate that this model is capable of reproducing solvent configurations absent of
boundary artifacts, as if they were taken from full explicit simulations. © 2011 American Institute of
Physics. [doi:10.1063/1.3595262]

I. INTRODUCTION

The desire to obtain converged sampling within a
biomolecular simulation often demands a compromise be-
tween computational efficiency and resolution of the applied
forcefield. Solutions to quantum mechanics (QM) calcula-
tions are only possible for relatively small collections of
molecules, and simulations using polarizable forcefields1–4

can be intractable for most systems of interest. Current tech-
nology has allowed the use of all-atom molecular mechan-
ics (MM) forcefields with explicit solvent representations
to be used on very large systems and long timescales.5–7

However, forcefields with an even coarser representation of
molecular components have arisen from the desire to model
larger systems than those that are manageable with an all-
atom representation.8–23 Similarly, implicit solvent models
aim to reduce computational demand by replacing the explic-
itly sampled solvent degrees of freedom with an approximate,
continuum description of the bulk solvent potential of mean
force (PMF). Implicit solvent models are commonly used at
all levels of molecular granularity, from QM (Refs. 24–27)
and polarizable methods28–30 to MM forcefields.31–34 Unsur-
prisingly, lower resolution forcefields and solvent models of-
ten incur penalties on accuracy and require the development
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of model parameters that may not be transferable under differ-
ent thermodynamic conditions or chemical environments.35, 36

The development of multiscale methodologies have al-
lowed for a union between the efficiency of coarse-grained
models and the accuracy of more detailed techniques within
a single simulation. Examples of such methods include
QM/MM models27, 37–39 and MM methods that contain vary-
ing levels of all-atom and combined-atom forcefields across
the simulation domain.40–43 Similarly, hybrid solvent models
have been developed that solvate a region of interest with ex-
plicit molecules and use an implicit solvent model elsewhere.
Such hybrid models capture the salient features of both tech-
niques: the explicit solvent molecules near a solute interface
are capable of sampling relevant local interactions, while the
implicit solvent model is used to reproduce the effects of bulk
solvent. This hybrid solvation both reduces computational ex-
pense and removes the artifacts that may arise from the use of
periodic simulations.44 A number of such hybrid models have
been previously developed,23, 24, 45–63 many of which take ad-
vantage of particularly efficient implicit solvent models for
the simple geometries of the defined explicit regions.45, 46, 54, 55

Hybrid solvent models are subject to artifacts due to the
inability of simple continuum methods to accurately repro-
duce the bulk solvent PMF near the explicit/implicit bound-
ary. Similar problems exist in other methods that couple
varying levels of atomic detail, and the boundaries for any
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such model must be handled carefully in order to ensure
appropriate chemical behavior in transition regions.38–40, 42

The boundary artifacts present in hybrid solvent models
require the use of large enough explicit regions so that the
thermodynamic properties of the solute remain hopefully un-
polluted. Even with large explicit regions, the presence of un-
realistic solvent configurations is troubling, especially under
consideration of the significance of long-ranged solvent me-
diation that occurs in confined systems.64–66

Significant efforts have been directed at alleviating this
problem with effective potentials45, 51, 53, 57, 59, 61–63 that repro-
duce forces from the bulk region as faithfully as possible.
While these methods have demonstrated considerable suc-
cess, the full removal of boundary artifacts is not expected
unless the solvent PMF is accurate within a very small toler-
ance. Such a task has thus far only been accomplished using
methods unsuitable for molecular dynamics simulations, such
as integral equation or other calculations that generate the sol-
vent response using a self-consistent approach.67–72 In this
work, we introduce a model that attempts to remove artificial
boundary interactions using a smoothly decoupled particle in-
terface (SDPI), a switching region over which the explicit par-
ticles are slowly annihilated and the implicit representation is
“grown” in. This method slowly removes the local structure of
the solvent. As a result, the requirement of the implicit solvent
model is simplified from a many-body function that estimates
the more complex features of specific interactions to a single-
body term that reproduces bulk behavior according to an el-
ementary theory. We test this method on uncharged systems
using the MARTINI coarse-grained forcefield,22, 23 for which
water is modeled as a monatomic Lennard-Jones (LJ) fluid, in
spherical hybrid models. The result is an explicit region void
of boundary artifacts that effectively samples solvent config-
urations as if they were taken from an infinite bath.

II. TRADITIONAL HYBRID MODEL

We will refer to hybrid models that instantaneously
switch from explicit to implicit solvent as “traditional” hy-
brid models. In Sec. III, we introduce the details of the SDPI
formalism.

A. Supersystem partition function

Consider a solute immersed in bulk solvent. The partition
function of this system is

Z = 1

�3
U �3N N !

∫
�

d (XU )
∫

d(x1), . . . , d (xN ) exp [−βU ] ,

(1)
where U is the total potential energy of the system, β is the
inverse thermal energy 1/(kB T ), �U and �N are the thermal
de Broglie wavelengths of solute and N solvent molecules,
and (XU , x1, . . . , xN ) represent the degrees of freedom of the
solute and N (identical) solvent molecules.

If we partition our domain � into arbitrary interior and
exterior portions (� = �i + �o), we can rewrite this integral
in terms of the number of molecules confined to the inner
portion. Following the notation of previous developments,49

we define

δnn′(XN ) =
{

1, if n = n′(XN )
0, otherwise

, (2)

where (XN ) = (x1, . . . , xN ) and

n′(XN ) =
N∑

i=1

C (xi ) , (3)

C (xi ) =
{

0, if xi ∈ �o

1, if xi ∈ �i
. (4)

The function n′(XN ) thus returns the number of solvent
molecules within the inner domain. We can now rewrite the
partition function as

Z = 1

�3
U �3N

∑
n

1

N !

×
∫

d (XU )
∫

d (x1) · · · d (xN ) δnn′(XN )exp [−βU ] . (5)

Noting that the use of Eq. (2) introduces restricted integral
domains in Eq. (5),

Z =
∑

n

1

�3
U �3N

∫
d (XU )

∫
�i

1

n!
d (Xn)

×
∫

�o

1

(N − n)!
d (YN−n) exp [−βU ] , (6)

where the vectors Xn and YN−n correspond to the configura-
tions of molecules located in the inner (�i) and outer (�o) re-
gions, respectively, and the numbered subscripts indicate the
number of solvent molecules restricted to these regions.

B. Subsystem configurational probability

We are in a position to write the joint probability of find-
ing n solvent particles within the inner, or explicit, domain
and the configuration of interior coordinates (XU , Xn) as

P (XU , Xn, n) = [
Z�3

U �3N n! (N − n)!
]−1

×
∫

�o

d (YN−n) exp[−βU (XU , Xn, YN−n)].

(7)

It is useful to decompose the total potential into inner-
inner (Uii (XU , Xn)), inner-outer (Uio (XU , Xn, YN−n)), and
outer-outer (Uoo (YN−n)) components and then define the
PMF W as73

exp [−βW (XU , Xn)] =
∫
�o

d (YN−n) exp
[−βU (XU , Xn, YN−n)

]
∫
�

d (YN−n) exp
[−βU (YN−n)

]
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= exp [−βUii (XU , Xn)]
∫
�o

d (YN−n) exp
[−β (Uio (XU , Xn, YN−n) + Uoo (YN−n))

]
∫
�

d (YN−n) exp
[−βU (YN−n)

]
= exp [−β (Uii (XU , Xn) + �W (XU , Xn))] , (8)

where �W is the bulk solvent PMF. Inserting this into
Eq. (7):

P (XU , Xn, n) = exp [−β (Uii (XU , Xn) + �W (XU , Xn))]

Z�3
U �3N n! (N − n)!

×
∫

�

d(YN−n)exp[−βU (YN−n)].

(9)

Noting that, in the limit of an infinitely large domain, we can
take

lim
N→∞, N

V →ρ

1

�3N−3n (N − n)!∫
�

d (YN−n) × exp[−βU (YN−n)] ∝ exp [−β(N − n)μ] ,

(10)

where V is the volume of the domain, ρ is the bulk den-
sity, and μ is the chemical potential of one of the solvent
molecules. We now have

P (XU , Xn, n) ∝ 1

�3
U �3nn!

exp[−β(Uii(XU , Xn)

+�W (XU , Xn) + (N − n)μ)]. (11)

C. Transition probabilities

Define the ratio of equilibrium probability densities for
state a, with na solvent molecules, and state b, with nb solvent
molecules, as

P
(
XUb , Xnb , nb

)
P

(
XUa , Xna , na

) = na!�3na

nb!�3nb
exp[−β(W (XUb , Xnb )

−W (XUa , Xna ) − (nb − na)μ)]. (12)

We now wish to substitute in the excess chemical potential μ′,
noting that

μ = μ0 + μ′ (13)

and

μ0 = 1

β
ln[ρ�3] (14)

is the chemical potential of a monatomic ideal gas that has the
same density and particle mass of our solvent. Making these
substitutions,

P
(
XUb , Xnb , nb

)
P

(
XUa , Xna , na

) = na!

nb!
ρnb−na exp[−β(W (XUb , Xnb )

−W (XUa , Xna ) − (nb − na)μ′)]. (15)

Equation (15) represents the relative probabilities for two
states with a different solute configuration and a differ-
ent number of interior solvent molecules within our hybrid
simulation.

1. Insertion/deletion attempts

We wish to perform grand canonical Monte Carlo
(GCMC) insertion and deletion moves over some subdomain
�id ⊆ �i. Since the entire domain �i is not subject to GCMC
control, Eq. (15) must be modified for the criteria govern-
ing insertion or deletion attempts. If we label the number
of molecules in state a within �id as nid

a , the configurational
probability distribution requires the additional counting factor

na !
nid

a !(na−nid
a )!

. For a single insertion or deletion attempt, we note

that nb − nid
b = na − nid

a and Eq. (15) becomes

P
(
XUb , Xnb , nb

)
P

(
XUa , Xna , na

) = nid
a !

nid
b !

ρnb−na exp[−β(W (XUb , Xnb )

−W (XUa , Xna ) − (nb − na)μ′)]. (16)

Assuming that we do not attempt to insert or delete more
than one molecule at a time and that the probabilities of at-
tempting an insertion or deletion are both equal to pid, the
total selection probability for inserting or deleting a particular
molecule is

Sins = pid

(nid + 1)V�id

,

Sdel = pid

nid
, (17)

where V�id is the volume of �id. The factor of
(
nid + 1

)
in the

denominator of the insertion selection is consistent with the
presented formulation and corresponds to giving an inserted
molecule a random label.

The detailed balance condition imposes that, for a transi-
tion between initial i and final f states, the forward and reverse
acceptance probabilities (A) must satisfy

P(Xi )S
(
Xi → X f

)
A

(
Xi → X f

)
= P(X f )S(X f → Xi )A(X f → Xi ). (18)

The Metropolis criterion satisfies this requirement:

A(Xi → X f ) = min

(
1,

S(X f → Xi )

S(Xi → X f )

P(X f )

P(Xi )

)
. (19)

Combining equations (16), (17), and (18) into the Metropo-
lis algorithm gives the following acceptance probabilities for
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insertion and deletion attempts:

A
[
(XU , Xn, n) → (XU , Xn+1, n + 1)

]
= min

(
1,

〈n〉exp[−β(W (XU , Xn+1)−W (XU , Xn)−μ′)]
n + 1

)
,

A
[
(XU , Xn, n) → (XU , Xn−1, n − 1)

]
= min

(
1,

nexp[−β(W (XU , Xn−1)−W (XU , Xn)+μ′)]
〈n〉

)
,

(20)

where 〈n〉 = ρV�id . We see that these acceptance probabilities
reduce to the form familiar to GCMC movesets.74–79

D. Implicit solvent model

The computational benefit of a hybrid solvent model
arises from using simple, inexpensive, implicit solvent
models to reproduce the bulk solvent PMF defined by Eq.
(8). For this work, which includes no charged interactions,
we model the solvent PMF as a combination of repulsive and
attractive components, �W (XU , Xn) = �w (rep) (XU , Xn)
+ �w (att) (XU , Xn). This separation closely mirrors the
Weeks-Chandler-Andersen (WCA) decomposition of the LJ
interaction, given by

U LJ
(
ri j

) = 4εi j

[
σ 12

i j

r12
i j

− σ 6
i j

r6
i j

]
, (21)

where ri j is the distance between atoms i and j, εi j gives the
minimum value of this energy, and 21/6σi j is the distance
at which that minimum occurs. The WCA decomposition80

separates this potential, U LJ
(
ri j

) = u(rep)
(
ri j

) + u(att)
(
ri j

)
,

where the components are defined as follows:

u(rep)(ri j )(xi , x j ) =
{

U (LJ)(ri j ) + εi j , ri j < 21/6σi j

0, ri j ≥ 21/6σi j
, (22)

u(att)(ri j ) =
{−εi j , ri j < 21/6σi j

U (LJ)(ri j ), ri j ≥ 21/6σi j
. (23)

The attractive PMF contribution is modeled as a sum of
atomic components, each integrating the attractive component
of the WCA potential over the system domain:

�w (att)(XU , Xn) = ρ
∑

i

∫
�

u(att) (‖xi − y‖) hi (xi , y) dy,

(24)
where y ∈ �, ρ is the average solvent particle density,
hi (xi , y) is the reference distribution used to describe the
mean normalized solvent density surrounding atom i at po-
sition xi , and the summation is performed over all atoms.

An appropriate approximation for the distribution func-
tion would be a set of overlapping Heaviside functions H for
the explicit region (which is centered at the origin) and each

particle of the system:

hi (xi , y) = h (Xu, Xn, y) = H (‖y‖ − Ro − σe)

×
∏

i

H (‖y − xi‖ − σi ) , (25)

H (x) =
{

0, x < 0
1, x ≥ 0

, (26)

where σi is the radius applied to particle i and is calculated
as σi = 1

2 21/6σi i + σs , with σs representing a parameterized
probe radius. Ro corresponds to the radius of the spherical
explicit region. The parameter σe is added to augment this
surface definition and adds significant accuracy to this sim-
ple approximation of the distribution function. This distribu-
tion function excludes bulk solvent density from the inner do-
main and regions of overlap between explicit particles and the
outer domain. Unfortunately, the use of Eq. (25) necessitates
an expensive numerical calculation for the evaluation of the
presented implicit solvent model. For this reason, such a dis-
tribution function is used for analysis of the implicit solvent
model but is not implemented for hybrid simulations.

Instead, we will approximate the distribution function for
atom i with a simple two body overlap between this atom and
the explicit domain:

hi (xi , y) = H (‖y‖ − Ro − σe) H (‖y − xi‖ − σi ) . (27)

This representation of the distribution function allows for a
decomposition of the overall PMF into atomic components
that can be calculated analytically.

The repulsive component of the implicit solvent model
is proportional to the volume of the explicitly defined region,
�w (rep) (XU , Xn) = pV (XU , Xn) , where p is a parameteriz-
able constant used to represent the bulk solvent pressure and
V is the system volume. Though the choice of using volume
over surface-area for this PMF component may seem curi-
ous, such volume terms were present in early developments
of scaled particle theory.81 The volume dependence of cavity
formation has indeed been demonstrated for sub-nanometer
length scales,82–87 expected and shown88 to be the relevant
length scale for atomic solvation forces. A surface area term
is still expected to contribute to the absolute cost of cavity for-
mation for the explicit region, but is omitted from our calcula-
tions since there are no large-scale geometry changes within
the simulations. The volume of our system is calculated as

V (XU , Xn) =
∫

�

(
1 −

∑
i

hi (xi , y)

)
dy. (28)

This is not equivalent to the volume of the inner domain �i

and approximates the effect of explicit particles that overlap
with the outer domain.

It is important to note that when used in these hybrid
solvent models, the above implicit solvent PMF requires no
solute parameterization as long as the solute atoms do not
overlap with the boundary, and thus requires a total of three
parameters only. This significantly simplifies the parameteri-
zation procedure when compared to implicit solvent models
that often require new radii or other parameters for each atom
present within the simulation.31, 32, 34
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E. Mean force analysis

The implicit solvent model will be compared to explicit
solvent results using mean-force analysis on a system of bulk

solvent. Following Eq. (8), we can define the mean force
for atom i given the static configuration of explicit solvent
molecules (Xn) as73, 88–90

Fi (Xn) = −δ�W (Xn)

δxi

=
∫
�o

d (YN−n)
(
− δUio(Xn ,YN−n )

δxi

)
exp

[−β (Uio (Xn, YN−n) + Uoo (YN−n))
]

∫
�o

d (YN−n) exp
[−β (Uio (Xn, YN−n) + Uoo (YN−n))

]
= −

〈
δUio (Xn, YN−n)

δxi

〉
YN−n

, (29)

where 〈· · · 〉YN−n
indicates an ensemble average over YN−n ,

the configurations of solvent in the outer region. This mean
force can be calculated from explicit solvent simulations by
averaging the force on atom i from solvent molecules in the
exterior domain. This quantity is then compared to the forces
obtained with the implicit solvent model using the full distri-
bution function (Eq. (25)).

When using the approximate, two-body distribution func-
tion given in Eq. (27), we are assuming that the mean forces
on atom i are independent of all other explicit particles in the
inner domain. Therefore, it is useful to define the analogous
force from the full system as

Fi (xi ) = −
〈
δUio (Xn, YN−n)

δxi

〉
x j �=i ,YN−n

= 〈Fi (Xn)〉x j �=i
,

(30)
where, in addition to all outer solvent molecules, we are now
also averaging over all molecules xj�=i in the inner region.
Note that this corresponds to simplifying the total PMF to
a single-body term, a common approximation for simple im-
plicit solvent models.51, 53, 62, 63 For this study on spherical sys-
tems, these forces must be spherically symmetric. Equation
(30) then calculates a radial mean force that is used to pro-
duce the optimal parameter set for the implicit solvent model.

III. THE SMOOTHLY DECOUPLED PARTICLE
INTERFACE

A. Addition of an intermediate domain

Equation (11) presents a target configurational probabil-
ity density from a hybrid simulation and exactly reproduces
any thermodynamic property that is a function of (XU , Xn),
as long as the function �W (XU , Xn) is accurately calcu-
lated. In practice, however, developing accurate approxima-
tions to �W (XU , Xn) in the form of implicit solvent models
is a formidable challenge when attempting to reduce compu-
tational expense. For the SDPI model, we will derive an al-
ternate formalism that provides the same theoretical result as
Eq. (11) but in practice provides a much more straightforward
and accurate approximation to the solvent PMF.

Consider partitioning the total system domain into three
regions (� = �i + �s + �o). The interior and exterior re-
gions (�i and �o, respectively) are now separated by an in-
termediate, or switching, region �s and are not in contact.
The vectors Xn , Ys

m , Yo
N−n−m correspond to the configura-

tions of the subscripted molecules within the interior, inter-
mediate, and exterior regions, respectively. Following the rea-
soning outlined above, Eq. (6) can be extended to include this
additional subregion:

Z = 1

�3
U �3N

∑
n

1

n!

∫
d(XU )

∫
�i

d(Xn)
∑

m

1

m! (N − n − m)!

×
∫

�s

d
(
Ys

m

) ∫
�o

d
(
Yo

N−n

)
exp [−βU ]. (31)

Using the development of Sec. II B, we can integrate over
the coordinates of the outermost region to obtain a joint proba-
bility of finding n solvent molecules within the interior region,
m molecules within the intermediate region, and the configu-
ration

(
XU , Xn, Ys

m

)
:

P
(
XU ,Xn, n,Ys

m, m
)∝ 1

n!m!�3
U �3(n+m)

exp
[−β

(
Uii

(
XU ,Xn

)
+Uis

(
XU , Xn, Ys

m

) + Uss
(
Ys

m

))]
×exp

[ − β
(
�W

(
XU , Xn, Ys

m

)
+ (N − n − m) μ

)]
, (32)

where Uis is the interaction potential between particles in �i

and those in �s, etc.
We will now introduce an unphysical potential Uλ for all

interactions with the m molecules in the intermediate region.
The nature of this potential will be described in more detail
below. The configurational probability of this new system is

P
(
XU ,Xn, n,Ys

m, m
) ∝ 1

n!m!�3
U �3(n+m)

exp
[ − β

(
Uii(XU ,Xn)

+Uλ
is

(
XU , Xn, Ys

m

) + Uλ
ss

(
Ys

m

))]
×exp

[ − β
(
�W λ

(
XU , Xn, Ys

m

)
+ (N − n − m) μ

)]
. (33)
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For nontrivial cases, the introduction of this non-physical
potential will alter the configurations of molecules within the
intermediate region so that they no longer match the configu-
rations expected from the original supersystem. However, we
note that if we can ensure that

1

�3m

∫
�s

dYs
mexp

[− β
(
Uλ

is

(
XU , Xn, Ys

m

) + Uλ
ss

(
Ys

m

)
+ �W λ

(
XU , Xn, Ys

m

) )]
= exp

[ − β�W
(
XU , Xn

)]
, (34)

where the right side represents the solvent PMF developed in
Sec. II B, then the configurations sampled from the innermost
region will have the same equilibrium probability as those
sampled from the original supersystem. This equation demon-
strates that the overall goal of the SDPI model is to reproduce
the bulk solvent PMF using an implicit solvent model in con-
junction with sampling over the degrees of freedom located
within the switching region.

It is straightforward to extend the results of Sec. II to in-
clude this intermediate region and potential. Most notably,
the acceptance criteria for insertion and deletion attempts
(Eq. (20)) become

A
[(

XU , Xna , na, Ys
ma

, ma
) → (

XU , Xnb , nb, Ys
mb

, mb
)]

= min

(
1,

〈n〉exp
[−β

(
W λ

(
XU , Xnb , Ys

mb

) − W λ
(
XU , Xna , Ys

ma

) − μ′)]
nid

b + m id
b

)
,

A
[(

XU , Xnb , nb, Ys
mb

, mb
) → (

XU , Xna , na, Ys
ma

, ma
)]

= min

(
1,

(
nid

b + m id
b

)
exp

[−β
(
W λ

(
XU , Xna , Ys

ma

) − W λ
(
XU , Xnb , Ys

mb

) + μ′)]
〈n〉

)
, (35)

where the id superscript once again notates molecules located
within �id ⊆ (�i ∪ �s), the subdomain subject to GCMC
control. Here, 〈n〉 = ρV�id and it is assumed that nid

b + m id
b

= nid
a + m id

a + 1. In the limit of instantaneous switching and
an infinitely thin intermediate region �s, these results re-
duce to those of the traditional hybrid model presented in
Sec. II.

B. Introduction of a decoupling potential

The purpose of an intermediate region that interacts with
an unphysical potential is to smoothly decouple the particles
between the explicit and implicit regions. For the spherical
systems of this study, we define the decoupling parameter as
a simple polynomial:

λ (r ) =

⎧⎪⎪⎨
⎪⎪⎩

1, r ≤ Ri

1 + 2 (r − Ri )
3

(Ro − Ri )
3 − 3 (r − Ri )

2

(Ro − Ri )
2 , Ri < r < Ro

0, r ≥ Ro

,

(36)

where the intermediate domain �s corresponds to the spher-
ical shell bound by the radii Ri and Ro. This parameter
smoothly transitions particles between the fully interacting
(λ = 1) and the fully decoupled (λ = 0) states, as demon-
strated in Fig. 1. Figure 2 illustrates the spatial arrangement of
molecules within the separate regions of both the traditional
and SDPI hybrid models.

A SDPI simulation will contain explicit particles from the
innermost and intermediate domains. The total energy of this

system is

W λ
(
XU , Xn, Ys

ns

) =
∑

i

Wi (xi ) =
∑

i

[
λ (‖xi‖) �wi (xi )

+ (1 − λ (‖xi‖)) Ki + G (xi )

+1

2

∑
j �=i

Uλ
(
xi , x j

)]
, (37)

FIG. 1. Behavior of the coupling parameter for a SDPI model in which Ri

= 1.0 nm and Ro = 1.5 nm. Equation (38) utilizes this parameter to deter-
mine the extent to which a particle at a given radial position interacts with
the rest of the system.
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Ro

(a)

Ri

Ro

(b)

FIG. 2. Composition of spherical hybrid models (Ro = 2.5 nm) centered on
a cholesterol molecule (yellow) and containing MARTINI CG water parti-
cles. (a) Traditional hybrid model. All solvent molecules within Ro are ex-
plicit. Contributions to the PMF from the region outside of Ro are approxi-
mated using implicit solvent methods. (b) SDPI model. The innermost region
(�i) contains explicit particles and is bound by Ri (1.5 nm for this example).
The exterior region (�o, outside of Ro) is accounted for using implicit solvent
methods. The intermediate, or switching, region (�s) is bound by Ri and Ro.
The particles in this region are colored by the strength of their interactions
with the rest of the system. The particles at Ri are fully interacting (blue) and
become decoupled (white) as they approach Ro.

where, assuming that the center of the spherical domain is
placed at the origin, ‖xi‖ represents the radial position of
atom i. The terms G (xi ) and Ki , described in more detail be-
low, are used to counteract the gradient in chemical potential
experienced by particles in the switching region. The implicit
solvent component of the total potential, �W , is our approxi-
mation to the bulk solvent PMF and, for this study, is decom-
posable into atomic components �wi . Since the solvent used
here interacts only via the LJ potential, we decouple this in-
teraction in a manner directly analogous to that used in free
energy studies:91

Uλ
(
xi , x j

) = λ (‖xi‖) λ
(∥∥x j

∥∥)
U L J

(
rsc

(
xi , x j

))
, (38)

where U LJ is given by Eq. (21) and

rsc
(
xi , x j

)= (ασ 6
i j

(
1 − λ (‖xi‖) λ

(∥∥x j

∥∥))p + ∥∥xi − x j

∥∥6
)

1
6 .

(39)
The terms α and p modulate the scaling of interactions and
are set to 0.5 and 1, respectively.

Thus, a particle within this system interacts both with
other explicit particles (via Uλ(xi , x j )) and with the bulk re-
gion (via �wi (xi )). As can be seen by the above equation,
a particle close to the outer boundary Ro is essentially non-
interacting. The result of such a decoupling will be a gradient
in chemical potential across the switching region that will lead
to large differences in the solvent density. In order to ensure
Eq. (34), we will attempt to correct for this gradient so that
the solvent will maintain the appropriate bulk density every-
where (note that this is not absolutely necessary and that there
are other methods that could satisfy Eq. (34)). We introduce
the constant factor Ki , corresponding to the implicit solvent
PMF for atom i isolated from any other explicit regions or par-
ticles. This term is approximately equal to the excess chemical
potential of our solvent. Scaling this term by (1 − λ (‖xi‖))
mostly accounts for the drop in chemical potential across the
boundary. However, it is still necessary to introduce the factor

G (xi ) ≈ − (1 − λ (‖xi‖)) Ki −
∫ ‖xi ‖

0
dr

〈
dWi (r )

dr

〉
, (40)

equivalent to the difference between the expected and actual
excess chemical potential associated with inserting a solvent
particle at position xi , since a simple scaling by (1 − λ (‖xi‖))
does not appropriately account for any path-dependent ef-
fects. The addition of these terms ensures that the solvent
maintains bulk density across the domain. Of course, higher-
order structural metrics cannot be expected to be recovered
within the intermediate region.

We approximate G (xi ) using a set of overlapping
Gaussians,62, 63

G(xi ) =
N j∑
j=0

g j (‖xi‖ − r j ) =
∑

j

a j exp

[
− (‖xi‖ − r j )2

2σ 2
g

]
,

(41)
where the Gaussian centers are equally spaced at r j = ( j
+ 0.5)σg and N j = ( Ro

σg
+ 4). The Gaussians centered out-

side of Ro are added to ensure appropriate behavior of G (xi )
and its derivatives at the boundary. The coupling of Eqs. (38)
and (40) warrants a self-consistent procedure for the deter-
mination of the coefficients a j , described in more detail in
Sec. IV.

For the calculation of �wi (xi ), we will use the same im-
plicit solvent model presented in Sec. II D (Eqs. (28) and (24))
with an analogous two-body distribution function:

h(rep)
i (xi , y) = (1 − λ (‖y‖)) H (‖y − xi‖ − σi ) , (42)

where λ (‖y‖) is given by Eq. (36).
Therefore, the SDPI hybrid model assumes that single-

body potentials can effectively correct the chemical potential
gradient and approximate the solvent PMF. This is analogous
to the use of a single-body potential term used in the tradi-
tional hybrid model, and in Sec. V we attempt to demonstrate
that such an assumption is much more valid when coupled
with the intermediate switching domain present in the SDPI
model.

IV. METHODS

A. Simulation methodology

Simulations were conducted using a monatomic water
model from the MARTINI coarse-grained force field22, 23 and
a modified version of GROMACS 3.3.1.92 All simulations
were performed using Langevin dynamics integration with a
10 fs time step (a conservative value for this forcefield22) cou-
pled to a heat bath at 400 K with a friction coefficient of 91
ps−1. Explicit solvent trajectories were maintained at constant
pressure (1 atm) using the Berendsen coupling algorithm.93

Explicit solvent and traditional hybrid models used a LJ po-
tential that is switched at 0.9 nm and cut off at 1.2 nm in con-
junction with a dispersive tail correction.94 Because this work
attempts to demonstrate accuracy and not computational effi-
ciency, the SDPI hybrid models employ a full LJ interaction
that is not cut off. This allowed for a more straightforward im-
plementation of the implicit solvent methods for this model.
More optimized methods are currently being implemented for
future analyses.
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All thermodynamic properties presented in this study
were calculated at a frequency not higher than once every pi-
cosecond, or 100 MD steps. Simulation lengths for all anal-
yses were typically between 10 and 100 ns (106 to 107 MD
steps), depending on the convergence of results, which were
determined using a bootstrapping analysis.

B. Hybrid model parameters

All results were compiled with both the traditional and
SDPI hybrid models at three different sizes (spheres of radii
Ro = 2.5, 2.0, and1.5 nm). The inner radii for these three sys-
tems in the SDPI hybrid simulations were Ri = 1.5, 1.5, and
1.0 nm, respectively. The switching region length of 0.5 nm
for the two smaller hybrid models corresponds to roughly one
solvation layer for this coarse-grained (CG) system.

Traditional hybrid models were simulated using 250 in-
sertion/deletion GCMC attempts for every 100 steps of MD.
Such moves were only attempted over a “buffer region” cov-
ering the outer 0.5 nm of the radial domain. SDPI hybrid mod-
els, which were subject to much higher acceptance ratios, in-
cluded 100 insertion/deletion attempts at an interval of every
100 MD steps over a buffer region covering the outermost
0.3 nm of the radial domain.

C. Mean force analysis

Bulk explicit solvent mean forces were calculated on a
system of pure solvent via Eq. (30) from a full explicit sim-
ulation from which radial forces on all particles within a
2.0 nm spherical domain were averaged at 0.01 nm intervals.
These forces were then compared to the analogous implicit
solvent forces (for a traditional hybrid model) over a range
of values for the parameters defined in Sec. II D. Specifically,
σs ∈ [0.05, 0.39] nm and σe ∈ [0.00, 0.06] nm, tested in inter-
vals of 0.01 nm. The optimal value for pressure (p) for each
parameter set was found via least-squares fitting. The overall
best-fit parameters were chosen based on the minimum value
of mean-squared error,

χ2 = 1

Nr

N∑
i=0

(
Fi (xi ) − d�wi (xi )

dxi

)2

, (43)

where Nr is the number of radial data points (201).
In addition, true mean forces (via Eq. (29)) were cal-

culated by choosing an equilibrium configuration from a
bulk explicit solvent simulation, freezing all water molecules
within a 1.5 nm spherical domain, and averaging forces on
these molecules while sampling over all solvent exterior to
this region. These were then compared to the implicit sol-
vent forces calculated using the traditional hybrid model with
the two-body approximation (Eq. (27)) as well as the many-
body distribution function (Eq. (25)). For the calculations us-
ing the many-body distribution function, �w (att) was calcu-
lated via numerical integration on a three-dimensional grid of
0.0012 nm spacing. The volume derivatives of the sys-
tem were calculated using the Shrake-Rupley quadrature
method95 with 996 grid points on the surface of the sphere. Fi-
nally, the explicit mean forces were compared to mean forces

calculated using the SDPI hybrid model with Ri =1.5 nm and
Ro = 2.5 nm. SDPI mean forces were calculating by freez-
ing all molecules within Ri and averaging forces on these
molecules while sampling over all solvent within the switch-
ing region.

D. Parameterization of G(r)

The effective chemical potential term, G(r ), was found
using an adaptive method implemented in a pure MC simula-
tion for which the insertion/deletion attempts described above
were augmented with translation moves for SDPI models of
unrestrained solvent. The simulations used σg = 0.0125 nm
and began with all Gaussian coefficients ai set to zero. As
the simulation progressed, if the difference between the bulk
density (8.28 particles/nm3 for the CG water studied at these
thermodynamic conditions) and the calculated density within
a radial shell of the hybrid simulation was, within statistical
error, higher or lower than a prescribed tolerance, the coef-
ficients were raised or lowered accordingly. This procedure
is similar to that used in the development of other effective
potentials for hybrid models.62, 63 As the radial bulk density
profile approached the correct value, the tolerance in error
was lowered along with the amount by which the coefficients
were altered. All Gaussian coefficients ai centered at radii
r j < 0.5 nm were held at 0. The optimal G(r) curve was cho-
sen once the maximum relative error in density along the ra-
dial coordinate was less than 1%. To ensure smooth forces, a
double-exponential smoothing method96 was then applied to
G(r). The resulting potentials demonstrated larger deviations
(less than 2% maximum relative error in density) but were
more stable for dynamics simulations.

E. Density profiles and free energy calculations

To determine the extent to which boundary artifacts are
present in the hybrid models studied, density profiles were
calculated for systems containing no solute and in which all
solvent molecules were unrestrained. In the absence of any
boundary artifacts, one would expect to find the average den-
sity to be equivalent to that of the bulk value ρ everywhere
within the spherical domain.

Solvation free energies for water and cholesterol
molecules23 were calculated using the hybrid models and
compared to the analogous values obtained from pure explicit
solvent simulations. All free energies were calculated using
the multistate Bennet acceptance ratio estimator (MBAR).97

The soft-core LJ potential91 was used to decouple the so-
lute from the simulation (analogous to that of Eq. (39)). This
potential was decoupled according to the parameter λMBAR,
which for a particular simulation was held fixed at a pre-
scribed value between 1.0 (fully interacting) and 0.0 (fully
decoupled) at equally spaced intervals of 0.05. Thus, sepa-
rate simulations for 21 values of λMBAR were performed for
each free energy calculation. Intramolecular interactions of
cholesterol were not decoupled. For the SDPI simulations, the
λ(r ) parameter for the molecule being decoupled (given by
Eq. (36)) was simply scaled by λMBAR.
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FIG. 3. Comparison of implicit solvent forces to the analogous radial forces
obtained from explicit solvent simulations. This optimal fit is associated with
an average mean-squared error value of χ2 = 0.30 (kJ/mol/nm)2.

For water free energies calculated using the hybrid mod-
els, the water molecule being annihilated was constrained to
various positions within the hybrid model to test the unifor-
mity of results across the domain. The cholesterol molecule
was restrained to the center of the hybrid regions using a sim-
ple harmonic potential applied to the center of mass with a
spring constant of 75 kJ/mol/nm2.

V. RESULTS AND DISCUSSION

A. Mean force analysis and parameterization

Figure 3 compares the explicit solvent radial mean forces
(given by Eq. (30)) and the best-fit implicit solvent forces.
These forces were calculated on solvent molecules within
�i by averaging the force contribution from all molecules
outside of this region. The parameters for the optimal im-
plicit solvent forces are σe = 0.03nm, σs = 0.22nm, and p
= 86.76 kJ/mol/nm3, giving an average mean-squared error
value of χ2 = 0.30 (kJ/mol/nm)2. These parameters are used
in all hybrid calculations.

Despite the excellent fit, it is important to note that these
are not true mean forces, but the projection of such forces
onto a single-body radial term. True explicit mean force com-
ponents (given by Eq. (29)) and the corresponding optimal
implicit solvent forces are shown in Fig. 4. These optimal im-
plicit solvent forces give an average mean-squared error of
χ2 = 105.25 (kJ/mol/nm)2. Figure 5 compares these same
explicit forces to implicit forces obtained using the full ge-
ometrical distribution function (Eq. (25)) rather than the two-
body approximation, resulting in an average mean-squared er-
ror of χ2 = 120.70 (kJ/mol/nm)2. These results demonstrate
that this implicit solvent model is not capable of reproduc-
ing the true mean forces and that even the use of the full
geometrical distribution function does not provide any ben-
efit. Nevertheless, the extremely good fit shown in Fig. 3 is
noteworthy and demonstrates that any single-body potential
capable of reproducing explicit solvent configurations must

FIG. 4. For a static configuration of solvent particles within the interior do-
main, comparison of implicit solvent forces obtained using the two-body dis-
tribution function to the true mean forces obtained from explicit solvent sim-
ulations. This optimal fit is associated with an average mean-squared error of
χ2 = 105.25 (kJ/mol/nm)2.

match the behavior predicted by the simple theory used in
this study and outlined in Sec. II D. Additionally, any model
that would hope to improve upon these results would require
a more detailed and computationally expensive representation
of the solvent density than that which is used here, most likely
through heuristic many-body terms61 or integral equation and
other more complex theories.70–72

Figure 6 illustrates the ability of the SDPI model to repro-
duce mean forces within the explicit region. These forces give
an average mean-squared error of χ2 = 20.24 (kJ/mol/nm)2,
a significantly more accurate result than that obtained with the
implicit solvent model used in the traditional hybrid methods.

Figure 7 displays the converged curves of G(r ) for the
three hybrid models tested. These curves were parameterized

FIG. 5. For a static configuration of solvent particles within the interior do-
main, comparison of implicit solvent forces obtained using the full many-
body distribution function to the true mean forces obtained from explicit sol-
vent simulations. This optimal fit is associated with an average mean-squared
error of χ2 = 120.70 (kJ/mol/nm)2.
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FIG. 6. For a static configuration of solvent particles within the interior do-
main, this plot illustrates SDPI mean solvent forces calculated from the im-
plicit solvent model as well as by averaging over configurations of solvent in
the switching region. These forces are compared to those obtained from ex-
plicit solvent simulations and are associated with an average mean-squared
error of χ2 = 20.24 (kJ/mol/nm)2.

separately, but the level of quantitative similarity suggests that
it may be possible to develop a simple transformation of a
particular G(r ) potential for use in hybrid models of other
dimensions. We are currently attempting to develop such a
transformation, which would simplify the parameterization of
these models significantly.

B. Density profiles

Figure 8 displays the density profiles for solutions of bulk
CG water and lists the maximum error in density found for
each model. These systems contain only unrestrained solvent,
so a value of the bulk density ρ is desired at all positions
within the spherical domain. Using the optimal parameter

FIG. 7. The fit potential G(r ), given by Eq. (40), for the three hybrid models
tested. This term counteracts the variations in chemical potential experienced
by decoupled particles and maintains the correct bulk density throughout the
switching region.

(a)

(b)

(c)

FIG. 8. Density profiles for the three hybrid model sizes tested, for
which the maximum relative error excludes radial positions below 0.5 nm.
(a) 2.5 nm hybrid models. The maximum relative error is 9.6% for the tradi-
tional model and 1.1% for the SDPI model. (b) 2.0 nm hybrid models. The
maximum relative error is 13.5% for the traditional model and 1.2% for the
SDPI model. (c) 1.5 nm hybrid models. The maximum relative error is 25.9%
for the traditional model and 1.4% for the SDPI model.

set, very good results are obtained with the traditional hybrid
model. Nevertheless, local deviations from bulk density are
observed, particularly for the models with smaller explicit re-
gions. SDPI hybrid models demonstrate nearly perfect results
at all positions within the explicit domain with a maximum
relative error of 1.4% among all models tested, compared to
maximum errors in the 10%-26% range for traditional mod-
els. Density profiles taken from the traditional hybrid model
also exhibit solvent layering, which may be indicative of a
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TABLE I. Comparison of free energy values obtained from traditional and SDPI hybrid models. Free energies of
CG water were obtained at variable radial positions within the spherical explicit domain. The values in parentheses
represent the absolute error with respect to the value calculated from a full explicit solvent simulation (−21.72
± .04 kJ/mol). Values of Ri are only relevant for SDPI models.

Domain radii Ro / Ri (nm) Radial Position (nm) Traditional SDPI

2.5 / 1.5 0.0 −23.03 (−1.31) ± 0.06 −21.66 (0.06) ± 0.06
0.5 −22.07 (−0.35) ± 0.06 −21.56 (0.16) ± 0.06
1.0 −22.16 (−0.44) ± 0.06 −21.73 (−0.01) ± 0.06
1.5 −21.96 (−0.24) ± 0.06 −21.84 (−0.12) ± 0.06
2.0 −21.66 (0.06) ± 0.06 −21.65 (0.07) ± 0.02
2.4 −21.66 (0.06) ± 0.06 −21.72 (0.00) ± 0.00

2.0 / 1.5 0.0 −22.00 (−0.28) ± 0.07 −21.47 (0.25) ± 0.06
0.5 −22.25 (−0.53) ± 0.07 −21.70 (0.02) ± 0.06
1.0 −21.88 (−0.16) ± 0.07 −21.61 (0.11) ± 0.06
1.5 −21.50 (0.22) ± 0.10 −21.81 (−0.09) ± 0.05
1.9 −21.58 (0.14) ± 0.06 −21.72 (0.00) ± 0.00

1.5 / 1.0 0.0 −18.48 (3.24) ± 0.06 −21.88 (−0.16) ± 0.06
0.5 −21.65 (0.07) ± 0.06 −21.76 (−0.04) ± 0.06
1.0 −21.43 (0.29) ± 0.06 −21.71 (0.01) ± 0.05
1.4 −21.46 (0.26) ± 0.05 −21.72 (0.00) ± 0.00

higher-order effect resulting from errors in the solvent PMF
near the explicit/implicit boundary.

C. Free energies

Table I lists the solvation free energies for CG water
molecules at various radial positions within the hybrid mod-
els. The one-body implicit solvent potential used in this study
performs very well in the traditional hybrid model, and the
free energy values obtained from these simulations are quite
accurate at a variety of positions within the explicit domain.
Still, there are regions within these domains that produce free
energies of relatively large error. It is interesting to note that
the free energies are most erroneous near the center of the ex-
plicit region, a result that again suggests that the errors associ-
ated with such traditional hybrid models are a higher-order ef-
fect in which large density fluctuations throughout the explicit
region result from small errors near the boundary. The free
energies obtained using SDPI hybrid methods exhibit nearly
perfect quantitative results everywhere, with the largest error
being 0.25 ± 0.06 kJ/mol (at the center of the region for which
Ri = 1.5, Ro = 2.0 nm).

Table II lists the solvation free energies for choles-
terol obtained from hybrid simulations. The traditional hy-
brid model performs well but is again subject to significant

TABLE II. Comparison of free energy values for cholesterol obtained from
traditional and SDPI hybrid models of varying sized explicit regions. The
values in parentheses represent the absolute error with respect to the value
calculated from a full explicit solvent simulation (−32.70 ± .06 kJ/mol).
Values of Ri are only relevant for SDPI models.

Domain radii
Ro/Ri (nm) Traditional SDPI

2.5 / 1.5 −34.51 (−1.81) ± 0.10 −33.10 (−0.40) ± 0.09
2.0 / 1.5 −33.64 (−0.94) ± 0.09 −32.38 (0.32) ± 0.12
1.5 / 1.0 −34.21 (−1.51) ± 0.10 −32.48 (0.22) ± 0.12

error. The SDPI hybrid model is consistently more accu-
rate, even when comparing results from the smallest SDPI
model (absolute error of 0.22 ± 0.12 kJ/mol for Ro = 1.5 nm)
and the largest traditional model (absolute error of −1.81
± 0.10 kJ/mol for Ro = 2.5 nm). The absolute error obtained
in the 1.5 nm SDPI model is particularly relevant to note:
given that the switching region for these simulations was
bound by the radii Ri = 1.0 nm and Ro = 1.5 nm, and that
the end-to-end distance of cholesterol is occasionally more
than 2.0 nm, these results demonstrate that a high level of ac-
curacy is still obtained from simulations in which the explicit
domain is tightly fit around the solute.

For the traditional model, one would expect to obtain the
best results for larger systems or near the center of the ex-
plicit region. It is interesting to note that this is not the case.
We suspect the reason for this to be a higher-order mediation
caused by small artifacts near the explicit-implicit boundary,
not unlike the role that solvent has been shown to play under
confinement.64–66

VI. CONCLUSIONS

This work demonstrates that the accurate calculation of
the bulk solvent PMF for hybrid models with an instantaneous
switching at the explicit-implicit boundary is a formidable
challenge, and that even well-parameterized models can result
in boundary artifacts that lead to less accurate (and somewhat
unpredictable) results. We present a new method, termed the
SDPI hybrid model, in which explicit particles are slowly de-
coupled from the system across a switching region, allowing
for a smooth removal of local interactions with the bulk sol-
vent. The theoretical development of this model presents the
conditions that are necessary to reproduce equilibrium proper-
ties from the original supersystem. This work does not present
an analogous condition for the reproduction of kinetic prop-
erties from any particular thermostat. Given the finite domain
and inclusion of Monte Carlo moves, it is expected that certain
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kinetic properties (such as detailed water dynamics near the
explicit/implicit boundary) will deviate from those calculated
using full explicit methods. However, we expect any such ar-
tifacts to play a minor role for molecules within the explicit
region and for timescales longer than the relaxation of water.
Future work on more complex solutes will be used to deter-
mine which kinetic quantities can be faithfully reproduced.

The SDPI model presents nearly perfect thermodynamic
results with respect to full explicit simulations at all regions
within the explicit domain. It is important to note that the ad-
dition of this switching region does not add to the computa-
tional complexity of traditional hybrid models and actually
provides a significant computational advantage by allowing
one to simulate a much smaller number of particles while ob-
taining more accurate results. This advantage may be further
highlighted when one considers that simpler implicit solvent
models (such as the radial potential of this work) can now be
used without penalizing model’s accuracy. The model used
in this work requires no additional parameters for any so-
lute and three additional parameters for the solvent (σe, σs ,
and p, defined in Sec. II D). This is a substantial benefit over
implicit solvent models that require new parameters for each
atom type.

The SDPI model necessitates the use of a parameterized
potential to counteract the gradient in chemical potential ex-
perienced by decoupled particles. Current work is aimed at
extending the transferability of SDPI methods by developing
a simple method of transforming this potential for use with
explicit domains of varying shapes and sizes. Additionally,
we are currently adapting these methods for use in more com-
plex solvents that can be used for a wider range of biomolec-
ular applications. While the theoretical development for such
applications of the SDPI method will remain unchanged, the
incorporation of polar solvents will likely require an orienta-
tional dependance of the chemical potential correction term,
G(r ), and that the electrostatic implicit solvent model appro-
priately accounts for the change in solvent dielectric across
the switching region. This could be accomplished by models
utilizing simple geometrical overlaps similar to the nonpolar
model used in this work35 or by solutions to Poisson’s equa-
tion that incorporate a smoothly varying dielectric.98, 99 We
are particularly excited to see the potential applications of the
SDPI model with popular three-point water models.
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