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Abstract
Alcoholic cardiomyopathy is manifested as cardiac hypertrophy, disrupted contractile function and
myofibrillary architecture. An ample amount of clinical and experimental evidence has depicted a
pivotal role for alcohol metabolism especially the main alcohol metabolic product acetaldehyde, in
the pathogenesis of this myopathic state. Findings from our group and others have revealed that
the mitochondrial isoform of aldehyde dehydrogenase (ALDH2), which metabolizes acetaldehyde,
governs the detoxification of acetaldehyde formed following alcohol consumption and the ultimate
elimination of alcohol from the body. The ALDH2 enzymatic cascade may evolve as a unique
detoxification mechanism for environmental alcohols and aldehydes to alleviate the undesired
cardiac anomalies in ischemia-reperfusion and alcoholism. Polymorphic variants of the ALDH2
gene encode enzymes with altered pharmacokinetic properties and a significantly higher
prevalence of cardiovascular diseases associated with alcoholism. The pathophysiological effects
of ALDH2 polymorphism may be mediated by accumulation of acetaldehyde and other reactive
aldehydes. Inheritance of the inactive ALDH2*2 gene product is associated with a decreased risk
of alcoholism but an increased risk of alcoholic complications. This association is influenced by
gene-environment interactions such as those associated with religion and national origin. The
purpose of this review is to recapitulate the pathogenesis of alcoholic cardiomyopathy with a
special focus on ALDH2 enzymatic metabolism. It will be important to dissect the links between
ALDH2 polymorphism and prevalence of alcoholic cardiomyopathy, in order to determine the
mechanisms underlying such associations. The therapeutic value of ALDH2 as both target and
tool in the management of alcoholic tissue damage will be discussed.
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1. Introduction - Alcohol and cardiac complications
Alcoholism remains the most widespread and devastating form of substance abuse in the
United States and the rest of world. While light to moderate alcohol consumption may be
associated with a reduced risk of cardiovascular diseases possibly through reduced coronary
artery-related events (Djousse & Gaziano, 2008; Guo & Ren, 2010; Kloner & Rezkalla,
2007; O'Keefe et al., 2007; Skotzko et al., 2007; Xie et al., 2011), long-term alcohol abuse
or binge drinking results in detrimental consequences to the heart, leading to mitochondrial
defects, cell death, contractile dysfunction, heart rate variability, arrhythmias and cardiac
remodeling (Guo & Ren, 2010; Lang et al., 2005; Laonigro et al., 2009; O'Keefe et al., 2007;
Preedy et al., 2001; Richardson et al., 1998; Romanowicz et al., 2011; Spies et al., 2001).
Heavy, chronic alcohol consumption (> 90 g of ethanol per day for > 5 years) (Laonigro et
al., 2009; Piano, 2002) usually results in cardiac remodeling and contractile dysfunction
characterized by dilated cardiomyopathy, also known as alcoholic cardiomyopathy, which
represents an important source of the morbidity and mortality associated with alcoholism
(Awtry & Philippides 2010; Iacovoni et al., 2010; Laonigro et al., 2009; Liang et al., 1999;
Spies et al., 2001; Vary et al., 2008).

It is estimated that one out of every three alcohol-dependent individuals (alcoholics)
displays alcoholic cardiomyopathy of varying severity (Iacovoni et al., 2010; Laonigro et al.,
2009; Ren & Wold, 2008; Spies et al., 2001). This distinct form of congestive heart failure is
responsible for 21-36% of all cases of non-ischemic dilated cardiomyopathy in Western
society. Without complete abstinence, the 4 year mortality for alcoholic cardiomyopathy is
close to 50% (Laonigro et al., 2009). Alcoholic cardiomyopathy, or alcoholic heart muscle
disease, is often characterized by cardiac hypertrophy, disruption in myofibrillary
architecture, reduced myocardial contractility (and resultant reductions in ejection fraction
and stroke volume), myocardial fibrosis (Wang et al., 2005) as well as enhanced risk of
arrhythmias, stroke and hypertension (Djousse et al., 2004; Higashiyama et al., 2011; Jones,
2005; Romanowicz et al., 2011; Schoppet & Maisch, 2001). Apart from the history of
alcoholism these features are consistent with other dilated cardiomyopathies (Skotzko et al.,
2009; Spies et al., 2001).

Clinical studies have shown that the pathology of alcoholic cardiomyopathy can be reversed
by abstinence from alcohol (Piano, 2002; Skotzko et al., 2009). Nonetheless, this
reversibility is apparently lost once the disease has progressed beyond some, as yet poorly
defined point of severity (Jacob et al., 1991; Seiva et al., 2009). The diagnosis of alcoholic
cardiomyopathy is made on the basis of deteriorating cardiac function, increased heart size
and a history of alcohol abuse (Iacovoni et al., 2010; Laonigro et al., 2009). The occurrence
of cardiomyopathy in chronic alcoholism has been well documented (Piano, 2002; Ren &
Wold, 2008; Skotzko et al., 2009; Spies et al., 2001) although the precise cause of the
myopathy is still poorly understood.

Individuals with alcoholic cardiomyopathy do not usually suffer from vitamin or nutritional
deficiencies, suggesting the development of alcoholic cardiomyopathy is a result of alcohol
intake rather than malnutrition (Laonigro et al., 2009). Electron microscopy examination of
alcoholic hearts reveals a loss or disruption of myofibrils and dilated sarcoplasmic reticulum
(SR) (Jaatinen et al., 1994). Mitochondria, which are considered the main target organelles
for ethanol and its metabolite (Guo & Ren, 2010), display enlargement and disorganized
cristae (Zhang et al., 2010). These morphological and functional cardiac defects will
eventually result in heart failure. In addition, ample amounts of clinical and experimental
findings have confirmed alcoholic damage in the heart originating from non-myogenic
alterations such as tachycardia, arrhythmias, hypertriglyceridemia, hypertension and altered
sympathetic tone (Bessembinders et al., 2011; George & Figueredo, 2010; Hering et al.,
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2011; Ohira et al., 2009). Along the same line, alcohol misuse is also regarded as one of the
excess burdens associated with certain sub-clinical vascular diseases (Hamer et al., 2010;
Turcotte et al., 2002), which may affect cardiac function indirectly via undesirable
hemodynamic regulation.

At present, a number of theories have been postulated for the onset and development of
alcoholic cardiomyopathy including oxidative damage, deposition of triglycerides, altered
fatty acid extraction, decreased myofilament Ca2+ sensitivity, impaired protein metabolism
and mitochondrial anomalies (Awtry & Philippides, 2010; Djousse & Gaziano, 2008;
Djousse et al., 2009; Iacovoni et al., 2010; Jing et al., 2011; Laonigro et al., 2009; Ren &
Wold, 2008). Oxidative stress, apoptosis and mitochondrial damage have been observed in
alcohol-induced myocardial dysfunction (Doser et al., 2009; Ge et al., 2011; Guo & Ren,
2010; McDonough, 2003). Altered intracellular Ca2+ homeostasis has been proposed to
underscore the compromised mechanical function in alcoholic cardiomyopathy (Ren &
Wold, 2008; Zhang et al., 2003).

Recent studies from our lab as well as others have revealed the participation of a number of
intracellular Ca2+ cycling proteins, including sarco(endo)plasmic reticulum Ca2+-ATPase
(SERCA), Na+-Ca2+ exchanger and phospholamban in the impaired intracellular Ca2+

handling following alcohol consumption (Li et al., 2006; Oba et al., 2008; Zhang et al.,
2003). The dynamic balance between protein synthesis and protein degradation is believed
to play an essential role in the heart under normal and alcoholic conditions. Both actin and
myosin content are decreased while the levels of β-myosin are elevated in the heart after
prolonged alcohol consumption (Lang et al., 2005). More importantly, the loss of
myofibrillar proteins occurs prior to the appearance of any detectable echocardiographic
abnormalities in the heart (Lang et al., 2005; Vary & Summer, 2004), suggesting a critical
role of protein synthesis in the pathogenesis of alcoholic cardiomyopathy.

Recent evidence from our laboratory also suggested that alcoholism may promote autophagy
in an AMPK-dependent manner (Ge & Ren, 2011), although further evidence of alcoholism-
related changes in protein quality control machineries, such as ubiquitination and
proteolysis, is still lacking in alcoholic hearts. Ethanol and its enzymatic metabolism also
play a pivotal role through direct toxicity or indirect action of cell stress signaling activation.
For example, the major ethanol metabolite acetaldehyde may contribute to cardiac
dysfunction, hypertrophy and heart failure by either its direct toxicity or promoting elevated
levels of catecholamines and reactive oxygen species (ROS) (Zhang et al., 2004, 2010).
Other scenarios have also been speculated for alcoholic cardiomyopathy such as aldehyde-
protein adduct formation (Niemela, 2001), acetaldehyde-derived DNA adduct formation (Yu
et al., 2010), accumulation of fatty acid ethyl esters (Patel et al., 1997), or modifications of
lipoprotein and apolipoprotein particles (Hannuksela et al., 2002).

Despite the ample clinical and experimental evidence endorsing most of these theories for
the pathogenesis of alcoholic cardiomyopathy, none of these mechanisms may be considered
as the ultimate culprit responsible for the development of alcoholic cardiomyopathy. It
appears that the susceptibility to the detrimental effect of alcohol intake is a result of the
complex interplay between genes and environmental factors (the latter including alcohol
itself and other nutrients) (Crabb et al., 2004). As illustrated in Fig. 1, alcohol is metabolized
mainly through a two-step enzymatic process involving alcohol dehydrogenase (ADH) and
aldehyde dehydrogenase (ALDH), which break down ethanol into acetaldehyde and then
acetate (Crabb et al., 2004; Manzo-Avalos & Saavedra-Molina, 2010). These two enzymes
involved in alcohol metabolism are polymorphic and affect the elimination rate of ethanol or
its metabolite acetaldehyde. As a result, genetic polymorphisms of ADH and ALDH2 alter
the susceptibility to ethanol intake and the risk of alcoholism and alcoholic complications
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(Pautassi et al., 2010). A highly active ADH or low (or mutant) ALDH protects against
alcoholism but predisposes the organism to more severe alcoholic damage, an effect related
to a pre-steady state burst in arterial acetaldehyde (Pautassi et al., 2010; Ren, 2007). The
main ALDH isoform – the mitochondrial isozyme of ALDH or ALDH2 – and its cardiac
effects along with its genetic variation are the subject of the present review.

2. ALDH2, metabolism of ethanol and acetaldehyde
2.1. Enzymology of alcohol metabolism

The effect of alcohol (ethanol) in various tissues depends on its blood concentration over
time. After oral absorption, alcohol is readily absorbed by the gastrointestinal tract by
passive diffusion through the stomach wall (∼ 20%) or the small-intestinal wall (∼ 80%).
Elimination of alcohol is achieved mostly through metabolism (95-98%) with a small
unchanged fraction being excreted through exhalation, sweating or urination (Manzo-Avalos
& Saavedra-Molina, 2010). Ethanol distributed in the body fluid space is metabolized
mainly through the hepatic oxidation catalyzed by the ADH, ALDH, cytochrome P450 2E1
(CYP2E1) and catalase enzymes, as depicted in Fig. 1 (Manzo-Avalos & Saavedra-Molina,
2010; Wu & Cederbaum, 2009; Wu et al., 2010). In particular, alcohol is metabolized into
acetaldehyde (CH3CHO) by ADH and CYP2E1 in cytoplasm and microsomes, respectively.
Although CYP2E1 is pretty important in ethanol metabolism and toxicity, and is responsible
for a number of ethanol-related drug interactions, it will not be emphasized in our present
review. Due to the high capacity and the relatively high affinity (Km = 0.05–0.1 g/L) of
ADH in hepatocytes, the enzyme gets saturated after only a few drinks, which decreases the
rate at which ethanol is effectively metabolized. Once formed in the liver, acetaldehyde is
oxidized by the mitochondrial isoform of ALDH (ALDH2) in an irreversible reaction to
acetate. ALDH2 has a very low Km value, which makes the elimination of toxic
acetaldehyde soon after its formation highly efficient. The activated form of acetate, acetyl
CoA, can be further metabolized into ketone bodies, fatty acids, amino acids and steroids in
addition to oxidation in the Krebs cycle, leading to the formation of CO2 and water as the
end-products of ethanol oxidation (George & Figueredo, 2010; Manzo-Avalos & Saavedra-
Molina, 2010).

Rates of ethanol metabolism by ADH and ALDH2 enzymes are, therefore, deemed critical
in determining its toxicity because the intermediate product of this pathway acetaldehyde is
highly toxic (ten times higher than ethanol). The maximal activities of ADH and ALDH are
similar in the liver, making a comparable contribution for both enzymes in the overall
control of the rate of alcohol oxidation (George & Figueredo, 2010; Manzo-Avalos &
Saavedra-Molina, 2010). Both enzymes use the cofactor nicotinamide adenine dinucleotide
(NAD+), which is reduced to NADH. As a result, the ratio NADH/NAD+ is significantly
elevated following ethanol oxidation, resulting in an altered cellular redox state and adverse
effects associated with alcohol consumption (Manzo-Avalos & Saavedra-Molina, 2010;
McDonough, 2003).

In human subjects with ADH and ALDH2 variants, the rate of ethanol oxidation may be
substantially influenced by enzyme kinetic properties such as the Km, Vmax and sensitivity
to product inhibition of the variants (Crabb et al., 2004). Thus it is possible that components
of alcohol metabolism and the concentrations of metabolic intermediates such as
acetaldehyde may change despite an unaltered alcohol elimination rate under certain
conditions.

2.2. ALDH2, alcohol metabolism and genetic polymorphisms
ALDH2 is one of 19 members of the ALDH gene family in humans that play a crucial role
in the oxidation and detoxification of reactive aldehydes including the ethanol metabolite
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acetaldehyde in various organs and cells (Budas et al., 2009). Besides metabolism of
acetaldehyde, ALDH2 also serves as a metabolic enzyme in the detoxification of other
reactive aldehydes such as 4-hydroxy-2-nonenal (4-HNE) and conversion of nitroglycerin
(from glyceryl trinitrate to 1,2-glyceryl dinitrate) (Budas et al., 2010; Chen et al., 2010; Ren,
2007; Zhang et al., 2004). Two major isoforms of ALDH, cytosolic and mitochondrial, are
present and can be distinguished by electrophoretic mobilities, kinetic properties, and
subcellular localizations.

The gene for mitochondrial ALDH, or ALDH2, in humans is found on chromosome 12. This
gene encodes a mitochondrial isoform with a low Km for acetaldehyde, and is localized in
the mitochondrial matrix. All Caucasians studied are deemed homozygous for ALDH2
while approximately 50% of Asians are heterozygous and possess only one normal copy of
the ALDH2 gene and one mutant copy encoding an inactive mitochondrial isozyme.
Epidemiological studies have revealed a remarkably reduced risk of alcoholism due to
alcohol intolerance, albeit with an increased risk of alcoholic complications, in Asians as
compared with Caucasians; this is mainly associated with the greatly reduced activity of the
mutant ALDH2 isozyme (Nishida et al., 2004; Peng & Yin, 2009). Similarly, incidence rates
for alcoholic complication are greater in African-Americans and Native-Americans than in
Caucasians, largely due to genetic polymorphisms in ADH and ALDH2, nutrition, and other
factors (Chou et al., 1999; Russo et al., 2004). Although genetic variation in ALDH2 has
been reported to affect alcohol metabolism in Europeans, it does not appear that such genetic
variation in ALDH2 leads to the alteration in alcohol sensitivity, consumption, or risk of
dependence in Europeans (Dickson et al., 2006). ALDH2 genetic polymorphisms have been
shown to contribute to the effects of alcohol intake on liver (Takeshita et al., 2000) and bone
formation (Shimizu et al., 2011). A meta-analysis of seven East Asian populations showed
the association between ALDH2*2 allele and low HDL-C level (Hao et al., 2010). The
ALDH2*2 allele encodes a protein with an amino acid change from glutamate to lysine
(derived from the ALDH2*1 allele) and devoid of enzymatic activity. Allelic variation of
ALDH genes, especially deficiency in ALDH2 due to such a point mutation in the active
ALDH2*1 gene, alters blood acetaldehyde levels and decreases vulnerability for the
development of alcoholism (Chen et al., 2009; Peng et al., 1999, 2002, 2007). Up to 50% of
Asians carry mutant alleles of ALDH (ALDH2*2/1 and ALDH2*2/2) that resulted from a
single point mutation of the active ALDH2*1 gene, producing a ∼ 10 fold increase in blood
acetaldehyde levels in the ALDH2-deficient individuals following alcohol intake compared
with the ALDH2-intact populations (Nishimura et al., 2002; Peng & Yin, 2009; Yin & Peng,
2007).

Table 1 summarizes some of the most commonly seen biological and pathophysiological
effects resulting from ALDH2 genetic variation. Interestingly, due to the acetaldehyde-
associated feeling of discomfort, the gene of ALDH2*2/2 may protect against the
development of alcohol dependence and alcohol-related disease by discouraging alcohol
consumption (Peng & Yin, 2009). In addition to the cardiac depressant response elicited by
acetaldehyde as mentioned earlier, contribution of acetaldehyde to alcoholic
cardiomyopathy was substantiated by the fact that the ALDH inhibitor, cyanamide,
potentiates alcohol intake-induced rise of plasma cardiac troponin-T levels, a key index for
myocardial cell death. It is believed that homozygosity for the ALDH2*2 allele should help
to inhibit the development of alcoholism. After a small dose of alcohol, cardiac and
extracranial/intracranial arterial hemodynamic parameters as well as self-rated subjective
sensations were strikingly responsive in homozygous ALDH2*2 individuals as evidenced by
pronounced cardiovascular hemodynamic effects as well as subjective perception of general
discomfort for as long as 2 hr after alcohol ingestion.
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3. Acetaldehyde and the heart
As mentioned above, acetaldehyde is formed when ethanol is oxidized primarily through
cytosolic ADH (Fig. 1). It is a chemically reactive organic compound with a low molecular
weight (44.05 Da) and boiling point (21°C). While liver is considered the primary site of
oxidation, other organs (including the heart) participate in ethanol metabolism. Other than
classic ethanol metabolism, acetaldehyde may be produced endogenously through the
degradation of biological molecules such as that occurring during lipid peroxidation, in a
manner similar to other reactive aldehydes including 4-HNE and malondialdehyde (Uchida,
2000; Wang et al., 2008). Acetaldehyde is about ten times more toxic than ethanol based on
its LD50 value. An ample amount of recent evidence from our lab and others has
consolidated a pivotal role for acetaldehyde in the pathogenesis of alcoholic cardiomyopathy
(Aberle et al., 2003; Aberle & Ren, 2003; Brown et al., 1999, 2001; Cai, 2008; Guo & Ren,
2010). Acetaldehyde may elicit a direct toxic effect on the heart or react with amino,
hydroxyl, and sulfhydryl groups to interfere with or modify the structure and function of
macromolecules such as proteins and enzymes.

Elevated circulating and cardiac acetaldehyde levels are seen in individuals consuming
excessive amounts of alcohol (Espinet & Argiles, 1984; Hintz et al., 2003; Jankala et al.,
2000; Nishimura et al., 2002; Watanabe et al., 1985). Moreover, blood acetaldehyde levels
are found to be much higher in alcohol-dependent individuals after alcohol administration
(Nuutinen et al., 1983; Oba et al., 2005). Impaired ALDH capacity such as in ALDH2
polymorphism may predominantly contribute to the elevated blood acetaldehyde levels
(Nuutinen et al., 1983). Blood acetaldehyde levels were found to be ∼ 5 μM in normal
subjects and 30 to 125 μM in Asians with defective ALDH2 following heavy alcohol intake
(Chen et al., 1999; Nishimura et al., 2002; Watanabe et al., 1985).

Elevation in blood acetaldehyde levels may not be directly and proportionally correlated
with the rise in blood alcohol levels due to the apparent difference in ethanol metabolism in
various populations. It is perceived that blood levels of acetaldehyde rather than ethanol play
a more significant role in the pathogenesis of alcoholic cardiomyopathy (Zhang et al., 2004).
Acetaldehyde may trigger cardiac hypertrophy or dilated cardiomyopathy associated with a
significant increase in the hypertrophic marker skeletal actin and ANF (Li & Ren, 2008;
Liang et al., 1999). Direct effects of acute (5 to 10 min) acetaldehyde exposure on
cardiovascular function have been extensively studied (Aberle & Ren, 2003; Aistrup et al.,
2006; Brown et al., 1999, 2001; Brown & Savage 1996; Ren et al., 1997; Savage et al.,
1995). Acetaldehyde produces vasoconstriction and positive inotropic and chronotropic
responses at concentrations of 3 mM or below. Higher concentrations of acetaldehyde (>3
mM) elicit cardiac depression, vasodilatation and hypotension (Brown & Carpentier, 1989,
1990). The acetaldehyde-induced negative inotropic response in the heart seems to be
associated with decreased SR Ca2+ release (Ren et al., 1997; Savage et al., 1995) or
inhibition of voltage-dependent Ca2+ channels (Morales et al., 1997). Our earlier studies
revealed that acetaldehyde depresses cardiomyocyte contractile amplitude, maximal velocity
of contraction/relaxation, and prolonged duration of relaxation and intracellular Ca2+

clearance (Aberle et al., 2004; Aberle & Ren, 2003; Ren et al., 1997). In addition to its
apparent cardiac toxicity, acetaldehyde may also interfere with gene expression and protein
synthesis in the heart (Siddiq et al., 1993). Acetaldehyde may regulate the expression of
apoptosis-related genes en route to development of alcoholic cardiomyopathy (Fernandez-
Sola et al., 2006; Jankala et al., 2002). However, due to the impracticality of administering
acetaldehyde to humans, it is difficult to assess the pathophysiological and epigenetic effects
of acetaldehyde exposure in human subjects to determine its role in alcoholic
cardiomyopathy. On the other hand, using metabolic inhibitors to alter acetaldehyde levels
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has been proven to be rather nonspecific, ineffective, toxic and difficult to manage (Preedy
et al., 2007; Ren, 2007; Ren & Wold, 2008).

To better assess the role of acetaldehyde in alcohol-induced tissue damage, cardiac-specific
ADH overexpression transgenic mice were generated in our labs (Duan et al., 2002; Hintz et
al., 2003; Liang et al., 1999). The mice with overexpression of ADH driven by the α-myosin
heavy chain promoter displayed exacerbated alcoholic cardiomyopathy following alcohol
consumption (Duan et al., 2002; Hintz et al., 2003; Liang et al., 1999). Moreover, ADH
exacerbated alcohol exposure-induced mitochondrial dysfunction manifested as decreased
mitochondrial membrane potential (MMP) and accumulation of mitochondrial O2

-.
Myocardium from ethanol-treated mice displayed enhanced apoptosis shown as elevated
expression of Bax and Caspase-3 and decreased expression of Bcl-2, the effects of which
with the exception of Caspase-3 were augmented by ADH. ADH accentuated ethanol-
induced increase in the mitochondrial death domain components pro-caspase-9 and
cytochrome c in the cytoplasm (Guo & Ren, 2010), suggesting that acetaldehyde toxicity
possibly through mitochondrial damage is permissive to the development of alcoholic
cardiomyopathy. Our study further revealed that the ADH transgene-accentuated cardiac
contractile depression in response to ethanol exposure was more pronounced in females than
males despite similar cardiac acetaldehyde levels between the two genders following alcohol
challenge (Duan et al., 2003). These findings attribute a role of acetaldehyde in the gender-
related difference of alcoholic cardiomyopathy. In addition, ADH transgene itself does not
affect morphological, mechanical and intracellular Ca2+ properties, suggesting that the
transgene is not innately harmful. Moreover, the NADH/NAD+ ratio was similar in ADH
and FVB wild-type mice chronically consuming alcohol (Liang et al., 1999), thus not
favoring a key role of depletion of NAD+ as an adequate factor for enhanced cardiac damage
in ADH transgenic mice after chronic alcohol intake.

Although the availability of ADH transgenic mice has greatly supported the acetaldehyde
theory in the development of alcoholic cardiomyopathy, caution needs to be taken in data
interpretation. Acetaldehyde often initiates cell and tissue injury at a level of 50 to 100 μM
or higher. However, the concentrations of acetaldehyde usually achieved in the body are in
the low micromolar range following moderate ethanol intoxication (Tominaga, 2009;
Tsukamoto et al., 1989). Certain tissues such as the brain exhibit an even lower level of
acetaldehyde. Therefore, the jury is still out as to whether acetaldehyde is the main mediator
of cytotoxic effects induced by ethanol. Other hypotheses postulated for alcoholic
cardiomyopathy include oxidative damage, lipid peroxidation, altered membrane integrity as
well as acetaldehyde-induced hemodynamic effects in the vasculature (Ren et al., 2002; Ren
& Wold, 2008; Zhang et al., 2004). These pathological processes may work in concert with
acetaldehyde to produce a synergistic effect on the function of protein and membrane
phospholipids following alcohol intake (Cederbaum et al., 2009; Wu & Cederbaum, 2009;
Wu et al., 2010). Given the absence of convincing human case study data on heart function
following chronic alcohol intake, it is still premature to conclude that acetaldehyde is the
ultimate cause of alcoholic cardiomyopathy.

4. ALDH2 and cardiac function in alcoholism
Public health guidelines usually recommend avoidance of excessive alcohol consumption in
order to lessen the alcohol-associated health burden (Russo et al., 2004). In particular,
alcoholism is an avoidable risk factor for cancer (Druesne-Pecollo et al., 2009). Functional
variants in genes involved in alcohol metabolism lead to dramatic differences in exposure to
carcinogenic acetaldehyde, suggesting a likely interaction of genetic susceptibility and
alcoholism in cancer. Polymorphisms in alcohol metabolism alter folate metabolism and
thus cancer risk. Not surprisingly, inactive or mutant forms of ALDH2 are considered an
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independent risk factor for aerodigestive tract cancers including carcinomas of the pancreas,
liver and esophagus due to the carcinogenicity of acetaldehyde (Druesne-Pecollo et al.,
2009; Yang et al., 2010). Fig. 2 summarizes the spectrum of pathophysiological and
behavioral effects of ALDH2 in multiple organ systems.

Substantial clinical and experimental evidence recently revealed a novel beneficial role of
ALDH2 in the pathological process of cardiovascular diseases including ischemia-
reperfusion injury, arrhythmia and alcoholism (Budas et al., 2009; Chen et al., 2008, 2010;
Doser et al., 2009; Koda et al., 2010; Ma et al., 2009, 2010; Ren et al., 2009). To better
understand the role of ALDH2 in the onset and development of alcoholic cardiomyopathy,
we made transgenic mice overexpressing low Km ALDH2 using the chicken β-actin
promoter to achieve non-specific overexpression of the enzyme (Doser et al., 2009). The
cardiac-specific α-myosin heavy chain promoter was not chosen for ALDH2 overexpression
because diffusion of acetaldehyde from peri-cardiac regions would easily offset the
facilitated acetaldehyde removal from cardiac tissue. Reports from our lab have provided
convincing evidence that ALDH2 is capable of attenuating both acute and chronic alcohol
exposure-induced myocardial morphological and functional injury (Doser et al., 2009; Li &
Ren, 2008; Ma et al., 2009). In the absence of alcohol intake, the ALDH2 transgene did not
exhibit any effect on myocardial and cardiomyocyte function or any of the other
biochemical markers tested. Chronic alcohol intake triggered cardiac geometric and
contractile dysfunction including decreased left ventricular wall thickness and septal
thickness, enlarged left ventricular systolic and diastolic diameters, reduced fractional
shortening, cardiomyocyte peak shortening, maximal velocities of contraction and relaxation
as well as prolonged relaxation duration associated with dysregulated intracellular Ca2+

release and SR Ca2+ uptake (Doser et al., 2009). Interestingly, myocardium and
cardiomyocytes from ALDH2 transgenic mice displayed mitigated alcohol-induced
mechanical anomalies. Oxidative stress, as indicated by lipid peroxidation and protein
carbonyl formation, was significantly elevated in hearts and other tissues in wild-type FVB
mice following chronic ethanol consumption, the effects of which were attenuated by the
ALDH2 transgene. These findings are somewhat consistent with the previous findings of
myopathic alteration following alcohol intake featured by compromised myocardial
contractility (Iacovoni et al., 2010; Ma et al., 2009; Skotzko et al., 2009; Spies et al., 2001;
Zhang et al., 2004). Several hypotheses have been put forward with regards to chronic
alcohol intake-induced cardiac anomalies including lipid peroxidation (Hintz et al., 2003),
oxidative damage (Ren & Wold, 2008), mitochondrial dysfunction (Ma et al., 2009), and
altered membrane properties (Cederbaum et al., 2001). Although earlier findings from our
lab demonstrated that overexpression of ALDH2 alleviates alcohol and acetaldehyde-
induced cell injury caused by alcohol and acetaldehyde both in vivo and in vitro (Li et al.,
2004, 2006; Ma et al., 2009), little is known about the precise mechanism of the protection
due to ALDH2 transgene. Interestingly, seminal findings from Mochly-Rosen's laboratory
have unveiled an emerging role of ALDH2 against myocardial ischemic injury courtesy of
its dual dehydrogenase and reductase activities (Budas et al., 2009; Chen et al., 2008, 2010).
The concept of ALDH2 as a new and promising therapeutic target in cardiovascular diseases
received further consolidation from our recent work that revealed that overexpression of the
ALDH2 transgene may alleviate ischemia/reperfusion injury, post-ischemic-reperfusion
injury, and ischemic cardiac dysfunction. Consistent with this, the ischemia-reperfusion
injury may be exacerbated by ALDH2 knockout (Ma et al., 2011). Nonetheless, the
mechanism(s) of action behind protection by ALDH2 against ischemia-reperfusion injury
may be diverse, involving bioactivation of nitroglycerin, preventing the degranulating
effects of toxic aldehydes and lessening the production of free radicals, 4-HNE and
ultimately mitochondrial dysfunction (Budas et al., 2009; Chen et al., 2010). ALDH2 is
known for its role in the metabolism of the ethanol metabolite acetaldehyde. Besides
acetaldehyde, ALDH2 serves as a critical metabolic enzyme in the detoxification of other
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reactive aldehydes such as 4-HNE and conversion of nitroglycerin (from glyceryl trinitrate
[GTN]) to 1,2-glyceryl dinitrate (1,2-GDN) (Budas et al., 2009; Chen et al., 2010).

Using a transgenic model with inactive ALDH2, ethanol and acetaldehyde concentrations in
blood, brain, and liver were scrutinized between ALDH2-/- and ALDH2+/+ wild-type mice
following alcohol gavages. Much higher blood acetaldehyde but not alcohol levels were
found in ALDH2-/- mice compared with ALDH2+/+ mice 1 hr after alcohol challenge,
consistent with the observation of elevated blood acetaldehyde levels (by ∼10 fold) in
patients with defective ALDH2 as compared to those in normal individuals (Nishimura et
al., 2002). ALDH2 enzyme metabolized 94% of acetaldehyde produced from ethanol (Isse et
al., 2005). These data indicate that ALDH2 is a major enzyme for acetaldehyde metabolism.
To evaluate the role of facilitated acetaldehyde metabolism on tissue and cell injury caused
by alcohol or acetaldehyde, we overexpressed ALDH2 driven by the non-specific chicken β-
actin promoter in human umbilical vein endothelial cells (HUVEC) and fetal human cardiac
myocytes. Our results demonstrated that ALDH2 overexpression significantly attenuates
ethanol and acetaldehyde-induced oxidative stress and apoptosis (Li et al., 2004, 2006),
suggesting that facilitation of acetaldehyde breakdown lessens its cellular toxicity. These
results support the notion that acetaldehyde may directly elicit cell injury because
facilitation of its metabolism by ALDH2 alleviates cellular toxicity. These data from our
group suggest that facilitated acetaldehyde breakdown with overexpression of ALDH2 may
protect against alcohol-induced detrimental effects in the heart, liver and brain (Doser et al.,
2009; Guo et al., 2009; Li et al., 2009; Ren et al., 2009), indicating the therapeutic potential
of ALDH2 enzyme in alcoholic tissue damage. To the contrary, knockdown of ALDH2
accentuated the severity of alcoholic cardiomyopathy (Ma et al., 2010).

Results from our group showed that transgenic overexpression of ALDH2 effectively
antagonizes myocardial hypertrophy and contractile defects elicited by alcohol intake
through a mechanism that is associated, at least in part, with phosphorylation of ASK-1,
GSK-3β, GATA4, and CREB (Doser et al., 2009). Moreover, alcohol treatment dampened
phosphorylation of Akt and AMPK associated with up-regulated PP2A and PP2C, which
was abrogated by ALDH2. ALDH2 significantly attenuated the decrease in Akt- and
AMPK-stimulated phosphorylation of Foxo3 at Thr32 and Ser413, respectively, caused by
ethanol. These results suggested that ALDH2 is cardioprotective against acute ethanol
toxicity possibly through inhibition of protein phosphatases, leading to enhanced Akt and
AMPK activation. Subsequently, inhibition of Foxo3 occurs followed by apoptosis and
mitochondrial dysfunction (Ma et al., 2009). In contrast, ALDH2 deficiency led to a
worsened cardiomyocyte function caused by ethanol, which may be due to upregulated
expression of protein phosphatase, depressed Akt activation, and subsequently impaired
mitochondrial function (Ma et al., 2010). ALDH2 also reversed the myocardial endoplasmic
reticulum (ER) stress caused by ethanol. ALDH2 overexpression antagonizes the cardiac
insulin insensitivity and contractile defect caused by chronic alcohol intake, possibly via
improvement of insulin signaling at the levels of the insulin receptor, IRS, Akt, Foxo3a and
JNK (Li et al., 2009).

5. Aldehyde accumulation, protein adduct formation and ALDH2 in
alcoholic cardiac disease

Generation of protein-aldehyde adducts or acetaldehyde-derived DNA adducts as a result of
excessive alcohol intake has been documented (Badger et al., 2003; Niemela 2001; Yu et al.,
2010). Acetaldehyde can bind to reactive lysine residues, some aromatic amino acids,
cysteine, or free α-amino groups (Niemela, 2001). The preferential targets of aldehyde or
acetaldehyde adduct formation include erythrocyte membrane proteins, albumin,
lipoproteins, hemoglobin, collagens, tubulin and cytochrome enzymes (Niemela, 1999,
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2001; Yu et al., 2010). Although most aldehyde adducts are located in the liver (Jeong et al.,
2000; Worrall et al., 2001), some may be found in the muscle, brain and blood cells. As a
consequence of adduct formation, the physicochemical properties of proteins, nucleic acids
and lipids may be compromised (Niemela, 1999). Chronic alcohol consumption contributes
to formation of various DNA adducts. The acetaldehyde-DNA binding was demonstrated to
overtly promote carcinogenesis in alcohol-dependent individuals (Niemela, 2001). Although
formation of DNA adducts is deemed to be one of the early steps in carcinogenesis, whether
these alcohol-related DNA adducts are true factors or initiators of cancer is still elusive. It
was reported that acetaldehyde protein adducts and lipid peroxidation products may increase
collagen mRNA levels and thus the levels of connective tissue proteins (Aroor & Shukla,
2004; Lieber, 1991). Moreover, the presence of specific protein adducts in alcohol-
dependent individuals has prompted the effort to identify new biological markers targeted
for alcohol-induced diseases. Nonetheless, adduct assays often display insufficient
sensitivities to be adopted in clinical practice at this time. Last but not least, the
acetaldehyde-biogenic amine condensation products have been implicated to play an
essential role in ethanol and acetaldehyde reinforcement (Melis et al., 2009; Talhout et al.,
2007), although little is known about the effect of these acetaldehyde-biogenic amine
condensation products on heart geometry or function. One of these condensation products,
salsolinol, was shown to regulate cardiac contractile function and thus may mediate the
myocardial responses elicited by acetaldehyde (Sokolova et al., 1990). Further study is
warranted to elucidate the precise role of the acetaldehyde-biogenic amine condensation
products in the alcohol and acetaldehyde-elicited myocardial structural and functional
responses, and the effect of ALDH2 on such biogenic amine condensation products.

6. Autophagy and ALDH2 in alcoholic heart disease
Autophagy plays a pivotal role in the heart to maintain physiological cardiac function by
engulfing damaged proteins or macromolecular structures (Gottlieb & Carreira, 2010;
Gottlieb & Mentzer, 2010; Gurusamy & Das, 2009a, 2009b; Zhang & Ren, 2010). Despite
the beneficial effects, an unfavorable role of autophagy has been documented in a number of
human diseases such as cancer and cardiovascular and neurodegenerative diseases (Levine
& Kroemer, 2008). Thus, autophagy has been considered as a double-edged sword for both
disease pathogenesis and prevention (Gurusamy & Das, 2009b). Elevated autophagy
promotes survival in response to mild stress, such as brief ischemia and a low grade of
oxidative stress, by removing damaged organelles and by recycling of macromolecules to
maintain cellular homeostasis (Levine & Kroemer, 2008; Ma et al., 2011; Zhang & Ren,
2010). On the other hand, prolonged ischemic injury may elicit excessive upregulation of
autophagy, resulting in cell death due to excessive self-digestion of essential organelles and
proteins (Ma et al., 2011; Sciarretta et al., 2010; Zhang & Ren, 2010). Manipulation of
autophagy has been deemed as a potential therapeutic target for heart diseases (Levine &
Kroemer, 2008). However, the role of autophagy in alcoholic cardiomyopathy remains
unclear.

Recent study from our laboratory revealed that ALDH2 promotes cardiomyocyte survival
during ischemia, whereas inhibition of autophagy improves cell survival during reperfusion
(or reoxygenation), indicating a paradoxical role of autophagy in ischemia and ischemia/
reperfusion phases. This is consistent with the observation that inhibition and induction of
autophagy mitigate, respectively, the ALDH2-offered protection against ischemia and
ischemia/reperfusion (Ma et al., 2011). Our data further demonstrated that ischemia-induced
AMPK activation is increased and decreased, by ALDH overexpression and knockout,
respectively. Likewise, reperfusion-induced Akt phosphorylation is augmented and
attenuated by ALDH2 overexpression and knockout, respectively. These data favor the
notion that ALDH2 turns on AMPK to inhibit mTOR signaling and facilitate autophagy
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during ischemia. However, AMPK is replaced by Akt during reperfusion. Akt activation
turns on mTOR to suppress autophagy. Thus, mTOR serves as a converging point for
ALDH2-mediated activation of Akt and AMPK signaling molecules in ischemia and
ischemia-reperfusion (Ma et al., 2011). This dual regulatory paradox appears to underscore
the homeostatic machinery for ALDH2-elicited cardioprotection against ischemia-
reperfusion injury (Zhang & Ren, 2010).

Our data also revealed a role of ALDH2 as a metabolic enzyme in the detoxification of 4-
HNE. 4-HNE along with malondialdehyde, are highly reactive aldehydes known to directly
compromise cardiomyocyte contractile dysfunction (Aberle et al., 2004; Folden et al., 2003).
Our data revealed that ALDH2 attenuates 4-HNE-induced cardiomyocyte contractile
dysfunction, while cardiac 4-HNE accumulation is accentuated in the ALDH2 knockout
mice in response to ischemia-reperfusion (Ma et al., 2011; Zhang & Ren, 2010). These
findings further suggest a role for aldehyde detoxification in the protection by ALDH2
against ischemia-reperfusion injury. This protection may be mediated by lifting the
inhibition of 4-HNE on LKB1/PTEN-mediated regulation of AMPK and Akt, respectively.

Somewhat similar to its beneficial properties in ischemia-reperfusion injury (Ma et al.,
2011), ALDH2 overexpression was found to protect against cardiac geometric and
contractile anomalies caused by alcohol likely through inhibition of autophagy (Ge & Ren,
2011). Very recent findings from our group revealed that the change in cardiac mechanical
and autophagic responses caused by alcohol intake were associated with dampened
activation of Akt/AMPK and their downstream signal mTOR. ALDH2 transgene appears to
offer its protection in the heart by reversing alcohol-induced changes in AMPK, Akt and
mTOR, en route to mitigating alcohol-induced autophagy induction and contractile
dysfunction. Akt and AMPK are essential regulators of autophagy, survival, energy
metabolism and contractile function in the heart (Arad et al., 2007; Clerk et al., 2003; Li &
Ren, 2006). Our previous report indicated that cardiomyocyte contractile dysfunction caused
by acute alcohol exposure is associated with a reduced Akt activity but an enhanced AMPK
activation (Guo et al., 2010; Li & Ren, 2006). ALDH2 overexpression reconciled the
dampened phosphorylation of Akt and AMPK along with facilitated autophagy in response
to alcohol intake. Given that activation of AMPK promotes while activation of Akt
suppresses autophagy (Ma et al., 2011), our data favor a pivotal role of Akt- rather than
AMPK-dependent regulation of autophagy in chronic alcoholism and ALDH2 transgene-
elicited myocardial responses. Our results revealed that inhibition in phosphorylation of Akt,
mTOR and STAT3 caused by alcohol intake was restored by ALDH2 overexpression,
favoring the notion that overexpression of ALDH2 rescues geometric and contractile
anomalies caused by alcohol intake by inhibiting alcohol-induced autophagy through an
Akt-mTOR-STAT3 dependent mechanism (Ge & Ren, 2011). However, given that acute
alcohol challenge compromises cardiac contractile function in conjunction with facilitating
the activation of AMPK, which should trigger autophagy induction (Guo et al., 2010),
caution needs to be taken with regards to the role of autophagy in the regulation of cardiac
function during various stages of alcoholism.

More recent findings from our group suggested that ALDH2 may execute its protective
effect against alcoholic heart injury and autophagy by restoring Notch signaling (Ge & Ren,
2011). Inhibition of Notch1 with the γ-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-1-
alany1]-S-phenyglycine t-butyl ester (DAPT) exaggerated acute ethanol exposure-induced
cardiomyocyte contractile dysfunction, apoptosis and autophagy. In our hands, ALDH2
ablated alcohol-induced suppression of phosphorylation of mTOR and STAT3. mTOR
complex 1 (mTORC1) was shown to positively regulate Notch signaling through STAT3 in
the regulation of cell differentiation (Ma et al., 2010). In addition, development of tumors as
a result of hyperactive mTOR signaling is often associated with aberrant high STAT3/Notch

Zhang and Ren Page 11

Pharmacol Ther. Author manuscript; available in PMC 2012 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



activity, while inhibition of Notch signaling extends survival (Ma et al., 2010). Although the
role of Notch has not been elucidated in the regulation of autophagy and alcoholic
complications, the fact that the Notch pathway acts as a positive regulator of the PI3K/Akt/
mTOR pathway favors its likely important role in the regulation of autophagy and
consequently cardiac function (Chan et al., 2007).

7. Summary and clinical perspectives
ALDH2 is capable of mitigating cardiac remodeling and myocardial dysfunction following
chronic alcohol ingestion (Doser et al., 2009), possibly through facilitated acetaldehyde
detoxification. Blood acetaldehyde levels are ∼10-fold higher in humans with defective
ALDH2 (e.g., Asians and African Americans) than normal individuals following alcohol
ingestion. Allelic variation of ALDH genes, especially ALDH2, due to a point mutation in
the active ALDH2*1 gene, significantly alters vulnerability to alcoholism and alcoholic
complications. Using genetically modified ALDH2 models, several studies have suggested a
cardioprotective role of ALDH2 to counteract cardiac remodeling and myocardial
dysfunction following alcohol intake. Therefore, ALDH2 may possess important therapeutic
potential against alcoholic and other forms of myocardial damage. Because convincing
human case studies on interaction between ALDH2 gene polymorphisms and heart function
following chronic alcohol intake are lacking, caution must be taken when evaluating the role
of ALDH2 and acetaldehyde detoxification in the pathogenesis and management of
alcoholic cardiomyopathy.
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4-HNE 4-hydroxy-2-nonenal

ADH Alcohol dehydrogenase

ALDH Aldehyde dehydrogenase

CYP2E1 Cytochrome P450 2E1
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ER Endoplasmic reticulum

GTN Glyceryl trinitrate

HUVEC Human umbilical vein endothelial cells
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ROS Reactive oxygen species

SERCA Sarco(endo)plasmic reticulum Ca2+-ATPase

SR Sarcoplasmic reticulum
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Fig. 1.
Ethanol metabolism pathway. Ethanol is metabolized into acetaldehyde through the
cytosolic enzyme alcohol dehydrogenase (ADH), the microsomal enzyme cytochrome P450
2E1 (CYP2E1) and the peroxisomal enzyme catalase. The ADH enzyme reaction is the main
ethanol metabolic pathway involving an intermediate carrier of electrons, namely
nicotinamide adenine dinucleotide (NAD+), which is reduced by two electrons to form
NADH. Acetaldehyde is metabolized mainly by aldehyde dehydrogenase 2 (ALDH2) in the
mitochondria to acetate and NADH before being cleared into the systemic circulation.
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Fig. 2.
Involvement of ALDH2 enzyme in the regulation of multiple organ functions. GTN =
glyceryl trinitrate; PKC = protein kinase C.

Zhang and Ren Page 22

Pharmacol Ther. Author manuscript; available in PMC 2012 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zhang and Ren Page 23

Table 1

Examples of ALDH2 polymorphisms and associated pathophysiological responses.

ALDH2 genotype Glu487Lys ALDH activity Effect Reference

ALDH2*2/2 Lys/Lys Inactive Less alcohol consumption, highest alcohol sensitivity,
less periodontitis progression

(Nishida et al., 2010)

Facial flushing, nausea, drowsiness, headache,
positive patch testing after drinking

(Harada et al., 1981;
Ishibashi et al., 2010)

A risk conferring factor for alcohol dependence (Vaswani et al., 2009)

Decreased suicide behavior (Hishimoto et al., 2010)

Increased risk of myocardial infarction (Jo et al., 2007)

Increased morbidity of osteoporosis (Yamaguchi et al., 2006)

Increased risk of esophageal cancer (Yang et al., 2010)

ALDH2*1/2 Glu/Lys Inactive Suicide behavior in male (Hishimoto et al., 2010)

Increased risk of squamous cell carcinoma of upper
aerodigestive tract, head and neck cancer in moderate
and heavy drinkers

(Yokoyama et al., 2010)

Increased risk of myocardial infarction (Jo et al., 2007)

Increased risk of esophageal cancer among never/
rare, moderate and heavy drinkers, as well as among
ex-drinkers.

(Yang et al., 2010)

ALDH2*1/1 Glu/Glu Active Higher alcohol consumption, lowest alcohol
sensitivity

(Nishida et al., 2004)

Decreased facial flushing, nausea, drowsiness,
headache, positive patch testing after drinking

(Harada et al., 1981;
Ishibashi et al., 2010)

Increased suicide behavior (Hishimoto et al., 2010)

Increased colorectal cancer risk (Gao et al., 2008)

Decreased risk of myocardial infarction (Jo et al., 2007)
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