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Abstract
There is compelling evidence that treponemes are 
involved in the etiology of several chronic diseases, 
including chronic periodontitis as well as other 
forms of periodontal disease. There are interesting 
parallels with other chronic diseases caused by 
treponemes that may indicate similar virulence 
characteristics. Chronic periodontitis is a polymi-
crobial disease, and recent animal studies indicate 
that co-infection of Treponema denticola with other 
periodontal pathogens can enhance alveolar bone 
resorption. The bacterium has a suite of molecular 
determinants that could enable it to cause tissue 
damage and subvert the host immune response. In 
addition to this, it has several non-classic virulence 
determinants that enable it to interact with other 
pathogenic bacteria and the host in ways that are 
likely to promote disease progression. Recent 
advances, especially in molecular-based method-
ologies, have greatly improved our knowledge of 
this bacterium and its role in disease.

KEY WORDS: chronic periodontitis, polymicro-
bial biofilms, immunomodulation, outer sheath 
vesicles.

The Treponemes and Disease

Oral treponemes, along with over 600 other bacterial species, exist as part 
of a polymicrobial biofilm accreted to the tooth surface in the gingival 

crevice (Kolenbrander et al., 2002; Ellen and Galimanas, 2005; Dewhirst
et al., 2010). Treponemes play a role in the etiology of several chronic diseases 
of humans including syphilis and yaws (Treponema pallidum), periodontal dis-
eases including chronic periodontitis and acute necrotizing ulcerative gingivi-
tis (Treponema denticola, Treponema lecithinolyticum, Treponema socranskii, 
and others), and endodontic infections and some acute dental abscesses (Sela, 
2001; Foschi et al., 2006; Holt and Ebersole, 2006; Robertson and Smith, 
2009). In addition, treponemes have been implicated in the development of 
chronic diseases of domestic animals, including periodontal diseases of dogs 
(Nordhoff et al., 2008b), bovine digital dermatitis of dairy cattle (Choi et al., 
1997; Klitgaard et al., 2008; Nordhoff et al., 2008a), and contagious ovine 
digital dermatitis (Dhawi et al., 2005; Sayers et al., 2009).

Treponemes are members of the Spirochaetes phylum, a clade now 
believed to be distinct from both Gram-positive and Gram-negative bacteria, 
that is believed to have undergone extensive horizontal gene transfer with 
Archae and possibly with eukaryotic organisms (Ibba et al., 1997; Brown
et al., 1998, 2001; Bond and Francklyn, 2000; Wolf et al., 2001; Henz et al., 
2005; Paster and Dewhirst, 2006). It has been proposed that all treponemes 
descended from a common spirochetal ancestor and, as a taxon, have evolved 
a range of unique characteristics, including virulence determinants, metabolic 
pathways, solute transport systems, and surface-binding proteins due to their 
evolutionary trajectory (Paster and Dewhirst, 2000; Seshadri et al., 2004). 
However, this hypothesis remains to be comprehensively tested. The sequenc-
ing of the complete genome of T. pallidum in 1998, T. denticola ATCC 35405 
in 2004, and the recent release of the T. lecithinolyticum OMZ684T and 
Treponema vincentii ATCC 35580 sequences have already proven invaluable 
to treponeme research and will continue to illuminate the evolution and viru-
lence characteristics of these species, especially as other genome sequences 
become available (Fraser et al., 1998; Seshadri et al., 2004; Dewhirst et al., 
2010; http://www.jcvi.org/, www.homd.org/). Currently, genomic compari-
sons with other treponemes and spirochetes are facilitating a more targeted 
selection of potential T. denticola virulence factors for detailed investigation.

The numbers of both cultivated and uncultivated Treponema phylotypes 
reported in recent years have rapidly increased, mainly due to the mass of data 
obtained from efforts to sequence genes encoding 16S rRNA (Choi et al., 
1994; Wyss et al., 2004; Demirkan et al., 2006; Molbak et al., 2006; Nordhoff 
et al., 2008a; Pringle et al., 2008, 2009; Evans et al., 2009; Sayers et al., 
2009; Yano et al., 2009). There are currently 49 species of oral Treponema 
listed on the Human Oral Microbiome Database (Dewhirst et al., 2010), the 
best-characterized being T. denticola, Treponema amylovorum, T. lecithino-
lyticum, Treponema maltophilum, Treponema medium, Treponema parvum, 
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Treponema pectinovorum, T. socranskii, and T. vincentii (www
.homd.org/).

Within the oral cavity, treponemes are most often associated 
with diseases of the periodontium. However, these treponemes 
are members of the normal oral microbiota of healthy individu-
als, albeit in very low numbers, and even those associated with 
disease cannot be considered frank pathogens. In this article, we 
will concentrate on the virulence characteristics of oral trepo-
nemes, and particularly T. denticola, in relation to chronic peri-
odontitis. When considering the virulence characteristics of 
T. denticola, it is imperative to understand that it is part of a 
pathogenic bacterial consortium, and its interactions with other 
bacterial species are important for disease pathology. Therefore, 
the relationship between T. denticola and other bacteria involved 
in disease progression will also be addressed.

Polymicrobial Nature of Chronic 
Periodontitis

Chronic periodontitis is a polymicrobial disease that results from 
the overgrowth of a limited number of bacterial species that are 
normal members of the oral microbiota. It is widely accepted that 
T. denticola, Porphyromonas gingivalis, and Tannerella forsythia 
form a bacterial consortium, often referred to as the ‘Red 
Complex’, that is strongly associated with the clinical progression 
of chronic periodontitis (Lamont and Jenkinson, 1998; Socransky 
et al., 1998; Holt and Ebersole, 2005). The levels of P. gingivalis 
and T. denticola in subgingival plaque have been shown to allow 
for prediction of periodontal breakdown in a longitudinal clinical 
trial (Byrne et al., 2009). The unifying features of the Red 
Complex bacteria are their extracellular proteolytic activity, their 
complex anaerobic fermentations of amino acids, production of 

toxic metabolites, and outer membrane (or sheath) vesicles. Of 
the three species, only the treponeme is motile and able to respond 
chemotactically to environmental stimuli. The in vivo interactions 
of these species are still poorly characterized, but some studies 
have indicated that P. gingivalis may be needed for T. denticola 
colonization and presence in subgingival plaque (Simonson et al., 
1992; Sela, 2001). A recent study of the bacterial composition of 
subgingival plaque in individuals with chronic periodontitis 
(Byrne et al., 2009) showed that P. gingivalis and T. denticola and 
T. forsythia were routinely found together in subgingival plaque 
(Fig. 1). Interestingly, P. gingivalis or T. denticola were rarely 
found in subgingival plaque without T. forsythia (Fig. 1). Mineoka 
et al. (2008) have recently shown a similar relationship between 
T. forsythia and P. gingivalis. T. forsythia has also been found to 
be more prevalent than P. gingivalis in subgingival plaque 
(Haffajee et al., 2006; Colombo et al., 2009). This may suggest 
that T. forsythia colonizes plaque before P. gingivalis and T. den-
ticola. Recently, Zijnge et al. (2010) used fluorescent in situ 
hybridization to show that Tannerella sp. were located in the 
intermediate layer of subgingival plaque, whereas P. gingivalis. 
tended to be found in micro-colonies in the top layer, and 
Treponemes were found outside the top layer. These results
are consistent with the proposal that T. forsythia may be a neces-
sary precursor species for colonization by T. denticola and
P. gingivalis. The interactions within the Red Complex species 
and with other newly identified species and the timing of coloni-
zation and proliferation clearly need further study.

Determination of Virulence - Animal 
Models of Disease

Virulence is defined as the capacity of a pathogen, usually a 
micro-organism, to cause disease. For the virulence factors of 
T. denticola to be determined, the role of this bacterium in dis-
ease must be clearly defined, and in recent times, animal models 
have been developed to examine this role. The animal model of 
disease allows key elements of the disease process to be inves-
tigated under the complex conditions found in vivo; however, 
the initiation of “disease” in animal models is, by necessity, 
induced and, of course, differs from natural pathogenesis in 
humans (Arnett and Viney, 2007). Animal models of chronic 
inflammatory diseases are problematic (Radbruch and Isaacs, 
2009), especially for those diseases such as chronic periodontitis 
that are caused by an overgrowth of members of the normal 
microbiota. Despite these limitations, animal models of disease 
have proven invaluable for determining the pathogenicity of 
bacteria and providing insight into their potential virulence fac-
tors. Murine subcutaneous abscess models of disease have been 
used to investigate the virulence of T. denticola and other oral 
treponemes and the pathogenicity of polymicrobial infections 
(Kesavalu et al., 1997; Gemmell et al., 2002). As a subcutane-
ous monoinfection T. denticola, T. pectinovorum, or T. vincentii 
produced localized abscesses (Kesavalu et al., 1997, 1998). In 
comparison, at similar inoculum sizes, P. gingivalis produced 
more severe, spreading ulcerative lesions remote from the site of 
infection (Kesavalu et al., 1998; O’Brien-Simpson et al., 2000). 
At high doses of P. gingivalis in the subcutaneous abscess 
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Figure 1.  Combinations in which P. gingivalis, T. denticola, and
T. forsythia were found in subgingival plaque that had quantifiable 
levels of at least one of these species, by real-time PCR, in 41 sites of 
37 individuals previously diagnosed with chronic periodontitis. The 
majority of sites were colonized by all three species, and P. gingivalis 
was rarely detected without the presence of T. denticola and
T. forsythia The individuals had completed initial treatment and been 
on a maintenance program for a minimum of six months in the 
Specialist Periodontics Department of the Royal Melbourne Dental 
Hospital, Australia (Byrne et al., 2009).
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model, addition of T. denticola had no effect on the formation 
and size of the spreading lesion; however, at low doses of 
P. gingivalis, T. denticola co-infection significantly enhanced 
tissue damage (Kesavalu et al., 1998). Analysis of these data 
indicates not only that the presence of P. gingivalis was needed 
for invasion and extensive tissue damage, but also that T. denti-
cola greatly facilitated this process.

Although broadly predictive of disease, the relevance of 
these abscess models to chronic periodontitis has been ques-
tioned, and more appropriate models have been developed. In 
recent years, murine alveolar (periodontal) bone loss models 
have been adapted to test the virulence of T. denticola and poly-
microbial infections. These studies reported that intra-oral inoc-
ulations with T. denticola resulted in colonization of the oral 
cavity of the animal, induction of a specific immune response, 
and significant alveolar bone loss (Kesavalu et al., 2007; SF Lee 
et al., 2009). Furthermore, a polymicrobial intra-oral inocula-
tion of P. gingivalis, T. denticola, and T. forsythia at a 1:1:1 cell 
ratio with the same total number of bacterial cells caused sig-
nificantly higher levels of bone resorption than those caused by 
mono-inoculations (Kesavalu et al., 2007). In a recent study 
using a murine model of periodontal disease (O’Brien-Simpson 
et al., 2005; Pathirana et al., 2007), intra-oral inoculation with a 
1:1 ratio of T. denticola:P. gingivalis cells caused the same level 
of alveolar bone loss as intra-oral inoculation with a 40-fold 
greater number of P. gingivalis cells inoculated alone (unpub-
lished data). Analysis of these data together suggests a signifi-
cant role of T. denticola in the tissue damage associated with 
chronic periodontitis, and demonstrates the importance of a 
polymicrobial infection for the initiation and progression of 
disease. The continuing development of these models will allow 
for the testing of T. denticola mutants lacking specific gene 
products, which will greatly improve our knowledge of T. den-
ticola virulence factors.

Interbacterial binding and localization 
of t. Denticola with other species

T. denticola exists as part of a complex, structured multispecies 
biofilm (subgingival plaque) in the relatively protected region of 
the gingival crevice or periodontal pocket, which is largely pro-
tected from the shear forces associated with salivary flow and 
the effects of mastication. T. denticola tends to inhabit the 
deeper periodontal pockets and is not an early colonizer of sub-
gingival plaque (Kolenbrander et al., 2002). Treponemes, 
including T. denticola, have been reported to be located on the 
surface of the dense subgingival bacterial biofilms, at the inter-
face of the biofilms and the gingival epithelium (Kigure et al., 
1995; Ellen and Galimanas, 2005; Zijnge et al., 2010).

Interspecies bacterial binding plays a vital role in biofilm 
development and in the co-location of bacterial species. T. den-
ticola binds weakly to fusobacteria in an interaction mediated by 
the carbohydrate moiety of the T. denticola major sheath protein 
(Msp, see below) and the galactose-binding lectin receptor of 
the fusobacteria (Kolenbrander et al., 1995; Rosen et al., 2008; 
Kaplan et al., 2009). T. denticola also binds to the commensal, 
early-colonizing Streptococcus crista (Yao et al., 1996). These 

interactions may be important for T. denticola to initially colo-
nize sites and persist during health. T. denticola has been shown 
to bind specifically to both P. gingivalis and T. forsythia with 
similar avidity, which may explain the close association of the 
species (Fig. 2a), and these interactions are mediated to some 
extent by T. denticola dentilisin or Msp (see below). However, 
co-aggregation of the bacteria was not reduced in T. denticola 
dentilisin- or Msp-deficient mutants, and pre-incubation of 
T. denticola with P. gingivalis fimbriae did not prevent its ability 
to co-aggregate with P. gingivalis (Yao et al., 1996; Ishihara
et al., 1998; Hashimoto et al., 2003b; Rosen et al., 2008). This 
indicates that this interaction is multimodal, involving different 
proteins and possibly carbohydrate moieties. This close associa-
tion of species will enhance the repertoire of proteolytic and 
other enzymes available to each species.

Leucine-Rich Repeat Proteins

A T. denticola leucine-rich repeat protein (LrrA) has recently 
been shown to play a role in binding to T. forsythia, but not to
P. gingivalis or F. nucleatum, and to mediate binding to epithe-
lial cells and to promote swarming (Ikegami et al., 2004; Rosen 
et al., 2008). Interestingly, Lrr proteins have been shown to be 
important for epithelial cell invasion and biofilm formation by 
P. gingivalis. They are also important for epithelial cell invasion 
and virulence in a mouse alveolar bone loss model by T. for-
sythia (Sharma et al., 1998, 2005; Capestany et al., 2006; 
Inagaki et al., 2006; Dashper et al., 2009). In both of these spe-
cies, the leucine-rich repeat proteins are members of the CTD 
family of proteins that are secreted and attached to the surface 
by novel mechanisms (Seers et al., 2006; Veith et al., 2009). 
There are two characterized Lrr proteins in P. gingivalis. In the 
T. forsythia genome, one Lrr protein is characterized (BspA) and 
another 5 predicted. Six Lrr proteins are predicted in the T. den-
ticola genome. Together, this suggests that this family of pro-
teins plays an important role in the virulence of these species, 
and that these Lrr proteins warrant further attention.

Metabolic Cooperativity

Close association can minimize the dilution of metabolites and 
signaling molecules exchanged between interacting species, 
thereby facilitating efficient metabolic communication (Grenier, 
1992). It is likely that some of the bacterial species to which oral 
treponemes bind have some form of metabolic interaction with 
them. Consistent with this concept, it has been shown that 
T. denticola and P. gingivalis display symbiosis in protein deg-
radation, nutrient utilization, and growth promotion (Grenier, 
1992; Nilius et al., 1993; Kigure et al., 1995; Hollmann and Van 
der Hoeven, 1999; Grenier and Mayrand, 2001; Yoneda et al., 
2005).

When grown together in continuous culture, P. gingivalis and 
T. denticola bound to each other (Fig. 2a) and developed a stable 
cell ratio of 6:1, respectively, as determined by real-time PCR 
(unpublished data). This indicates that they do not directly com-
pete under these specific growth conditions, since if this were 
the case, one species would eventually displace the other.
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Metabolic End-Products

Relatively little is known regarding the metabolism of T. denti-
cola, and many of its metabolic pathways are likely to be novel 
(Rother et al., 2001; Seshadri et al., 2004; Chu et al., 2008). It 
primarily utilizes serine, alanine, cysteine, and glycine when 
grown in vitro and generates fermentation products including 
acetate, lactate, succinate, formate, pyruvate, ethanol, carbon 
dioxide, hydrogen sulfide (H2S), and ammonia (Hespell and 
Canale-Parola, 1971). These metabolites can accumulate in high 
concentrations and could influence the composition of bacterial 
species within the polymicrobial biofilm as well as affecting 
host tissue (Carlsson, 1997; Kuramitsu et al., 2007). These com-
pounds can penetrate periodontal tissue and disrupt host cell 
activity and the host immune response (Tonetti et al., 1987; 
Bartold et al., 1991; Eftimiadi et al., 1993; Kurita-Ochiai et al., 
1995; Carlsson, 1997; Niederman et al., 1997; Kuramitsu et al., 
2007). The short-chain fatty-acid fermentation products have 
been suggested to play a role in disease progression (Niederman 
et al., 1997). Volatile sulfur compounds such as methyl mercap-
tan and H2S, highly toxic metabolites produced by T. denticola 
and other oral bacteria, are thought to play an important role in 
periodontal disease (Yoshimura et al., 2000). Methyl mercaptan 
is derived from methionine by the action of methionine-α-
deamino-γ-mercaptomethane lyase (METase), which has been 
shown to be present in both T. denticola and P. gingivalis, but is 
absent in mammals (Yoshimura et al., 2000; Fukamachi et al., 
2005). Methyl mercaptan reduces protein synthesis by human 
gingival fibroblasts and inhibits cell migration in periodontal 
ligament cells (Johnson et al., 1992; Lancero et al., 1996). Mice 
infected with a P. gingivalis mutant lacking METase had a

significantly higher survival rate relative to the wild-type strain 
W83 (Yoshimura et al., 2000). T. denticola METase has a much 
higher affinity for methionine than P. gingivalis METase, indi-
cating that, at low concentrations, T. denticola may be the major 
producer of methyl mercaptan (Fukamachi et al., 2005).

Hydrogen sulfide is a major metabolic end-product of the 
fermentation of cysteine by some anaerobic bacteria. H2S is 
cytotoxic for a variety of host cells, including gingival fibro-
blasts and epithelial cells (Beauchamp et al., 1984; Reiffenstein 
et al., 1992; Chu et al., 1999; Yoshimura et al., 2000). T. denti-
cola is the only known oral bacterium to contain the three-step 
pathway required to produce H2S, from the abundant host tri-
peptide, glutathione (Chu et al., 2008). This pathway contains 
cysteinylglycinase, γ-glutamyltransferase, and the novel 
enzyme, cystalysin (Makinen and Makinen, 1997; Chu et al., 
2002). H2S production via cystalysin has been shown to be the 
mechanism by which T. denticola disrupts erythrocyte mem-
branes, thereby explaining its original description as a hemoly-
sin (Chu et al., 1995). H2S also has both pro- and 
anti-inflammatory effects (Kimura, 2009), and a recent study by 
Chen et al. showed that H2S production by P. gingivalis stimu-
lated production of the pro-inflammatory cytokine interleukin-8 
(IL-8) by gingival epithelial cells (Chen et al., 2010). The 
stimulation of both pro- and anti-inflammatory mediators may 
serve to dysregulate the host’s defense.

Biofilms

Survival and virulence of oral treponemes are dependent on 
their ability to form biofilms, grow in this milieu, interact with 
the other species in the biofilm, and, presumably, escape from 

Figure 2.  Electron micrographic images of T. denticola co-cultured with P. gingivalis and as a monospecies biofilm. (a) Electron micrograph of
P. gingivalis and T. denticola growing in continuous co-culture, showing the intimate association of the bacteria and the putative vesicles on the surface 
of the treponeme (arrows). The bacteria were co-cultured under conditions similar to those described previously for the culture of T. denticola in Oral 
Bacterial Growth Medium (Orth et al., 2010) and P. gingivalis (Ang et al., 2008). T. denticola was initially inoculated into the chemostat, and once 
cell density had stabilized, P. gingivalis was added to the continuous culture. (b) Electron micrograph of T. denticola biofilm formed on a glass rod 
submerged in continuous culture after 14 days’ incubation as described previously (Mitchell et al., 2010). Outer sheath vesicles are indicated by 
arrows. Morphological variations of T denticola cells in the form of “spherical bodies” can also be seen in this micrograph.
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the biofilm, depending on environmental conditions. Direct 
microscopy of freshly prepared samples of periodontal pocket 
plaque most often reveals planktonic spirochetes of diverse size 
swimming among a rich variety of other highly motile bacterial 
species. The surface of the adjacent biofilm usually has a con-
centrated sessile population of the same morphotypes (Ellen and 
Galimanas, 2005; Zijnge et al., 2010).

When co-cultured, P. gingivalis and T. denticola form sig-
nificantly more biofilm compared with monoculture, with the 
resultant polymicrobial biofilms adhering more tightly to the 
substratum than the monospecific biofilms (Yamada et al., 
2005). Molecules involved in polymicrobial biofilm formation 
have been examined in a panel of T. denticola mutants. A
T. denticola CfpA-deficient mutant, which lacks cytoplasmic 
filament, was unable to form a mixed biofilm with P. gingivalis, 
while an immotile FlgE mutant and an Msp-deficient mutant 
displayed reduced biofilm-forming ability with P. gingivalis 
(Yamada et al., 2005).

Obtaining a model system for biofilm growth of pure cul-
tures of T. denticola has been reported as problematic (Vesey 
and Kuramitsu, 2004), and, as a result, little work has been con-
ducted on T. denticola biofilms. To determine the effects of 
biofilm growth on T. denticola, investigators have recently 
developed a continuous-culture system that allowed for the cul-
tivation of biofilm and planktonic cells simultaneously in the 
one vessel. This system was then used specifically to determine 
the effects of biofilm growth relative to the planktonic state. In 
the biofilm, 126 T. denticola genes were differentially expressed, 
with a fold change of 1.5 or greater (Mitchell et al., 2010). In 
biofilm cells, there was an up-regulation of genes encoding 
several putative virulence factors, including cystalysin and the 
outer membrane dentilisin protease lipoprotein complex, toxin-
antitoxin systems, and a family of putative transposases 
(Mitchell et al., 2010).

Toxin-Antitoxin Systems

Toxin-antitoxin (TA) systems consist of both a toxin, which 
inhibits essential cell components, and an antitoxin, which 
counteracts the toxin. The antitoxin component is generally 
labile, requiring constant synthesis to remain active in the cell, 
whereas the toxin component is stable. There is a growing body 
of evidence suggesting that TA systems are involved in pro-
grammed cell death, bacterial stringent response to amino acid 
starvation, and reversible bacteriostasis (persistence or dor-
mancy), and that these and other roles influence biofilm forma-
tion (Kim et al., 2009; Makarova et al., 2009). T. denticola 
35405 contains 33 predicted TA systems, and a high proportion 
of these (25/33) showed an increase in expression when the 
bacterium was grown as a monospecific biofilm (Mitchell et al., 
2010). The large number of these systems in T. denticola and 
their increased levels of expression in mature biofilm suggest 
that not only may they play a role in biofilm persistence, but 
they may also represent a mechanism of resistance to various 
environmental assaults, including diverse antibiotics and other 
drugs (Lewis, 2000; Jayaraman, 2008).

Transposases

T. denticola possesses a large, unusual family of genes with 
significant similarity to transposases. Transposases are enzymes 
that "cut and paste" mobile genetic elements from one position 
to another within the genome. Twenty-five of the 35 putative 
transposase genes were significantly up-regulated in the biofilm 
relative to planktonic cells. This could lead to extensive chro-
mosomal re-arrangement, resulting in the development of popu-
lation-level diversity, or may represent a novel gene-regulatory 
mechanism (Mitchell et al., 2010). A functional lysogenic bac-
teriophage, φtd1, was discovered during T. denticola biofilm 
growth that may be capable of transferring virulence-related 
genes through horizontal gene transfer. The bacteriophage is 
37,920 bp in length and has a GC content of ~37%, similar to 
that of T. denticola (Mitchell et al., 2010). Analysis of these data 
together indicates that there is a higher potential for genetic 
mobility in T. denticola when growing as a biofilm, and that 
these systems are important for biofilm persistence and there-
fore virulence of this bacterium.

Outer Sheath Proteins

Cell-surface components, especially proteins, act as the sensors 
and effectors of interactions with the host and other bacteria and 
are largely the targets of the host adaptive immune response. 
One of the unifying features of the Red Complex bacteria that 
are responsible for chronic periodontitis progression is their 
high levels of extracellular proteolytic activity that is mediated 
by cell-surface-located proteases. Since the outer membrane of 
T. denticola is significantly different from that of Gram-negative 
bacteria, it is usually referred to as the outer sheath.

Dentilisin

Dentilisin has been proposed to be a major T. denticola viru-
lence factor, since it is an active cell-surface-located protease 
that cleaves at phenylalanyl/alanyl and prolyl/alanyl bonds 
(Uitto et al., 1988a,b; Grenier et al., 1990; Makinen et al., 1995; 
Ishihara et al., 1996; Beausejour et al., 1997). It contributes to 
disease progression by disrupting or modulating intercellular 
host signaling pathways and degrading host cell matrix proteins. 
Dentilisin potentially allows for penetration of epithelial cell 
layers by T. denticola by degradation of intercellular adhesion 
proteins (Chi et al., 2003) and modulates host cell immune 
responses by degradation of interleukin-1β (IL-1β), IL-6, tumor 
necrosis factor alpha (TNF-α), and monocyte chemoattractant 
protein 1 (Miyamoto et al., 2006; Okuda et al., 2007). The pro-
tease occurs as part of a complex of three proteins, the 72-kDa 
subtilisin-like protease (dentilisin, PrtP, chymotrypsin-like pro-
tease) and two auxiliary proteins, PrcA1 (~40 kDa) and PrcA2 
(~30 kDa) (Lee et al., 2002; Ishihara et al., 2004). Recent work 
has shown that the dentilisin protease complex is encoded by an 
operon containing three genes, prcB, prcA, and prtP (Bian et al., 
2005). The protein encoded by prcA is hydrolyzed to produce 
two proteins (PrcA1 and PrcA2) of various sizes, depending on 
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the strain. prcB is expressed at a lower level than prtP and prcA, 
and although recombinant PrcB associates with PrtP, its role in 
complex formation and activity is currently unknown (Bian 
et al., 2005). Dentilisin may also play a role in processing of 
other cell-surface components, such as Msp, and is proposed to 
associate with this protein. As noted above, dentilisin is also 
proposed to interact with the fimbriae of P. gingivalis and par-
ticipate in the co-aggregation of the bacteria. The dentilisin-
PrcA complex has been compared with the major virulence 
factors of P. gingivalis, the RgpA-Kgp proteinase-adhesin com-
plexes, since each complex adheres to and degrades fibrinogen 
(Bamford et al., 2007). It has been suggested that T. denticola 
and P. gingivalis synergistically hydrolyze fibrinogen, thereby 
promoting vascular disruption, bleeding, and inflammation and 
retarding tissue repair (Bamford et al., 2007).

Trypsin-Like Protease Activity

Trypsin-like protease activity has been reported from T. dentic-
ola (Ohta et al., 1986). The responsible enzyme, oligopeptidase 
B, is encoded by opdB (TDE2140), has similarity to prolyl oli-
gopeptidases, and has been shown to cleave only C-terminal to 
Arg-residues (Fenno et al., 2001; Lee and Fenno, 2004). In addi-
tion to the 78-kDa OpdB described by Fenno et al. (2001), a 
second putative OpdB (TDE1195) of the same mass and sharing 
45% amino acid sequence similarity (28% identity) was found 
by Veith et al. (2009). Although the activity of this putative 
protease is unknown, it is possible that the second OpdB may be 
a Lys-specific protease, which together would explain the trypsin-
like proteolytic activity described for T. denticola. Per cell,
T. denticola 35405 has approximately ten-fold less Arg-specific 
activity than P. gingivalis W50 when tested with the chromo-
genic substrate BApNA (unpublished).

Major Sheath Protein

Msp, a member of the Tpr (T. pallidum repeat) protein family, is 
the most abundant protein in the T. denticola outer membrane 
(or sheath) and is one of the most-studied T. denticola proteins. 
It is a β-barrel, integral outer sheath protein that acts as a porin 
and has surface-exposed loops that are able to bind to a variety 
of host proteins. Msp has been proposed to mediate colonization 
of host tissues and has cytopathic pore-forming activity against 
cultured epithelial cells (Fenno and McBride, 1998; Ellen, 
2006).

Msp appears to be a ubiquitous outer sheath protein in oral 
treponemes, although there is considerable variation in the 
sequence among species and strains (Fenno et al., 1997; Lee
et al., 2005). The T. denticola Msps can be divided into 3 domains, 
the highly conserved 203-residue N-terminal and 271-residue 
C-terminal domain, plus a central variable region of ~70 resi-
dues (Edwards et al., 2005). Differences in Msp may be a defin-
ing element of strain serotype, because the strain-specific Msp 
correlates with different serotypes (Capone et al., 2008). 
Edwards et al. showed that the variable region contains the 
dominant B-cell epitopes for animals immunized with T. denti-
cola cells. A recombinant Msp protein and fragments expressed 

in E. coli demonstrated that, in addition to its known binding to 
laminin and immobilized fibronectin, Msp also binds keratin, 
collagen Type 1, fibrinogen, hyaluronic acid, and heparin. The 
major binding epitopes were located in the N-terminal domain 
of the protein, and this region of the protein was surface-
exposed (Edwards et al., 2005).

Msp is one of the immunodominant T. denticola antigens 
recognized by human serum antibodies (Capone et al., 2008) 
and murine anti-T. denticola polyclonal antibodies (SF Lee
et al., 2009; Veith et al., 2009). Numerous studies have shed 
light on the mechanisms by which Msp interaction leads to actin 
remodeling and reorganization in host cells, and how this is 
likely to impair neutrophil chemotaxis and phagocytic activity 
(Batista da Silva et al., 2004; Puthengady et al., 2006; Amin
et al., 2007; Jobin et al., 2007; Magalhães et al., 2008). In con-
trast to the studies that showed induction of IL-8 expression 
from various cells following exposure to Msp, Brissette et al. 
(2008) showed that exposure to T. denticola did not induce IL-8 
production by primary gingival epithelial cells (PGEC). IL-8 
induces migration of neutrophils to sites of infection. 
Dysregulation of efficient neutrophil activation and migration is 
one means by which T. denticola could evade the host immune 
response and persist at a site. The T. lecithinolyticum Msp 
stimulates the up-regulation of signaling pathways in mono-
cytes, inducing IFN-β expression and IFN-stimulated genes (SH 
Lee et al., 2009).

Tp92 is a 92-kDa T. pallidum subspecies pallidum surface-
exposed antigen that induces a protective immune response 
(Cameron et al., 2000). Homologs of Tp92 have been identified 
in T. maltophilum, T. lecithinolyticum, T. socranskii, and T. den-
ticola. Antisera raised to recombinant T. denticola Td92 have 
been used to show surface exposure of Td92 and inhibition of 
T. denticola binding to KB epithelial cells (Jun et al., 2008). All 
oral treponeme Tp92 homologs induced production of various 
cytokines, cyclooxygenase-2 (COX-2), and prostaglandin E2 
from THP-1 cells and periodontal ligament cells, indicating a 
pro-inflammatory response.

Lipoproteins

Lipoproteins are the most abundant membrane-associated pro-
teins found in spirochetes, and T. denticola 35405 is predicted to 
have 166 of them, the highest number for any of the sequenced 
spirochetes (Setubal et al., 2006). Lipoproteins are acylated at 
the N-terminus of the mature protein, and this anchors the protein 
to a membrane. Veith et al. (2009) detected 20 lipoproteins under 
a single set of growth conditions, including 11 uncharacterized 
putative lipoproteins, 2 hemin-binding proteins (HbpA, HbpB), 
2 putative extracellular solute-binding lipoproteins, 4 putative 
oligopeptide/dipeptide ABC transporter peptide-binding pro-
teins, and the dentilisin complex-associated polypeptide (PrcA). 
Fourteen lipoprotein genes had significant changes in expression 
when T. denticola was grown as a biofilm, including the outer 
membrane hemin-binding protein A that, along with 3 other puta-
tive lipoprotein encoding genes, was down-regulated in the bio-
film (Mitchell et al., 2010). Analysis of these data indicates the 
importance of lipoproteins to the treponeme lifestyle.
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OppA is a 70-kDa cell-surface, membrane-associated lipo-
protein that has significant similarity to the solute binding pro-
tein of a highly conserved ATP-binding cassette-type transporter 
involved in peptide uptake and environmental signaling in a 
wide range of bacteria (Fenno et al., 2000). OppA can bind 
soluble host proteins such as plasminogen and fibrinogen, but 
not immobilized insoluble host proteins or epithelial cells. It has 
been proposed to act as an adhesin and to help decorate the 
surface of T. denticola with host proteins as a means of avoiding 
or delaying immune recognition. Group A streptococci and 
Streptococcus equi subsp. have been shown to be cleared more 
slowly from a host when coated with fibrinogen (Whitnack and 
Beachey, 1985; Poirier et al., 1989; Boschwitz and Timoney, 
1994; Ellen, 2006; Bamford et al., 2007).

FhbB is a small (11.4 kDa) surface-exposed T. denticola 
lipoprotein that binds complement regulatory proteins of the 
factor H (FH) family. By using T. denticola dentilisin-deficient 
mutants, it was determined that after binding FH, it is cleaved 
by dentilisin to yield a FH subfragment of ~50 kDa. FH bound 
to dentilisin-deficient mutants was not cleaved and retained its 
ability to serve as a co-factor for factor I in the cleavage of C3b. 
The role of this unique binding and cleavage in T. denticola 
virulence is as yet unresolved, but it is likely to be linked to 
epithelial cell binding and invasion, subversion of the comple-
ment cascade, or tissue invasion (McDowell et al., 2007, 2009).

Outer Sheath Vesicles

Gram-negative bacteria have long been known to produce outer 
membrane vesicles (OMVs) (Devoe and Gilchrist, 1973; 
Nowotny et al., 1982; Grenier and Mayrand, 1987). Initially 
thought to be a result of random blebbing of the outer mem-
brane, or sheath, producing small spherical vesicles of 50-100 
nm in diameter, more recent studies have revealed that OMV 
formation is a highly regulated process which may increase the 
fitness of the bacterium in response to environmental cues 
(Wensink and Witholt, 1981; Kato et al., 2002; Wai et al., 2003). 
OMVs are considered potent virulence factors, since they pos-
sess adhesins, toxins, and proteolytic enzymes, can mediate 
bacterial aggregation and invasion, are cytotoxic, and can 
modulate the host immune response (Kuehn and Kesty, 2005). 
Besides affecting the host, OMVs may be important for securing 
a niche in the competitive environment of subgingival plaque by 
eliminating competitors via the delivery of proteases and toxins 
(Kadurugamuwa and Beveridge, 1996; Allan and Beveridge, 
2003). OMVs also facilitate the remote delivery of labile signal-
ing molecules and prevent their degradation by other micro-
organisms (Z Li et al., 1996; Mashburn and Whiteley, 2005).

T. denticola outer sheath vesicles (OSVs) have been pro-
posed as a long-range virulence factor that can penetrate tissues 
more readily than the bacterium itself (Cimasoni and McBride, 
1987; Cockayne et al., 1989; Weinberg and Holt, 1991; Kuehn 
and Kesty, 2005). Application of T. denticola OSVs to Hep-2 
epithelial cell monolayers disrupted the tight junctions, which 
might facilitate penetration into underlying tissues (Chi et al., 
2003). However, the involvement of treponemal OSVs in dis-
ease remains to be properly explored. When these bacteria are 
grown in continuous co-culture with P. gingivalis, scanning 

electron microscopic analysis revealed not only their close asso-
ciation, but also the presence of OSV/OMVs on the surface of 
T. denticola (Fig. 2a). OSVs were also detected when T. denti-
cola was grown as a monospecific biofilm (Fig. 2b). Recently, it 
was demonstrated that T. denticola lipooligosaccharide (LOS) 
and Msp induce macrophage tolerance to further stimulation 
(Nussbaum et al., 2009). Considering these components are 
found on T. denticola OSVs, initial exposure of macrophages to 
these OSVs might limit the clearance of the bacterium during 
subsequent encounters.

Motility

Motility and chemotaxis, like biofilm formation and interspecies 
co-operation, are not considered to be classic virulence factors 
of bacteria. However, in the context of T. denticola and its role 
in disease progression, it is likely that they are essential for the 
virulence of the bacterium. Of the sequenced treponemes, 5-6% 
of the genome is dedicated to motility and chemotaxis, implying 
its importance for survival and disease progression in the host.

Periplasmic Flagella

Unlike the exposed flagella of most motile bacterial species, the 
spirochetal flagella are located within the periplasmic space 
between the outer sheath and cytoplasmic membrane (Canale-
Parola, 1978; Holt, 1978). In Treponema, up to 15 periplasmic 
flagella (PF) originate from each pole of the cell, entwine the cyto-
plasmic cylinder, and overlap at the cell center (Watson et al., 
1951; Bergey and Holt, 1984). The organization of PF in the pep-
tidoglycan-containing periplasm as well as other native cellular 
structures has recently been resolved by cryo-electron tomography 
(Izard et al., 2008, 2009). PF facilitate translocation in highly vis-
cous environments which would usually slow or immobilize most 
externally flagellated bacteria (Fenno and McBride, 1998). PF are 
protected from the immobilization effects of flagella-specific anti-
bodies produced by the host response to infection (Charon and 
Goldstein, 2002). Cytoplasmic filaments are cytoplasmic struc-
tures located directly beneath the PF. A CfpA-deficient mutant 
displayed reduced spreading ability compared with wild-type 
strains, implicating involvement of cytoplasmic filaments in motil-
ity (Izard et al., 2001; Vesey and Kuramitsu, 2004).

Chemotaxis

Chemotaxis allows motile bacteria to respond to environmental 
stimuli in a positive or negative manner. Genome sequencing and 
bioinformatic analyses predicted that T. denticola and T. pallidum 
possess a complete set of chemotaxis proteins required for signal 
perception, transduction, and adaptation. Environmental stimuli 
are detected through methyl-accepting chemotaxis proteins 
(MCPs) that traverse the inner membrane. These signals are 
transduced via the cytosolic chemotaxis proteins CheA, CheW,
and CheY that modulate the direction of flagellar motor rota-
tion. Adaptation in T. denticola is achieved via methylation/
demethylation of the MCPs by the regulatory proteins, CheR 
and CheB, in a manner similar to that of well-studied organisms 
such as E. coli (Sim et al., 2005). Surprisingly high numbers of 
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MCPs were identified in the T. denticola genome, suggesting che-
motaxis responses toward a variety of compounds that might 
reflect the complexity of its ecological niche (Seshadri et al., 
2004). Chemoattractants for T. denticola include glucose, serum, 
and albumin, which are possible indicators of damaged host tissues 
(Umemoto et al., 2001; Ruby et al., 2008). Allelic replacement 
mutagenesis of two MCP encoding genes, dmcA and dmcB, 
resulted in a decreased chemotactic response to serum and albumin 
(Kataoka et al., 1997; Li et al., 1999). As expected, a cheA knock-
out mutant, which lacks the central kinase of the chemotaxis path-
way, failed to respond chemotactically to serum (Lux et al., 2002).

Epithelial Model Systems

The ability of T. denticola to penetrate and migrate through 
cultured tissue has been used as a model system to assess viru-
lence (Lux et al., 2001). The immotile flgE flagella mutant (H 
Li et al., 1996) lost the ability to penetrate cultured layers 
formed by human gingival keratinocytes. The importance of a 
functional chemotaxis pathway for T. denticola virulence was 
underscored by the finding that a cheA mutant (Lux et al., 
2002), as well as dmcA and dmcB mutants lacking specific 
MCPs, displayed significantly impaired tissue penetration 
despite retaining motility (Kataoka et al., 1997; Li et al., 1999). 
These studies implied that chemotaxis and motility may be sig-
nificant for T. denticola, and presumably other oral treponemes, 
in the invasion of gingival tissues. Transcriptome analysis of T. 
pallidum showed significant up-regulation of genes involved in 
chemotaxis during infection (Smajs et al., 2005).

Tissue Penetration and 
Epithelial Cell Invasion

The role of bacterial tissue invasion and internalization by epi-
thelial cells in the progression of periodontitis is still unclear. 
There appears to be little evidence of extensive tissue penetra-
tion by T. denticola in human chronic periodontitis; however, T. 
denticola has been detected between junctional epithelium cells, 
which are normally tightly associated (Saglie et al., 1982). 
Biopsy of tissue from canine periodontal lesions showed exten-
sive tissue penetration by treponemes (Nordhoff et al., 2008b).

Invasion of, or internalization by, epithelial cells provides 
oral bacteria with a nutrient-rich environment that is partially 
protected from the host immune system. While not immediately 
contributing to disease, T. denticola may use the intracellular 
locale to persist safely and possibly replicate (Colombo et al., 
2007; Johnson et al., 2008). During treatment of disease, intra-
cellular bacteria are less likely to be physically removed by 
scaling and root planing and are more resistant to antibiotics. 
Furthermore, this intracellular population could constitute a 
reservoir of bacteria for the repopulation of treated subgingival 
sites in refractory periodontitis (Tribble and Lamont, 2010).

Lipooligosaccharides (Los)

LPS, also called endotoxin, forms the outer leaflet of the Gram-
negative bacterial outer membrane. The treponemal outer sheath 

does not have a typical LPS, and the treponemes lack genes 
encoding the necessary enzymes for LPS synthesis (Fraser et al., 
1998; Schultz et al., 1998; Norris and Weinstock, 2000; Schröder 
et al., 2000; Hashimoto et al., 2003a; Seshadri et al., 2004). The 
treponeme outer sheath (membrane) contains lipooligosaccha-
rides (LOS), however, that have functional similarities to LPS. 
The T. denticola LOS have a diacylglycerol lipid anchor plus a 
core region consisting of hexose-hexosamine-hexose, but lack 
heptose, 3-deoxy-D-manno-2-octulosonic acid, and β-hydroxy 
fatty acids, which are core components of LPS. Strikingly, the 
presence of a glycerol-hexose unit and two glycerol-hexadeca-
noic acid fragments in the lipid anchor indicates a glycolipid 
membrane anchor typically found in the lipoteichoic acid of 
Gram-positive bacteria (Schultz et al., 1998).

Immunomodulation and Immuno-Evasion

The host innate immune system is the first line of defense 
against bacterial infection. Inhibition of components of the 
innate immune system is obviously of great advantage to a bac-
terium that has been shown to associate closely with epithelial 
cells in vivo. T. denticola can evade aspects of the innate 
immune defense by preventing efficient binding of antimicro-
bial peptides, such as β-defensins, that are produced by epithe-
lial cells, and by inducing rapid efflux of some host defense 
peptides which enter the cytoplasm (Brissette and Lukehart, 
2007). Recently, T. denticola has also been shown to suppress 
the production of β-defensin 3 by human gingival epithelial 
cells (Shin et al., 2010).

TLR-Mediated Responses

Individual Toll-like receptors (TLRs) on the surfaces of host 
cells recognize structurally conserved, pathogen-associated 
molecular patterns, such as LPS, flagellin, and peptidoglycan. 
TLR activation leads to induction of inflammation-related genes 
important for limiting infection. However, dysregulation of the 
inflammatory response can lead to over-expression and contin-
ued expression of inflammatory mediators that can result in the 
tissue destruction characteristic of periodontitis.

Bacterial LPS is sensed by host epithelial cells and macro-
phages via binding to TLR4 that triggers a series of intracellular 
signaling systems, leading ultimately to production of inflam-
matory mediators and migration of macrophages and neutro-
phils to a site of infection (Dauphinee and Karsan, 2006). 
T. denticola LOS stimulates macrophages via TLR4 and MyD88 
(myeloid differentiation primary response gene 88) and induces 
macrophage tolerance to LPS. T. denticola LOS also stimulates 
fibroblasts, inducing them to produce a variety of inflammatory 
mediators, interleukin-6 (IL-6), IL-8, monocyte chemoattractant 
1, nitric oxide, and prostaglandin E2, as well as matrix metallo-
proteinase 3 (MMP-3) (Tanabe et al., 2008). Several signaling 
proteins have been shown to be phosphorylated following LOS 
stimulation of fibroblasts, including Fos, NF-κB p50, and 
NF-κB p65, indicating an inflammatory response.

In addition to LOS, other T. denticola cellular components 
can stimulate an immune response. Whole T. denticola cells and 
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Msp can activate macrophages in a TLR2-MyD88-dependent 
process, resulting in TNF-α production in a dose-dependent 
manner. These macrophages also became tolerant to stimulation 
by enterobacterial LPS (Nussbaum et al., 2009). The LPS toler-
ance induced by T. denticola components during polymicrobial 
infection or proliferation may be a general mechanism to evade 
bacterial clearance. In addition to induction of innate immune 
responses by TLR2 and TLR4 receptors, T. denticola cells also 
induce innate immune responses via a TLR2/TLR6 heterodimer 
with mitogen-activated protein kinases (MAPKs), extracellular 
regulated protein-serine kinases 1 and 2 (ERK1/2), and p38, 
playing major roles in the resulting pro- and anti-inflammatory 
cytokine production (Ruby et al., 2007).

T. denticola peptidoglycan can also stimulate factors of 
innate immunity in human macrophage-like cells, inducing 
inflammatory mediators including TNF-α, IL-1β, IL-6, IL-8, 
and the chemokine RANTES (regulated upon activation, normal 
T-cell expressed, and secreted) and matrix metalloproteinase 9 
(MMP-9) (Tanabe et al., 2009).

Immunohistochemistry of gingival tissues taken from 
patients undergoing periodontal therapy revealed high levels of 
TLR2 and TLR5 receptors in comparison with healthy tissues 
and that gingival epithelial cells can be stimulated to produce 
IL-1β and TNF-α in response to stimulation by the TLR2 and 
TLR5 ligands HKLM and flagellin (from Salmonella 
typhimurium), respectively (Beklen et al., 2009). The authors 
suggested that these antigens would also be present in other 
periodontal pathogens, such as the flagellin of T. denticola, and 
these could also stimulate host epithelial cells via TLR5 and 
thus may promote inflammation.

Conclusion

Treponemes, including T. denticola, are able to suppress host 
responses to LPS, which may allow for the persistence of the 
bacterial consortia found associated with periodontal disease. 
Furthermore, T. denticola LOS has been shown to stimulate 
osteoclastogenesis and matrix metalloproteinase expression, 
which could exacerbate periodontal pathology (Choi et al., 
2003). The characteristics of T. denticola that represent its major 
virulence factors in chronic periodontitis are: its motility and 
chemotaxis, which enable the bacterium to rapidly colonize new 
sites, penetrate deep periodontal pockets, and penetrate epithe-
lial layers; its ability to interact synergistically with other peri-
odontal pathogens on several levels; its ability to produce 
cytotoxic metabolites; and its ability to form biofilms and a 
range of cell-surface proteins to dysregulate the host defense to 
help protect the subgingival biofilm and cause host tissue 
destruction.
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