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Abstract: Cytoplasmic incompatibility induced by inher-
ited intracellular bacteria of arthropods, and Medea
elements found in flour beetles, are both forms of
postsegregation distortion involving the killing of embry-
os in order to increase the ratio of progeny that inherit
them. The recently described peel-zeel element of
Caenorhabditis elegans also uses this mechanism; like
Medea the genes responsible are in the nuclear genome
but it shares a paternal mode of action with the bacteria.
The peel-1 gene has now been shown to encode a potent
toxin that is delivered by sperm, and rescued by zygotic
transcription of the linked zeel-1. The predominance of
self-fertilization in C. elegans has produced an unusual
distribution pattern for a selfish genetic element; further
population and functional studies will shed light on its
evolution. The element might also have potential for use
in disease control.

Selfish genetic elements, including meiotic drive genes, homing

endonucleases, transposons, and B-chromosomes, employ a

fascinating diversity of mechanisms to subvert of the laws of

Mendelian segregation, illustrating the inherent vulnerability of

genetic systems that have evolved to ensure the equal inheritance

of maternal and paternal alleles [1,2]. Postsegregation distorters

achieve similar ends—a strong bias in their own favour—in a

rather dramatic fashion: they cause the death of embryos that do

not inherit any copies of the element. Two natural examples of

embryo killer systems have long been known in invertebrates:

cytoplasmic incompatibility induced by inherited bacteria [3–5],

and Medea elements in flour beetles [6]; there are some striking

parallels between these disparate systems.

Wolbachia and Cardinium are the only intracellular bacteria so far

known to produce cytoplasmic incompatibility in arthropods;

Wolbachia is a particularly widespread and common [7]. Their

inheritance is solely from mother to egg, often at or close to 100%

frequency (although in some species maternal transmission is

much less efficient). Because males are a transmission dead-end,

they can be freely manipulated. Sperm from Wolbachia-infected

males is modified during maturation, prior to the loss of the

bacteria themselves with the rest of the cytoplasm. When

Wolbachia-infected sperm fertilize eggs from uninfected females,

cell-cycle timing defects in the male pronucleus lead to

developmental arrest, which usually immediately follows fertiliza-

tion (the mechanism is assumed to be very similar for Cardinium)

[8–11]. However, viable progeny are rescued when both parents

carry the bacteria, as cell-cycle synchrony is restored. The

consequence of this unidirectional incompatibility is that infected

females have a strong selective advantage—they can mate with

any males in the population, while uninfected females cannot. The

strength of the driving force is initially relatively weak but increases

quickly as the bacterial population frequency rises, allowing rapid

spread—as has been directly observed in nature for Wolbachia in

Drosophila simulans [12]. The bacterial genes that control the

phenotype have not yet been identified—in part owing to the

absence of a transformation system for these fastidious intracellular

microbes with which to test candidate genes.

Medea (maternal effect dominant embryonic arrest) is a cleverly

constructed acronym that doubles as a nod to Greek mythology.

Medea was the sorceress who helped Jason win the golden fleece,

but sadly they did not live happily ever after: he later left her for

another princess and so, at least in Euripides’ version, she killed

their children in bloody revenge. Medea elements can likewise

cause the death of the progeny of heterozygous females, unless

they also carry a Medea element, through the expression of an

unidentified ‘‘toxin’’ in the germline of Tribolium females and an

‘‘antidote’’ in the embryo stage [6,13]. Like cytoplasmic

incompatibility, this provides a powerful frequency-dependent

drive that can cause rapid population spread of the element [14].

At least two independently acting Medea elements occur at different

locations in the Tribolium genome [13], and Medea has been shown

to be associated with a 21-kb composite Tc1 transposable element

insertion [15]. The mechanism of action remains unknown but

intriguingly, the Tc1 element contains a gene that is apparently of

bacterial origin, and the insertion is located just downstream of a

Tribolium gene whose Drosophila ortholog (‘‘blot’’) has both maternal

and zygotic functions. Analogous systems have also been reported

in mice: scat (severe combined anemia and thrombocytopenia),

associated with a maternally conferred autoimmune disease

[16,17], and HSR (homogeneously staining region) which impart

maternal lethality to late embryos [18]; both can be prevented by

zygotic expression of the element if inherited from either parent.

The peel (paternal effect epistatic embryonic lethal)—zeel (zygotic

epistatic embryonic lethal) incompatibility element in C. elegans was

first reported by Hannah Seidel and colleagues in 2008 [19]. The

offspring of males heterozygous for the element will die at the late

embryo stage unless they inherit at least one copy, and can thus

express the ZEEL-1 ‘‘antidote.’’ The trait was mapped to a 62-kb

region that shows an unusual degree of divergence between the
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‘‘Bristol’’ peel-zeel–containing haplotype and the ‘‘Hawaii’’-sensitive

haplotype. The zeel-1 ‘‘rescue’’ gene was identified in this interval

and encodes a membrane-spanning protein [19]. There are clear

parallels with cytoplasmic incompatibility, with which peel-zeel shares

a paternal mode of ‘‘toxin’’ delivery via modification of sperm

(Figure 1). There are also contrasting features—Wolbachia and

Cardinium are intracellular parasites with maternal inheritance that is

not always 100%, and can be cured with antibiotics, while peel-zeel is

a genetic element located in the nuclear genome and subject to the

usual laws of Mendelian segregation (as indeed is Medea).

Furthermore peel-zeel–induced embryo mortality is late acting, while

early embryo death is the norm in Wolbachia-induced incompatible

crosses (although this is not always the case: late death can occur at

quite high frequency in certain cytoplasmically incompatible

crosses) [4].

In this issue of PLoS Biology, Seidel et al. [20] have now

examined two strains that, unusually, were found to have ‘‘rescue’’

zeel-1 capacity but no ability to induce paternal-effect embryo

killing in the appropriate crosses (analogous to the ‘‘mod2 resc+’’

strains of Wolbachia [21]). By identifying causal mutations they

were able to identify a not-previously annotated candidate gene

and with an elegant and comprehensive set of further experiments

demonstrate beyond doubt that this is indeed peel-1. They show

that its product—like ZEEL-1 a transmembrane protein—

contains a sperm localization signal, is delivered via sperm specific

vesicles, and is a highly potent cellular toxin from the embryonic

two-fold stage onwards. Muscle and epidermal tissue are

particularly affected, and toxicity is still seen in adult tissues.

Using impressive single-molecule in situ hybridization techniques

the expression of the rescuing zeel-1 is shown to be tightly

controlled in the embryo, and the ZEEL-1 protein efficiently

rescues PEEL-1 toxicity [20]. These experiments propel this

recently discovered system to the forefront of our mechanistic

understanding of invertebrate embryo killing, and demonstrate for

the first time that postsegregation distortion can be produced by a

comparatively simple binary system—a true toxin and its antidote.

The molecular mechanism of PEEL-1 cellular toxicity is yet to

be elucidated, and together with the means of ZEEL-1 rescue,

this will be an important area for further research. It is clear

though that there are major differences compared to the mode of

action of Wolbachia. The ‘‘toxin’’ in the latter appears to be a

disruption specific to early embryogenesis [8–11] rather than a

Figure 1. Embryo killer systems in invertebrates. I, infected; U, uninfected.
doi:10.1371/journal.pbio.1001114.g001
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true cellular toxin like PEEL-1 that can also kill cells in other

stages and tissues. Sperm lack cytoplasm and thus a straightfor-

ward route for mRNA delivery, so paternal effects are far less

common in development than maternal effects. The membrane-

spanning nature of the PEEL-1 protein may be crucial to its

delivery in this respect, and thus to the evolution of the trait.

Nevertheless it seems likely that Medea-type elements will prove to

be more common and widely distributed, given mRNA delivery

from a mother to the developing oocyte, than nuclear paternally

acting elements like peel-zeel. The penetrance of the phenotype in

hermaphrodite sperm is incomplete and this is shown to be

associated with differences in delivered amount of PEEL-1 toxin

according to sperm size [20]. This dosage dependency provides

another interesting parallel with Wolbachia: cytoplasmic incom-

patibility between infected males and uninfected females can be

incomplete in some species and can be lower in wild males than

in the lab [4], associated with reduced densities in the testes.

Whether there are any environmental contributions to the

expression of peel-zeel incompatibility, as have been observed for

Wolbachia, remains to be determined.

The peel-zeel region show a paradoxical distribution for a selfish

genetic element: it is apparently globally distributed but not at

fixation, being present in only about two-thirds of wild isolates of

C. elegans [19]. The normal expectation is for such elements to go

to fixation within populations as a result of their drive, unless

suppressor genes or resistant drive targets have arisen; elements

are therefore frequently only discovered when crosses between

isolated populations, or between sibling species, are undertaken

[1]. There is no evidence at all for resistance to/suppression of

expression of peel-1 from the crosses conducted. The high degree of

self-fertilization that occurs in C. elegans is very likely to underpin

the unusual distribution pattern. A high rate of selfing certainly

provides a very challenging terrain for a selfish genetic element to

invade, given that outcrosses and the resulting heterozygotes are

essential for the element to be able to produce its self-favouring

phenotype. It seems likely that the peel-zeel element evolved, and

probably spread to fixation, prior to the transition to the current

extreme selfing form of hermaphroditism in this species, which

may in fact have been a relatively recent change in evolutionary

terms [22,23]. The haplotypes lacking the element may be

maintained in a stable long-term polymorphism, despite its drive,

through balancing selection [19,20]—suggesting there may be

mildly deleterious effects of the peel-zeel region when homozygous.

This could be due to an incomplete rescue of PEEL-1 toxicity by

ZEEL-1, or alternatively deleterious effects of linked polymor-

phisms.

Experiments to tease apart these possibilities are now possible,

and data can be used to construct and parameterize mathematical

models to examine whether stable polymorphisms of this kind

could be maintained (the alternative might be a prediction that a

slow-motion increase or decline of the element may actually be in

progress). More detailed geographical population studies of C.

elegans are possible now that both components of the element have

been identified. Achieving a better understanding of C. elegans

outcrossing rates in nature is important. Laboratory population

studies, incorporating manipulation of the degree of outcrossing,

are also possible given the highly tractable experimental system

provided by C. elegans.

Because of their powerful population invasion capabilities, both

Wolbachia and Medea have attracted much attention as ‘‘drive

systems’’ that could be used to make wild populations of pest

insects unable or less able to transmit disease, through natural

mechanisms of pathogen inhibition in the case of Wolbachia or by

spreading linked transgenes in the case of Medea [24–30]. On the

basis of the model of a maternal toxin with a linked zygotic

antidote, a synthetic Medea element has been created de novo in D.

melanogaster [31] using maternally expressed microRNAs that

silenced a maternally required gene, myd88; the antidote was a

zygotically expressed variant of myd88 with a deletion rendering it

insensitive to the miRNA. The synthetic element rapidly increased

in frequency in population cage experiments, and efforts are

underway to create similar systems in mosquito vectors of human

disease [31–33]. If PEEL-1 would be as toxic to insect cells as it is

in C. elegans, the peel-zeel element could provide a powerful new

gene drive system for insect pests. To paraphrase an old saying,

one taxon’s poison might be another’s meat—despite its potency

the toxicity might be rather specific—and crucially it would need

to be delivered by but not negatively affect sperm, or indeed the

developing embryo until after the point at which zygotic genes are

expressed. ZEEL-1 seems to completely rescue PEEL-1 toxicity

only as the concentrations of the latter are low [20], so achieving

appropriate expression (low levels and with tight temporal control)

in a new host would be crucial.

Thus the peel-zeel discoveries reported by Seidel et al. provide a

new category of postsegregation distorter, bridging previously

known systems, and an already very impressive understanding of

how the system works. Studies that shed further light on the

population biology and likely mode of evolution of this element,

together with biochemical studies of the mode of toxicity of PEEL-

1, should prove fascinating. It is also to be hoped that

understanding of the means of embryo killing in the insect

counterpart systems will advance at a similar rapid rate, allowing

more informed comparisons of exactly how these very disparate

systems have converged on such a successful strategy of

postmeiotic distortion.
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