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Abstract

Resolving the phylogenetic relationships among birds is a classical problem in systematics, and this is particularly so when
it comes to understanding the relationships among Neoaves. Previous phylogenetic inference of birds has been limited to
mitochondrial genomes or a few nuclear genes. Here, we apply deep brain transcriptome sequencing of nine bird species
(several passerines, hummingbirds, dove, parrot, and emu), using next-generation sequencing technology to understand
features of transcriptome evolution in birds and how this affects phylogenetic inference, and combine with data from two
bird species using first generation technology. The phylogenomic data matrix comprises 1,995 genes and a total of 0.77 Mb
of exonic sequence. First, we find an unexpected heterogeneity in the evolution of base composition among avian lineages.
There is a pronounced increase in guanine + cytosine (GC) content in the third codon position in several independent
lineages, with the strongest effect seen in passerines. Second, we evaluate the effect of GC content variation on
phylogenetic reconstruction. We find important inconsistencies between the topologies obtained with or without taking
GC variation into account, each supporting different conclusions of past studies and also influencing hypotheses on the
evolution of the trait of vocal learning. Third, we demonstrate a link between GC content evolution and recombination
rate and, focusing on the zebra finch lineage, find that recombination seems to drive GC content. Although we cannot
reveal the causal relationships, this observation is consistent with the model of GC-biased gene conversion. Finally, we use
this unparalleled amount of avian sequence data to study the rate of molecular evolution, calibrated by fossil evidence and
augmented with data from alligator transcriptome sequencing. There is a 2- to 3-fold variation in substitution rate among
lineages with passerines being the most rapidly evolving and ratites the slowest. This study illustrates the potential of next-
generation sequencing for phylogenomic studies but also the pitfalls when using genome-wide data with heterogeneous
base composition.
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convergent evolution toward GC-rich or GC-poor sequences
is known to affect phylogenetic reconstruction. Specifically,
there is a tendency to group species of similar base compo-
sition irrespective of their historical relationships (Foster and
Hickey 1999; Phillips et al. 2004; Delsuc et al. 2005; Blanquart
and Lartillot 2008; Sheffield et al. 2009). The evolution of GC
content variation in vertebrates has been widely studied by
focusing on the spatial heterogeneities of GC content within
the genome. In birds, as in mammals, the genomic GC con-
tent alternate between GC-rich and GC-poor regions, at
a Mb scale, often referred to as isochores (e.g, Bernardi
2000; Eyre-Walker and Hurst 2001; ICGSC 2004). In birds,
the evolution of GC content in different lineages is yet to
be characterized. An analysis of CR1 repeat elements in
the chicken genome revealed that the isochore structure
is reinforced, that is, that GC-rich regions evolve toward
an even higher GC content (Webster et al. 2006).

Here, we study the inference of avian phylogeny and the

Introduction

A major leap in molecular phylogenetics is expected with
the introduction of deep sequencing using next-generation
sequencing technology, turning phylogenetics into phylo-
genomics (Shendure and Ji 2008; Emerson et al. 2010).
When targeted to the coding regions of the genome, that
is, the transcriptome, it can allow obtaining sequence data
from thousands of genes in a single sequence run. Tran-
scriptome data sets could be particularly appropriate for
resolving deep relationships because although protein-cod-
ing genes represent slowly evolving sequences, they are
thought to be less prone to accumulate a large amount
of nonphylogenetic (i.e, homoplastic) signal compared
with fast evolving markers like mitochondrial DNA
(mtDNA) (Springer et al. 2001). However, the assumed
models of sequence evolution are critical to such large data
sets as systematic biases in, for example, base composition

could lead to strong support of erroneous phylogenies (e.g.,
Delsuc et al. 2005; Jeffroy et al. 2006).

Classical substitution models assume that guanine + cy-
tosine (GC) content remains constant across the phylogeny.
Violation of the so-called “stationary assumption” through

influence and evolution of base composition in birds using
brain transcriptome sequence data obtained through deep
Roche 454 GS-FLX sequencing of nine bird species (Kiinst-
ner et al. 2010) and whole-genome sequences of two bird
species, chicken and zebra finch (ICGSC 2004; Warren et al.
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2010). Our data set, consisting of a 0.77 Mb exonic se-
quence matrix, contains species, which belong to several
Neoavian orders and includes passerines, a parrot, a dove,
two hummingbirds, and an emu. We developed a phyloge-
nomic approach that handles thousands of randomly se-
quenced orthologous genes from multiple species. We
found striking variation in base composition evolution
in different lineages, which profoundly influenced phyloge-
netic inference.

Materials and Methods

Sequence Data

Nine bird and one crocodile species were subject to brain
transcriptome sequencing: emu (Dromaius novaehollan-
diae), ruby-throated hummingbird (Archilochus colubris),
Anna’s hummingbirds (Calypte anna), budgerigar (Melop-
sittacus undulatus), collared-dove (Streptopelia risoria),
golden-collared manakin (Manacus vitellinus), American
crow (Corvus brachyrhynchos), blue tit (Cyanistes (Parus)
caeruleus), pied flycatcher (Ficedula hypoleuca) and Amer-
ican alligator (Alligator mississippiensis) (according to
methods described in Kiinstner et al. [2010]; accession
number SRX012365; http://www.ncbi.nlm.nih.gov/sra). In
addition, we use the draft genome sequences of chicken
(Gallus gallus) (ICGSC 2004) and zebra finch (Taeniopygia
guttata) (Warren et al. 2010), downloaded from ENSEMBL
(http://www.ensembl.org). The source of brain samples,
methods for RNA isolation, cDNA preparation, large-scale
sequencing, and sequence analysis are given in Kiinstner
et al. (2010), which also includes accession numbers for
the bird sequences analyzed in this study. Briefly, we
isolated RNA from adult brain samples, prepared normal-
ized cDNA, and ran this on a Roche 454 GS-FLX platform.
The reads, which averaged 250 bp in length, were assem-
bled into contigs using the NEWBLER software v2.0
distributed with the 454-instrument. We assumed as
unknown each base pair with a quality score <20 (from
the NEWBLER assembler).

Ortholog Selection and Supermatrix Building

We performed a reciprocal best-hit Blast analysis between
contigs from the transcriptome data and zebra finch genes
to select candidate orthologs. Amino acid sequence align-
ments were performed using the MAFFT software with
high-accuracy parameters (Katoh et al. 2002). Contigs with
premature in-frame stop codons or with pairwise amino
acid divergence >30% relative to zebra finch sequence
were excluded. Alignments were considered if they con-
tained data from at least three newly sequenced species
plus the zebra finch. Moreover, for each alignment, we re-
moved sites with data available for less than four species,
and we also removed genes with data for less than ten co-
dons or with no parsimony informative sites (defined as
polymorphic sites with a substitution shared by at least
two species). This left data for 5218 ENSEMBL v55-mod-
eled genes. We then applied a four-step procedure to ex-
clude misaligned and putative paralogous sequences using
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in-house C4++ programs based on the BIO++ libraries
(Dutheil et al. 2006).

1. The median pairwise divergence between all sequences of
an alignment (D) was used to estimate the expected
number of substitutions for each sequence (K) as K = D X
sequence size (bp). We computed a P value for the excess
of divergence in each sequence as Pr(X < k), where X
follows a Poisson distribution P(K), and k is the observed
median number of substitution between that sequence
and all the other sequences. We removed sequences with
Pr(X < k) < 0.01. This step was intended to exclude
overdivergent sequences that are likely to represent
paralogs, which was also confirmed after examining
several examples of removed genes. We have observed
that this empirical criterion also performs well for the
removal of misaligned sequences.

2. We removed sequences from Neognathae species that
were more divergent to zebra finch than the emu ortholog
was. If emu was not included in the alignment, we used
the chicken sequence as an “outgroup.” The position of
Paleognathae (to which emu belongs) as a sister group to
all other extant bird lineages (Neognathae) and of
Galloanserae (chicken) as a sister group to Neoaves within
Neognathae is considered uncontroversial.

3. We compared each sequence with the consensus sequence,
that is, a sequence that showed the most common base at
each site. Problematic regions of individual sequences were
defined as regions with more than three contiguous
variable sites compared with the consensus. Such sites
were coded as “N,” as were any variable sites within 5-bp
upstream or downstream of the problematic region. This
step was included to remove small frameshifts (not leading
to a stop codon) created by sequencing errors; the 454-
technology is prone to errors in short stretches of
homopolymer repeats (Harismendy et al. 2009).

4. In the last cleaning step, we estimated the phylogeny for each
gene separately using a maximum likelihood (ML) method
(RAXML software version 7.0.4 and a general time reversible
[GTR] + Gamma4 model; Stamatakis 2006). We excluded
from the analysis all genes that with >80% bootstrap
support (100 times) indicated the nonmonophyly of oscines,
Passeriformes, or Neoaves, taken to reflect obvious paralo-
gous problem. Less than 30 genes were removed in this step,
and it turned out that this criterion did not lead to a change
in the topologies obtained (data not shown).

Using the list of zebra finch paralogous genes available in
ENSEMBL, we identified the number of paralogs present in
the set of genes removed by our cleaning process (2,328 of
3,223; 72.2%) and the number in the selected set of genes
(1,264 of 1,995; 65.5%). The proportion of paralogs is signif-
icantly higher in the removed set of genes (chi-square =
8.227, degrees of freedom [df] = 1, P = 0.004), demonstrat-
ing that the empirical cleaning method is prone to more
specifically remove paralogous sequences. However, it is im-
portant to note that some genuine orthologs may have un-
expectedly high divergence and would therefore be
removed by our cleaning process. Unfortunately, it is more
or less impossible to tell apart overdivergent orthologs from
paralogs with a partial set of genes generated by random
transcriptome sequencing. In the end, one faces a trade-
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off between the risks of including paralogs and of excluding
potentially informative orthologous sequences. Our ap-
proach could be considered conservative in this respect.

Phylogenetic Analyses
For analysis at the nucleotide level, we used ML with
BPPML from the BPPSUITE package version 0.4.0 (Dutheil
et al. 2006) and GARLI (version 0.951, Zwickl 2006). The
model GTR + Gamma4 was selected as the best according
to AIC using JMODELTEST, with a neighbor-joining tree as
a fixed topology (Posada 2008). A model combining
Gamma distribution and category of invariable site was
not considered as it could generate a correlation between
the proportion of invariable sites and the gamma shape
parameter (see Yang 2007b, p. 113-114). We assessed
the robustness of trees using bootstrap analysis. Analyses
from both ML programs resulted in identical topologies
and highly similar bootstrap support (data not shown).

For analyses at the protein level, we used PHYLOBAYES
(Lartillot and Philippe 2004) and the site-heterogeneous mix-
ture model CAT + Gamma4. Two independent Monte Carlo
Markov Chains (MCMCs) were run in parallel for 10,000
cycles, saving one point every cycle and discarding the first
2,000 cycles as the burn-in cycles. Convergence was checked
using the program BPCOMP of PHYLOBAYES that compares
the frequency of the bipartitions obtained in the two inde-
pendent chains (maxdiff << 0.05). Bayesian posterior proba-
bilities were obtained from the 50% majority-rule consensus
tree of the 8,000 MCMC sampled trees using the program
READPB of PHYLOBAYES. We assessed the robustness of
phylogenomic inference using both gene sampling and site
sampling applying bootstrap processes. For each of the 100
bootstrap analyses, we estimated the 50% majority-rule con-
sensus tree of the 1,000 MCMC sampled trees (with 500
points as a burn-in). The gene bootstrap support and the
site bootstrap support were obtained using the 100 consen-
sus trees obtained in each analysis.

Statistical analyses were preformed with R (R Develop-
ment Core Team 2004) using the APE package (Paradis
2007) for plotting phylogenies.

Nonhomogeneous Model and GC Content
Estimation

We extracted the 1st, 2nd, and 3rd codon positions of each
alignment and calculated the GC content at each position
separately (hereafter GC1, GC2, and GC3). We used the
nonhomogeneous model of DNA sequence evolution pro-
posed by Galtier and Gouy (1998) (T92 + Gamma5) and
available in the BPPSUITE package (Dutheil and Boussau
2008) to infer both the ancestral GC3 at each node and
the equilibrium GC3 (GC3*) for each branch. The GC3* cor-
responds to the model parameter 0 and could be inter-
preted as GC3 under a branch length of infinite size,
providing information on the on-going substitution pro-
cess. The ancestral GC3 for the root is a model parameter
(Galtier and Gouy 1998), whereas for the other nodes, it is
estimated using an empirical Bayesian method imple-

mented in the BIO++ library (Dutheil et al. 2006) and
available in the BPPANCESTOR software of BPPSUITE. This
approach takes the ML estimated from all the parameters
(including topology and branch lengths) together with the
sequence data to estimate a posterior probability of a given
base at each site for each internal node (the highest prob-
ability corresponding to the estimated base). In order to
assess the influence of missing data on GC3 and GC3*
estimation, we performed the analysis on 100 bootstrapped
matrices and present the 95% confidence interval (ClI).

To test for a link between recombination rate and GC3
evolution, we performed two analyses.

First, we divided genes into two sets according to their
position in the zebra finch genome: genes located in subte-
lomeric regions (<15 Mb from chromosome ends and in-
cluding all microchromosomes of size <15 Mb) and
subcentromeric regions (essentially central parts of macro-
chromosomes), respectively. Only autosomal genes with
a known location were considered. These two gene sets
can broadly be taken to represent high- and low-recombina-
tion landscapes, respectively (Groenen et al. 2009; Backstrom
et al. 2010). When we instead considered the position in the
chicken genome, only ~10% of genes changed categories,
confirming the extreme karyotypic conservation in most bird
species (Griffin et al. 2007; Ellegren 2010). We estimated sep-
arately for the two gene sets both ancestral GC3 at each node
and GC3* for each branch using the same method as above.

Second, we allocated genes in 5 Mb windows according to
their position in the zebra finch genome. For each window, we
removed species with less than 50 bp of sequence data. We
also excluded windows that contained less than a total
amount of 1.5 kb of exonic sequence, in both cases to reduce
the variance in the parameter estimates. We estimated GC3*
and the current GC3 in the lineage leading to the zebra finch,
and following Meunier and Duret (2004), we correlated both
the current GC3 and the GC3* with the mean recombination
rate per window, using data from Backstrom et al. (2010).

Fossil Calibrations and Molecular Rate Estimation

We applied Bayesian methods that allow substitution
rates to vary between branches, the so-called relaxed
clock method. We used the nucleotide data set with
MCMCTREE software (version4.4c available in the PAML
package; Yang and Rannala 2006; Rannala and Yang 2007;
Yang 2007a) and an HKY85 + Gamma4 model of se-
quence evolution. HKY85 4+ Gamma4 was chosen be-
cause it is the most complex model implemented in
MCMCTREE (GTR 4+ Gamma4 is not yet implemented).
Moreover, there should be no need to use a more com-
plex model since the branch lengths estimated with GTR
and HKY85 models are extremely similar, implying that
the substitution rates estimated with the two models
must be very similar as well (data not shown). We used
the autocorrelated (Brownian motion) model of rate
evolution (corresponding option clock = 3 in
MCMCTREE control file; Thorne et al. 1998). We ran four
chains during 200,000 MCMC steps. The divergence
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Table 1. Basic Sequence Statistics for Each Species.

Species Number of Genes Exonic Sequence Length in bp (% of missing data)
Ruby-throated hummingbird 271 93,594 (87.9)
Anna’s hummingbird 398 143,514 (81.5)
American crow 555 189,681 (75.5)
Emu 625 212,751 (72.5)
Pied flycatcher 1,627 631,677 (18.4)
Chicken 1,390 550,188 (28.9)
Golden-collared manakin 794 285,240 (63.2)
Budgerigar 528 154,815 (80.0)
Blue tit 1,298 506,157 (34.6)
Collared dove 375 133,455 (82.8)
Zebra finch 1,912 746,739 (3.6)

dates were estimated using the last 100,000 steps of each
chain (i.e, burn-in of 100,000 steps).

Brain transcriptome data from the American alligator (A.
mississippiensis) was used as outgroup sequence. As a starting
point, we considered the bird—crocodile calibration point
provided by Benton and Donoghue (2007) at 235-254
My. These authors also proposed to constrain the Paleogna-
thae—Neognathae split to between 66 and 86.5 My. This cal-
ibration is in agreement with the fossil record, which shows
no trace of Neornithes but includes several non-Neornithes
taxa in the lower Cretaceous (between 145 and 100 My; see
Chiappe and Dyke 2002; Fountaine et al. 2005). However, this
calibration is younger than that estimated based on molec-
ular dating, which places the Paleognathae—Neognathae
split in the lower Cretaceous or around the lower/upper
Cretaceous boundary (~100 My) (Ericson et al. 2006; Pereira
and Baker 2006; Slack et al. 2006; Baker et al. 2007).

The oldest passerine fossil known is from the early Eocene
(55 My; Boles 1995). The oldest suboscine songbird fossil is
from the lower Oligocene in Europe (28-34 My; Mayr and
Manegold 2006). A recent description of a Certhioidea
(crown group of Passerida) fossil from the early Miocene
(20 My; Manegold 2008) provides a useful minimum con-
straint for the Passerida split in the late Miocene (23 My).

Based on the available data described above, we choose to
use a set of four of calibration points: 1) the bird—crocodile
split between 235 and 254 My, 2) the Paleognathae—Neogna-
thae split between 66 and 86.5 My, 3) the oscine—suboscine
split younger than 65.5 My, and 4) the first split within the
Passerida older than 23 My. We also estimate the substitution
rate variation between lineages using the local molecular
clock approach implemented in BASEML (Yoder and Yang
2000; Yang 2007a) using a GTR + Gamma4 model of
sequence evolution. To study the intensity of natural selec-
tion in specific lineages, we applied the branch model imple-
mented in CODEML (Yang 2007a) allowing for different ratios
of the nonsynonymous and the synonymous substitution
rates (w) in different lineages (model = 2 of CODEML).

Results

Impact of Base Composition on Phylogenetic
Reconstruction

In reciprocal Blast analyses, we mapped the 454-derived
transcriptome contig sequences from nine bird species
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onto the zebra finch genome, which allowed orthologous
assessment of genes sequenced in different genomic re-
gions. Due to the random nature of shotgun transcriptome
sequencing, different overlapping sets of cDNA sequences
were present in different avian samples. To handle this
combinatorial gene mixture, we built a matrix for making
phylogenomic inference. The matrix contained sequence
data from 1,995 genes present in the zebra finch genome,
representing more than 10% of the estimated total number
of genes in avian genomes (ICGSC 2004; Warren et al.
2010). These genes have a total length after concatenation
of 774,279 bp of exonic sequence. The amount of missing
data was unevenly distributed across species and high for
some, from 3.5% for the zebra finch to 87.9% for the ruby-
throated hummingbird (table 1); the missing data for the
zebra finch was the result of removing partial finch sequen-
ces during the supermatrix building process (see Materials
and Methods). However, we still had mostly over 100 kb of
exonic sequence per species, which is unprecedented in
studies of avian molecular evolution in terms amount of
sequence data.

We found that the GC content in the third codon po-
sition (GC3) varied significantly across species (black boxes
in fig. 1). Passerines had the most GC3-rich transcriptome
(GC3 = 52.1%, bootstrap value range 50.9-52.6%). The
budgerigar and the emu had the least GC3-rich (46.1%
and 47.0%, respectively). In contrast, the GC1 and GC2
contents (1st and 2nd codon positions) were almost iden-
tical across species (gray and dark-gray boxes in fig. 1,
respectively).

There was also significant variation in GC3 among genes
within a species. To evaluate this variation, we distributed
genes in 5 Mb windows according to their position in the
zebra finch genome. The between-window variation in GC3
was very large in all species, with an average standard de-
viation of 0.10 (fig. 2A), as compared with an average stan-
dard deviation of 0.002 of the bootstrap values (black
boxes, fig. 1). This variation in GC3 among genes showed
consistency across species since GC3 of particular windows
varied from 33% to 77% when averaged across species. Fi-
nally, the between-species standard deviation of GC3 per
window varied from 0.02 to 0.18 and was positively corre-
lated to the mean GC3 per window (Spearman’s Rho =
0.42,P = 1.3 x 10~°,n = 194, 5Mb windows: fig. 2B). These
results demonstrate that the highest variation in GC3
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among lineages was concentrated to the most GC3-rich
regions of the genome. GC1 and GC2 showed much less
variation between species than GC3 (standard deviation
of 0.042 and 0.046, respectively).

To make phylogenetic inference, we started with a clas-
sical ML analysis using nucleotide data (GTR + Gamma4
model) without any attempt to control for GC3 variation.
This analysis confirmed without ambiguity the Neoavian
(beyond chicken) and the passerine monophylies and
the basal suboscine (manakin) and oscine songbird (other
passerines) dichotomy of passerines (fig. 3). Within the
passerines and in support of previous findings (Barker
et al. 2004) we found strong support for the split between
Corvoidea (i.e, crows) and Passerida (other oscines). A
similar topology, except concerning the zebra finch/pied
flycatcher relationship, was obtained using a three codon
position partitioned GTR 4+ Gamma4 model (data not
shown).

To investigate the influence of GC3 heterogeneity on
phylogenetic inference, we split our data set according
to codon position, separating the 3rd position from the
1st + 2nd positions. Interestingly, ML analyses of the
two data sets differed with respect to the position of
the budgerigar (a parrot) and on the zebra finch/blue
tit/pied flycatcher relationship. In agreement with data
from DNA hybridization (Sibley and Ahlquist 1990) and

whole mitochondrial genome sequence analyses (Pratt
et al. 2009), the 3rd codon position data set did not support
budgerigar as a sister group to passerines (fig. 4A) (Ericson
et al. 2006; Hackett et al. 2008). This topology was most
similar to the one obtained with the full data set (fig
3). In contrast, the 1st + 2nd codon position data set sup-
ported a closer relationship between budgerigar and pass-
erines (fig. 4B), in partial agreement with recent results
obtained with nuclear markers (Ericson et al. 2006; Hackett
et al. 2008), but this topology grouped budgerigar and
hummingbird but with moderate bootstrap support
(55%; fig. 4B). The 3rd codon position favored the zebra
finch/flycatcher clade reported in Barker et al. (2004),
whereas the 1st + 2nd codon position data set supported
a blue tit/pied flycatcher cade reported in Johansson et al.
(2008), each with comparable strong bootstrap support
(>97; fig. 4A and B). The blue tit/pied flycatcher /zebra
finch relationship within the basal Passerida radiation is
known to be notoriously difficult to resolve (for a review,
see Johansson et al. 2008). The different topologies ob-
tained with the two data sets were not due a difference
in the number of informative sites; jackknifing the 3rd co-
don position data set to a similar number of sites as for
the 1st + 2nd codon position data set strongly supported
the same topology as obtained using the full 3rd codon
position data set.
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Fic. 2. (A) Distribution of GC3 in 5 Mb windows according to their position in the zebra finch genome. Boxes give the quartiles of the
distribution; whiskers extend to the most extreme values obtained by bootstrapping. (B) Relationship between mean GC3 in 5 Mb windows

and the corresponding standard deviation.

The above analyses suggest that GC3 content in the full
nucleotide data set is significantly influencing the overall
topology of the avian tree with important contradictions
to GC1 + 2. To this hypothesis, we estimated the phylog-
eny using the full nucleotide data set with GC3 content
normalized. To do so, we used the RY sequence recoding
method, with purines coded as R and pyrimidines as Y. RY
recoding of the transcriptome placed the budgerigar as
a sister group to passerines, more consistent with the result
obtained with the 1st 4 2nd codon position data set, again
with moderate bootstrap support (59%; fig. 4C). This data
set also supported the blue tit/flycatcher relationship
(bootstrap support of 58%) as did the 1st + 2nd codon
position data set. This finding indicates that the discrep-
ancy between the phylogenetic results obtained with dif-
ferent codon positions is a result of the large heterogeneity
in GC3.

To make an independent test of overall GC influence, we
applied the nonhomogeneous model of nucleotide se-
quence evolution developed by Galtier and Gouy (1998).
This model allows variation in GC content between
branches (regardless of codon position) by relaxing the as-
sumption of homogeneous base composition. We esti-
mated the ML of several alternative topologies using
a branch-specific nonhomogeneous model with the T92
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+ Gamma4 substitution model (supplementary fig. S1,
Supplementary Material online). The highest likelihood
was obtained for a topology (supplementary fig. S1C, Sup-
plementary Material online) identical to the one obtained
with the homogeneous model (fig. 3). This result indicates
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Fic. 3. ML tree obtained with a GTR + Gamma4 model and the
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that relaxing the stationary assumption is not sufficient to
disrupt the budgerigar position and that additional features
such as, for example, long-branch attraction (Felsenstein
1978; Bergsten 2005), among-site rate variation (Yang
1996), and heterotachy (among branch/site rate variation)
(Lopez et al. 2002) contribute to this result.

Finally, we applied a CAT mixture model (Lartillot and
Philippe 2004) using Bayesian analysis on proteome (amino
acid) data, which has been shown to outperform empirical
substitution matrices in the case of long-branch attraction
problems (e.g, Lartillot et al. 2007; Delsuc et al. 2008; Phil-
ippe et al. 2009). Almost all relationships had high boot-
strap support (fig. 5), except for the zebra finch/blue tit/
pied flycatcher node. Notably, the topology inferred with
the CAT mixture model placed budgerigar as the sister
group to passerines (fig. 5). But unlike the nucleotide trees,
it also brought doves closer to passerines.

In summary, the position of budgerigar is strongly influ-
enced by phylogenetic method and the data set used. Be-
cause the basal position is disrupted upon the use of 1) only
the 1st + 2nd codon positions, 2) RY sequence recoding,
and 3) a complex CAT mixture Bayesian model applied on
proteome sequences, we suggest that the basal position of
budgerigar indicated by the full data set was most likely an
artifact of phylogenetic reconstruction at least in part
caused by the similarity in base composition between
the budgerigar and emu. Of course, we cannot exclude
the possibility that there may have been other factors that
contributed to this result.

Evolution of Base Composition in Birds

To further explore the variation in GC3 content among
species and to understand the evolution of base composi-
tion in birds, we assessed the impact of missing data. We
compared GC3 variation across species when estimated on
the entire data set and when estimated on data sets based
on sites only available in one species relative to all other

species (replicated 11 times = the number of species).
The rank order of all GC3 estimates using these reduced
species-defined data sets correlated extremely well
with the ranking obtained from the complete matrix
(Spearman’s Rho between 0.90 and 0.99, mean = 0.95;
supplementary fig. S2, Supplementary Material online),
showing that missing data does not explain the relative dif-
ferences in GC3 among species. However, for some reduced
data sets, GC3 of all species were systematically higher or
lower than that obtained using the complete data set (sup-
plementary fig. S2, Supplementary Material online). To
quantify this deviation, we computed for each reduced
data set the mean of the differences between GC3 of
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Fic. 5. Unrooted proteome tree. Majority-consensus tree of Bayesian
phylogenetic inference conducted under the CAT + Gamma4
mixture model using the software PHYLOBAYES. Values behind the
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nodes in italics are genes bootstrap support (100 times). Branch
lengths are ML estimate using WAG + Gamma8 model. Scale
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the complete data set and of the reduced data set. This
value (deltaGC) provides an approximation of the GC3 de-
viation introduced by gene sampling in each species; a pos-
itive value, for example, indicates that the selected genes
have, on average, a lower GC3 than the complete set of
genes. The most extreme deviation was observed for the
manakin and the budgerigar data sets with—1.7% and
+1.9% deltaGC, respectively. Using these values, we calcu-
lated a corrected GC3 for each species by subtracting the
deviation to the current GC3. After correcting for the miss-
ing data, there is still substantial variation among species
in GC3 (fig. 1, grey dots). For example, the extreme
GC3 content of the budgerigar transcriptome cannot be
explained by biased sampling and even seems to have
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been underestimated in the original analyses (original
estimate = 46.1%, corrected estimate = 44.4%).

The observed variation in GC3 among species must
translate into differences in the substitution pattern of
third codon position among lineages. To estimate the an-
cestral GC3 at each node and the equilibrium GC3 (GC3*)
for each branch, we applied a nonhomogeneous model of
DNA sequence evolution (Galtier and Gouy 1998) on third
codon positions, using the proteome topology (fig. 5). This
analysis showed an increase in GC3 in most branches of the
Neognath phylogeny as manifested by a higher GC3*
(fig. 6B) than ancestral GC3 (fig. 6A). The branch leading
to the budgerigar has the smallest GC3* (52.4%) of all Neo-
aves branches, although this GC3* is still higher than the
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Table 2. Ancestral GC3, Current (observed) GC3, and Equilibrium GC3 (GC3*) in Subtelomeric (<15 Mb from chromosome ends) and
Subcentromeric Regions (>15 Mb from chromosome ends) of Different Nodes and Branches of the Avian Phylogenetic Tree.

Subtelomeric Regions, (n = 1,074)

Subcentromeric Regions, (n = 756)

Node or Branch Ancestral GC3 Current GC3

GC3* Ancestral GC3

Current GC3 GC3*

Zebra finch
Chicken
Oscine/suboscine
Ancestral Neoaves

55.4 (55.2-55.6)
50.6 (50.3-50.8)
52.8 (52.5-53.1)
49.3 (49.1-49.7)

0.664 (0.644-0.670)
52.5 (51.6-53.7)
82.3 (80.0-85.0)
42.0 (35.5-49.8)

46.5 (46.3-46.7)  49.3 (48.3-50.7)
45.8 (45.6-46.0)  50.8 (49.8-52.1)
57.7 (54.0-60.1)
26.5 (20.4-31.9)

44.9 (44.7-45.1)
44.1 (43.9-44.3)

ancestral GC3 in Neoaves (43.0%). It suggests that the low-
current GC3 estimated for the budgerigar is unlikely to
come from a decrease of GC3 in the parrot lineage but
rather represents a moderate increase of the low ancestral
GC3. Interestingly, an increase in GC3 appears to have oc-
curred independently in the Neoaves lineage and along the
chicken branch, as GC3* at the ancestor node of all Neo-
aves (43.0 %, Cl = 37.2-49.1; fig. 6B) was smaller than GC3
estimated at the root of the Neognathes (47.3%, Cl = 47.0—
47.6; fig. 6A). The ancestral Neoaves branch and the branch
leading to ratites (emu) were the only lineages showing
a GC3* below the ancestral root value (fig. 6A and B). These
findings suggest that there has been convergence to a high-
er GC content in Neoaves and chicken lineages. The most
marked increase in GC3* has taken place in the branch
leading to passerines, with an extremely high GC3*
(74.9%, CI = 72.2-77.3; fig. 6B). This implies a strong fix-
ation bias toward Gs and Cs in the third codon position of
passerines. The fact that GC3* is higher in all terminal pas-
serine branches than current GC3 of passerines demon-
strates an on-going process of GC enrichment in this order.

We sought a functional genomic explanation for the
large-scale variation and convergence of GC3 in the avian
transcriptome and considered recombination. Recombina-
tion may drive the evolution of GC content through GC-
biased gene conversion (gBGC) (Galtier et al. 2001; Meunier
and Duret 2004; Spencer et al. 2006). Of relevance here,
recombination rates in avian genomes are highly heteroge-
neous and correlate negatively with both distance to chro-
mosome ends (i.e., telomere) and chromosome size (ICGSC
2004; Groenen et al. 2009), with the telomere effect being
particularly strong in zebra finch (Backstrém et al. 2010). To
test if the increase in GC3 in passerines is linked to an in-
creased recombination rate, we performed two additional
analyses.

First, we analyzed two gene sets defined as subtelomeric
and subcentromeric genes, respectively, according to their
position in the zebra finch genome (see Materials and
Methods). For these two gene sets, the ancestral GC3, cur-
rent GC3, and GC3* were almost consistently higher in sub-
telomeric compared with subcentromeric regions (table 2).
Moreover, we found that zebra finch genes located in sub-
telomeric regions were significantly more GC3-rich than or-
thologous chicken genes (55.4%, Cl = 55.2-55.6 vs. 50.6%,
Cl = 50.3-50.8), a difference not found in subcentromeric
regions (46.5% Cl = 46.3-46.7 vs. 45.8% Cl = 45.6-46.0).
Moreover, the GC3* estimated for the ancestral passerine
branch was strikingly higher for genes in subtelomeric com-

pared with subcentromeric regions (82.6% Cl = 80.0-85.0
vs. 57.7% Cl = 54.0-60.1). These findings suggest that the
strong increase in the GC3 in passerines is associated with
a high-recombination rate environment.

Second, we took advantage of the regional recombina-
tion rates that have recently been estimated for the zebra
finch genome (Backstrém et al. 2010), to seek a more direct
relationship between evolution of GC3 and recombination
rate. Using the 5 Mb windows defined above, we found
a strong correlation between GC3 and the mean recombi-
nation rate per window (Spearman’s Rho = 0.65, P < 2 X
107" n = 134, fig. 7A). Interestingly, GC3* was also
strongly correlated with recombination rate (Spearman’s
Rho = 0.54, P = 11 x 10™ ", n = 134, fig. 7B), suggesting
that recombination might have a strong effect on the sub-
stitution pattern in the branch leading to the zebra finch. In
agreement with a previous study of chicken, based on ret-
rotransposon elements (Webster et al. 2006), we found
a strong correlation between GC3 and GC3* (Spearman’s
Rho = 0.67, P < 2 x 10 ', n = 134) with GC3* almost
always higher than current GC3 (in 102 of 134 windows).
These finding indicates that the increase in GC3 is still an
on-going process in zebra finch protein-coding genes.

Substitution Rate Variation among Lineages

We also used the transcriptome data set to address nucle-
otide substitution rate variation among avian lineages. A
simple molecular clock model (i.e, one rate for all
branches) was strongly rejected by a likelihood-ratio test
(f* = 2508, df = 10, P < 2 x 10 '°). To further investigate
substitution rate variation among lineages, we applied
a Bayesian relaxed molecular clock method using the
MCMCTREE software (version 4.4c). This method esti-
mates simultaneously substitution rates and divergence
dates across the phylogeny, although we here focus on sub-
stitution rates only. We used the topology found in the
proteome Bayesian analysis as the reference topology
(fig. 5).

In order to be able to use the well-known bird/crocodile
fossil calibration point at 235 and 254 My (Benton and Do-
noghue 2007), we incorporated brain transcriptome se-
quences of an American alligator. A reciprocal Blast
analysis found 612 crocodile orthologs in the set of
1,995 avian genes used in the phylogenetic matrix. After
removal of genes using the same selection process as for
the bird data, we obtained 488 alligator genes spanning
161,251 bp in exonic length, with 79.1% of missing data
for the alligator. In addition to the bird/crocodile split at
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235-254 My, we use as calibration points several suggested
divergence times within Aves (Paleognathae-Neognathae
split, oscine—suboscine split, and first split within Passeri-
da), as described in Materials and Methods.

Excluding the branch leading to the American alligator,
the mean substitution rate per branch was 0.683 (£0.300)
substitutions/site/billion years. Some general conclusions
about substitution rate evolution across the avian phylog-
eny can be drawn (table 3; excluding short branches with
large Cls). First, passerines evolve 45% more rapidly than
other birds (0.768 vs. 0.530). This difference is even more
pronounced when considering the flycatcher—zebra finch
clade, having the highest rate of the whole tree with a mean
of 0.895 (table 3). Second, the long ratite branch leading to
emu had the lowest rate of substitution, with 0.335. There is
thus 2.6-fold variation in substitution rate between the
most extreme lineages. Excluding the bird/crocodile cali-
bration point does not affect these results (data now
shown). Moreover, we obtain similar substitution rate var-
iation using the local molecular clock approach imple-

Table 3. Median Substitution Rate (substitution per site per billion
of years) Estimated for Different Branches of the Avian Phylogeny.

Clade Branch Substitution Rate
Passeriformes Zebra finch 0.87 (0.80, 1.25)
Pied flycatcher 0.92 (0.85, 1.33)

Blue tit 0.58 (0.55, 0.76)
American crow 0.49 (0.46, 0.64)
Golden-collared manakin 0.55 (0.51, 0.71)
Passerine root 1.20 (1.03, 2.28)

0.58 (0.55, 0.70)
0.51 (0.49, 0.62)
0.47 (0.40, 1.74)
0.72 (0.62, 1.32)
0.56 (0.53, 0.66)

0.34 (0.33, 0.40)

Nonpasserine Neoaves Budgerigar
Collared dove
Hummingbirds®
Neoaves root
Chicken

Palaeognathae Emu

Galloanserae

NoTe.—95% Cls are provided in parentheses.
* Ancestral + hummingbird branches.
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mented in BASEML (clock = 2, model GTR + Gamma;
Yoder and Yang 2000). For example, using this approach
we estimate that passerines evolve 48% faster than other
birds.

To test if substitution rate estimation is related to gene
sampling, we used the subset of sites only present in the
emu (212,751 sites) and compared the results with that ob-
tained using all data. We found that the rate estimates
were extremely well correlated (Spearman’s Rho = 0.96,
P = 3.7 x 10° n = 22) and that the emu-defined subset
of sites quantitatively reproduce the amount of variation
estimated using the complete data set (for instance, for
the emu-defined subset emu substitution rate = 0.343
and pied flycatcher = 0.840). This result shows that the
low-substitution rate observed in the ratite branch was
not the result of gene sampling bias. We also replicated rate
estimates using only Anna’s hummingbird- or Dove-
specific sites and found highly comparable substitution
rate estimation (data not shown).

Finally, because we estimated substitution rates using
protein-coding genes, the observed rate variation among
lineages could in theory be linked to mutation rate varia-
tion or differences in the regimes of natural selection acting
on protein evolution (or both). In case of the latter, a selec-
tion model may imply that the overall rate of adaptive evo-
lution or the overall rate of fixation of slightly deleterious
mutations differ among avian lineages. Under both of these
scenarios, the nonsynonymous substitution rate will vary
among lineages, thereby contributing to the overall rate
variation in protein-coding sequence. Lineage-specific var-
iation in the role of natural selection has been suggested to
occur due to long-term differences in the effective popu-
lation size among lineages (Ellegren 2010).

We assessed possible variation in the intensity of natural
selection across the bird phylogeny by estimating the non-
synonymous/synonymous substitution rate ratio (w) for
specific branches: all passerines, all nonpasserine Neoaves,



Avian Phylogenomics - doi:10.1093/molbev/msr047

the chicken, and the emu lineages. Passerines showed an
intermediate w of 0.0784, slightly lower than that for non-
passerine Neoaves (0.0847) but higher than that for emu
(0.0586) and chicken (0.0626). This result indicates that
the increase in passerine substitution rate is not linked
to selective processes affecting nonsynonymous substitu-
tion only but more likely to an increase in mutation rate
affecting both synonymous and nonsynonymous substitu-
tion rates.

Discussion

The Influence of Base Composition Variation on
Neoavian Phylogeny

This is the first high-throughput next-generation sequenc-
ing application to avian phylogenomics that we are aware
of. We discovered that even with many more genes than in
all previous studies of avian phylogenetics based on stan-
dard DNA sequencing, the inferred phylogenies can sub-
stantially differ depending on sequence information
content. Specifically, the GC3 content seemed to have
a major affect on the placement of budgerigar in the phy-
logeny. Standard ML analysis using the full nucleotide data
set did not reveal parrots (budgerigar) as a sister group to
Passeriformes. In contrast, when excluding the third codon
position or normalizing GC variation by RY coding, budger-
igar was placed close to the passerines. In the nonnormal-
ized analysis, the placement of budgerigar near the base of
Neoaves is likely due to similarity of GC3 content in budg-
erigars and basal avian species.

However, the results obtained with a nonhomogeneous
model indicated that the GC variation was not the only
cause of the discrepancy between topologies. One possible
additional factor may be that third codon position is fast
evolving and therefore also more prone to long-branch
attraction problems. The existence of multifactorial prob-
lems in phylogeny inference has been illustrated in other
data sets (e.g., Sheffield et al. 2009). The statistical inconsis-
tency of the homogeneous (stationary) model of nucleotide
substitution is not surprising given that its underlying as-
sumption is violated by heterogeneity in base composition.
It has been shown that such inconsistency is exacerbated by
low taxonomical sampling (Delsuc et al. 2005; Jeffroy et al.
2006). Taxon sampling is at present stage bound to be
limited in phylogenomic analysis based on high-throughput
sequence data due to the extensive costs associated with
next-generation sequencing, particularly so when it comes
to transcriptome sequencing using normalized cDNA.

The Evolution of Vocal Learning

The inferred phylogenies can lead to critically different
conclusions on the evolution of convergent complex traits.
For example, resolving the phylogenetic position of parrots
has implications for understanding the evolution of vocal
learning, a critical behavioral substrate for speech. A strik-
ing feature of this trait is that all three groups of birds that
are vocal learners—oscine songbirds, parrots, and hum-
mingbirds—have a set of seven similar forebrain nuclei

distributed into two brain pathways that control song im-
itation (Jarvis and Mello 2000; Jarvis et al. 2000; Jarvis 2004).
Vocal nonlearners (e.g, suboscine songbirds, dove, and
chicken) do not have any of these brain nuclei (Brenowitz
1997; Feenders et al. 2008). Analogous vocal learning path-
ways are found in the human brain but not nonhuman
primate (Jarvis 2004). Thus, vocal learning pathways are
thought to represent a case of remarkable convergence
for a complex trait that is a critical substrate for spoken
human language (Doupe and Kuhl 1999; Wilbrecht and
Nottebohm 2003; Jarvis 2004). The recent sister grouping
of parrots and passerines was supported by the topology
based on nuclear genes (Ericson et al. 2006; Hackett et al.
2008) but not by the analysis of complete mitochondrial
genomic data (Gibb et al. 2007; Pratt et al. 2009) or past
results based on DNA-DNA hybridizations (Sibley and
Ahlquist 1990). Therefore, instead of three independent
gains of vocal learning among birds as has been proposed
for a long time based on past phylogenies (Nottebohm
1972; Jarvis 2004), topologies with parrots as sister to pass-
erines (Ericson et al. 2007; Hackett et al. 2008; this study)
raise the possibility that vocal learning may have evolved
just twice in birds, once in hummingbirds and once in the
common ancestor of parrots and passerines (and then lost
in suboscine songbirds). However, the possibility of a “two-
gains-and-one-loss” origin of vocal learning in Neoaves
should be considered equally parsimonious as the
“three-gains” hypothesis. Resolving the truth may not only
require greater genome coverage and taxonomic sampling,
but our findings indicate that it will also require comparing
phylogenetic inference made with different models (vary-
ing in their assumption and complexity) and different sub-
sets of the data (1st, 2nd, and 3rd codon positions, RY
sequence recoding, or proteome sequence).

The Evolution of Heterogeneous Base Composition
in Birds

Our study reveals an unexpected dynamic pattern of
base composition evolution in protein-coding genes of
birds. This pattern consists of an increase in GC3 in almost
every branch of the avian phylogeny with marked excep-
tions in the ancestral branch leading to Neoaves and
Neognathae and in the terminal Paleognathae (emu) line-
age. Moreover, the increase is more pronounced in some
lineages (like in passerines) than in others (like parrots).
The pattern is compatible with the hypothesis that GC3
content in budgerigar and emu reflects the ancestral state,
whereas other Neoaves lineages have evolved an increase
in GC3.

The dynamic picture of GC3 content evolution we de-
scribe echos the revisited view of GC content evolution in
mammals (Romiguier et al. 2010). Classically, the GC con-
tent of mammalian lineages has been thought to decline
since the ancestor of placental mammals (Duret et al.
2002; Belle et al. 2004). However, an extensive analysis of
33 mammalian genomes has revealed a more dynamic pic-
ture where several lineages have undergone an indepen-
dent increase in GC content (Romiguier et al. 2010).
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Our results beg for an explanation to the variation in
GC3 seen among avian lineages. One possible mechanism
would be gBGC. The observation in several organisms of
a correlation between GC content and recombination rate
(see table 1 in Glémin 2010) has led some authors to pro-
pose a recombination-associated repair mechanism favor-
ing GC over AT, in the form of gBGC. Since its original
proposition, gBGC has been strengthened by direct exper-
imental evidence such as analysis of meiotic recombination
products in yeast (Mancera et al. 2008). Moreover, there are
clear examples in mammals that show that an increased
regional recombination rate has led to a drastic increase
in regional GC content (Galtier 2004) and that GC* is di-
rectly correlated with recombination rate (Galtier 2004;
Meunier and Duret 2004; Webster et al. 2005; Dreszer
et al. 2007, Duret and Arndt 2008).

We found that the strong increase in GC3 content in
passerines was concentrated to high-recombination rate
(subtelomeric) regions. We also found a direct correlation
between regional (5 Mb windows) GC3 content and re-
combination rate in zebra finch. Furthermore, the observed
correlation between GC3* in the zebra finch lineage and
zebra finch recombination rate supports the hypothesis
that recombination rate is driving the increase in GC3. This
correlation is in line with previous results obtained with
chicken CR1 retrotransposon repeat elements, which
showed that GC is maintained and even reinforced in
the most GC-rich regions of the chicken genome (Webster
et al. 2006). In conclusion, we cannot formally demonstrate
that gBGC explains the evolution of base composition in
birds. However, we can conclude that our observations
are consistent with the expectations from the gBGC
hypothesis.

The Rate of Molecular Evolution in Birds

There was a clear rate rank order of ratites—nonpasserines—
passerines from slow to fast evolving. This variation in the
substitution rate does not appear to be dependent of gene
sampling or to an overall change in the intensity of natural
selection acting on protein evolution. The accelerated evo-
lution of the passerine transcriptome that we detect is con-
sistent with previous observations made using exonic and
intronic sequences (Hackett et al. 2008) and based on se-
quence motif evolution (Edwards et al. 2002). Nabholz et al.
(2009) used mtDNA data and extensive taxonomic sam-
pling to estimate that the neutral substitution rate of pass-
erines is 2.3 times higher than that of other birds. This is
similar to the figures estimated herein.

Conclusions

Here, we have presented an extensive phylogenomic anal-
ysis of avian transcriptome data obtained through next-
generation sequencing technology. The analysis revealed
several important results. 1) A confirmation that the sta-
tionary assumption of nucleotide evolution is critical to
consider in phylogenetic reconstruction. 2) An unexpected
dynamic pattern of GC3 evolution in the avian phylogeny
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with a marked increased in passerines and possible a link
with recombination through gBGC. 3) Substantial variation
in substitution rate among lineages where the passerines
appear as the fastest evolving among the taxa studied here.
More generally, our study demonstrates the usefulness of
deep transcriptome sequencing for analyses of phyloge-
nomics and molecular evolution. At the same time, it dem-
onstrates limitations. Despite the very large amount of data
collected, data matrices are likely to contain a lot of missing
data in shotgun approaches directed toward the transcrip-
tome (and of course even more so if genomic DNA is tar-
geted). The use of normalized libraries (Barbazuk et al.
2007) would be one way to overcome this problem. An-
other issue is taxon sampling that in our case was not
at par with what nowadays is common in phylogenetic
studies based on individual genes or markers. The per-base
costs for next-generation sequencing have shown a steady
decrease over the few years the technology has been used,
and there should be no reason to expect that they will not
continue to do so. This, together with improved protocols
for running many samples in parallel using tagged tem-
plates, should facilitate increased taxon sampling in phylo-
genomic work.

Supplementary Material

Supplementary figures S1-S2 are available at Molecular
Biology and Evolution online (http://www.mbe.oxfordjournals.
org/).
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