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Structure and assembly of  
CBBs and cilia/flagella
The microtubule (MT) cytoskeleton is the main component of 
macromolecular machineries, such as the mitotic spindle and 
centrioles/basal bodies (CBBs). CBBs nucleate formation of the 
centrosome—the primary microtubule-organizing center (MTOC) 
in animal cells that is involved in cell proliferation, migration, 
and polarity—and of cilia/flagella, which are essential for mo-
tility and sensing/responding to environmental cues (Fig. 1; 
Bettencourt-Dias and Glover, 2007; Nigg and Raff, 2009).  
CBBs are cylinders generally constructed from nine micro
tubule triplets organized in a ninefold symmetrical configuration 
reinforced by a cartwheel-like structure (Fig. 1, A and B). The 
canonical animal centrosome is usually composed of a mature 
mother and a daughter centriole (Fig. 1, A and B). Mature cen-
trioles may acquire additional specialized structures, such as 
subdistal and distal appendages, involved in cytoplasmic MT 
anchoring and positioning the CBB within the cell (Fig. 1 A; 
Bornens, 2002; Azimzadeh and Marshall, 2010). Centrioles, 
then called basal bodies, anchor at the cell membrane to initiate 
the growth of the axoneme, the MT core of cilia and flagella 
(Fig. 1 C). Basal body differentiation may include the addition 
of structures such as striated rootlets, basal feet, and transition 
fibers, linking the basal body to the cytoskeleton and orienting 

it in relation to other organelles and other cells (Fig. 1, A and C). 
The axoneme assembles through the extension of the two most 
inner MTs of the basal body and is usually encased in a special-
ized membrane. Cilia may also contain a pair of central MTs, 
inner and outer dynein arms, and radial spokes that drive and 
regulate ciliary motility (Fig. 1 C; Satir and Christensen, 2007; 
Gerdes et al., 2009).

CBBs can assemble adjacent to other centrioles or de novo 
in the absence of preexisting structures (Fig. 1 B). In most eu-
karyotic cell types, cilia biogenesis, integrity, and function rely 
on a bi-directional transport mechanism along axonemal MTs, 
called intraflagellar transport (IFT; Fig. 1 C; Kozminski et al., 
1993; Marshall and Rosenbaum, 2001; Engel et al., 2009).  
In most organisms, anterograde (base to tip) IFT is driven by 
heterotrimeric kinesin-II, whereas the retrograde (tip to base) 
movement is mediated by dynein heavy chain (Fig. 1 C; Davis 
et al., 2006).

Methods to infer how CBBs and derived 
structures evolved
Eukaryotes evolved more than two billion years ago, but we 
lack a fossil record from which we can track the evolution of the 
structure and function of subcellular organelles (Cavalier-Smith, 
2010; El Albani et al., 2010). We can only infer details of early 
eukaryotic history using features of extant organisms. We use 
the general parsimony principle that the most likely evolution-
ary scenario is the one that requires the least amount of events 
(see for example Ouzounis (2005) for a discussion of ancestral 
genome reconstruction). So, if we observe that a given structure 
or gene exists in several eukaryotic groups, we assume that it 
emerged before their divergence, in the last eukaryotic common 
ancestor (LECA), and reject a scenario of convergent evolution.

The recent sequencing and annotation of eukaryotic ge-
nomes, combined with advancements in RNAi and mass spectrom
etry, has enabled the characterization of the composition and 
function of CBBs and associated structures in several eukary-
otic groups (Figs. 2 and 3; Wigge et al., 1998; Ostrowski  
et al., 2002; Andersen et al., 2003; Keller et al., 2005; Pazour  
et al., 2005; Smith et al., 2005; Broadhead et al., 2006; Cao et al., 

Centrioles/basal bodies (CBBs) are microtubule-based 
cylindrical organelles that nucleate the formation of cen-
trosomes, cilia, and flagella. CBBs, cilia, and flagella are 
ancestral structures; they are present in all major eukary-
otic groups. Despite the conservation of their core struc-
ture, there is variability in their architecture, function, and 
biogenesis. Recent genomic and functional studies have 
provided insight into the evolution of the structure and 
function of these organelles.
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cartwheel and MT triplets and an axoneme composed of nine 
MT doublets bound to outer and inner dynein arms and radial 
spokes, surrounding a central MT pair (Fig. 2). A similar struc-
ture is thus likely to have been present in the LECA (Fig. 4).

Other structures associated with the CBB, such as ap-
pendages (transition fibers/distal appendages, subdistal or other 
lateral appendages, basal feet or connecting fibers, and non-
MT–based rootlets), may have also been present in the LECA 
(Figs. 2 and 4). It has been suggested that the association of 
CBBs with other cytoplasmic cytoskeleton elements, mediated 
by those appendages, is an ancestral feature ensuring cell polar-
ization relative to its motile/sensory apparatus and the propaga-
tion of cell geometry through cell division (Azimzadeh and 
Marshall, 2010). For instance, in Chlamydomonas, the basal 
bodies anchor a set of stable MT bundles that are involved in di-
vision plane determination and thus impact the cell geometry of 
daughter cells. Basal bodies from Paramecium, Trichomonas, 
Chitrids, and choanoflagellates also show an association with 
cytoplasmic microtubules either directly or through an MTOC. 

2006; Reinders et al., 2006; Kilburn et al., 2007; Liu et al., 
2007; Baker et al., 2008a,b; Arnaiz et al., 2009; Boesger et al., 
2009; Mayer et al., 2009). These data have allowed the use of 
comparative genomics in the study of CBBs and derived struc-
tures (Avidor-Reiss et al., 2004; Li et al., 2004; Branche et al., 
2006). A strong correlation between the presence of a given set 
of genes and a structure in a wide number of species points to an 
involvement of those genes in the biogenesis/function of those 
structures (Figs. 2 and 3; Carvalho-Santos et al., 2010). This 
also includes organisms for which no functional studies have 
been performed. Moreover, these phylogenetic profiles can sug-
gest paths for the evolution of CBBs and cilia.

Eukaryotic origin of CBB and cilia/flagella
The structure and origin of the first CBB. Both the 
CBB and axoneme are remarkably conserved structures found in 
all major eukaryotic groups, which suggests their presence in the 
LECA (Fig. 2; Table S1; Cavalier-Smith, 2002). Organisms in 
most taxonomic groups show a ninefold symmetric CBB with 

Figure 1.  Structure and biogenesis of centrosomes and cilia. (A) On the left, a schematic and EM micrograph (reproduced from Vorobjev and Chentsov, 
1982) of an animal prometaphase centrosome composed of mother (MC) and daughter (DC) centriole arranged in an orthogonal fashion. The mother 
centriole harbors subdistal and distal appendages. On the right, a schematic and EM longitudinal section (reproduced with permission from the Journal 
of Cell Science; Sorokin, 1968) of a basal body from rat lung multiciliated cells bearing rootlets and lateral/distal appendages. (B) Key regulatory and 
structural components in CBB biogenesis (canonical [top] and de novo [bottom]; Azimzadeh and Marshall, 2010). (C) Schematic of the basal body, 
when docked at the cell membrane and growing the axoneme of cilia/flagella. EM cross section of tracheal motile cilia (top: reproduced from Satir and 
Dirksen (1985) in Handbook of Physiology with permission from the American Physiology Association) and renal nonmotile primary cilia (bottom: image courtesy  
of H. Zentgraf, German Cancer Research Center, Heidelberg, Germany). Cilia/flagella are assembled via the intraflagellar transport (IFT) system.  
EM longitudinal section of the Chlamydomonas flagellum adapted from Pedersen et al. (2006) with permission from Elsevier.

http://www.jcb.org/cgi/content/full/jcb.201011152/DC1
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Figure 2.  Structure and distribution of CBB, cilia/flagella, and associated structures in eukaryotes. Simplified taxonomic tree representing major eu-
karyotic groups in different colors (these groups contain a common ancestor and all its descendants; adapted from Hedges (2002) and Baldauf (2003)). 
Unikonts include eukaryotic cells that, for the most part, have a single emergent flagellum and are divided into Opisthokonts (propel themselves with a 
single posterior flagellum; Metazoans, Fungi, and Choanoflagellates) and Amoebozoa (Cavalier-Smith, 2002). Bikonts include eukaryotic organisms with 
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as discussed above, at least one component required for CBB 
migration and attachment to the actin cytoskeleton, MKS1, is 
ancestral (Fig. 3; Keller et al., 2005; Dawe et al., 2007, 2009).

The assembly of the axoneme and localization of recep-
tors to the ciliary membrane was shown to be dependent on po-
larized vesicular trafficking and on the IFT machinery (Fig. 1 C 
and Fig. 4, B, B, C, C, and E; Nachury et al., 2010). Cargo 
destined for the cilium is assembled and sorted at the Golgi and 
delivered at the flagellar base. This process involves essential 
regulators of polarized transport, such as Rab8 and the exocyst 
and sorting complexes such as the BBSome (Figs. 3 and 4; 
Peränen et al., 1996; Moritz et al., 2001; Koumandou et al., 
2007; Nachury et al., 2007; Yoshimura et al., 2007; Pereira-Leal, 
2008; Jin et al., 2010). Cilia compartmentalization may be de-
pendent on different mechanisms, as large proteins do not freely 
enter the ciliary lumen (Nachury et al., 2010). Recently, septins, 
GTP-binding proteins involved in compartmentalization, were 
implicated in the definition of a ciliary-specialized membrane 
compartment at the base of the cilium (Fig. 3; Fig. 4, B and E; 
Hu et al., 2010; Kim et al., 2010). Also, a Ran-GTP gradient 
may selectively control which molecules enter the cilium, simi-
lar to the mechanism that regulates transport through the nuclear 
pore (Dishinger et al., 2010). Although still poorly understood, 
this system may be crucial for transport into the cilium and for 
shuttling components between the cilium and the nucleus, hence 
regulating transcription in cilia-mediated signaling events.

Finally, the motility of the axoneme is dependent on a va-
riety of protein complexes, such as dynein arms (Fig. 1 C and 
Fig. 3; Satir and Christensen, 2007).

Evolutionary scenarios for the origin of CBB/

cilium apparatus in eukaryotes. A tubulin-like cytoskel-
eton, membrane compartmentalization with coat-like mole-
cules, and an internal genome-containing compartment are all 
found in bacteria, and in particular in a recently characterized 
superphylum of bacteria suggested to be ancestors of eukary-
otes, which includes the Planctomycetes, Verrucomicrobia, and 
Chlamydiae (Devos and Reynaud, 2010). Ran GTPase, which 
controls nucleo-cytoplasmic shuttling, appears to have emerged 
before the radiation of the Rab family (Colicelli, 2004). Thus, many 
of the essential components required to assemble a cilium, either 
sensory or motile, can be traced back to the proto-eukaryote.

The origin of the motile cilium Several unicellular 
organisms use their flagellum to attach to surfaces and pull the 
cell body in a process called gliding, which allows cells to move 
in an almost amoeboid fashion. A simple form of motility such 

Unfortunately, the little information available about the mor-
phology and composition of these associated structures does 
not allow us, at the time, to discriminate between scenarios of 
common ancestry or convergent evolution.

Finally, it is likely that early flagella performed both mo-
tile and sensory functions, as these features are observed in 
multiple branches of the eukaryotic tree of life (Fig. 2; Satir  
et al., 2008; Bloodgood, 2010).

Three different hypotheses have been proposed for the 
presence of the CBBs and cilia/flagella in the LECA: endo
symbiotic, viral, and autogenous origin. The first proposes that 
the cilium originated from a permanent symbiosis between an 
ancient Spirochete bacterium and an Archaebacterium (Sagan, 
1967). Satir et al. (2007) proposed that the CBB evolved from 
an infection with a virus bearing a ninefold symmetry, whose 
capsid gave rise to a cartwheel with the ability to elongate MTs. 
To date, these hypotheses have had little morphological and mo-
lecular support (Satir et al., 2008).

The third hypothesis, first described by Pickett-Heaps 
(1974), proposes an autogenous origin of the CBB/cilium from 
an MTOC that organized cytoplasmic and mitotic MTs. The 
ninefold symmetry of these structures would have been the  
result of an evolutionary optimization of cilium motility  
(Cavalier-Smith, 1978; Mitchell, 2004; Satir et al., 2008). Al-
though remote homologues of tubulin exist in Prokaryotes 
(Löwe and Amos, 2009), recent data suggest that most CBB 
components originated in eukaryotes: (a) no bacterial, archaeal, 
or viral counterparts of CBB components were found using de-
fined conserved regions from proteins of the CBB assembly 
pathway (Carvalho-Santos et al., 2010; unpublished data); and  
(b) many CBB/cilium components such as tubulins, microtubule 
motors, and the IFT machinery are eukaryotic duplicates of  
cytoplasmic proteins (Fig. 3; Dutcher, 2003; Azimzadeh and 
Bornens, 2004; Jékely and Arendt, 2006; Wickstead and Gull, 
2007). These results support the scenario of a eukaryotic/autog-
enous origin of the CBB, which we discuss in the next section.

Minimal requirements for the assembly and 

function of CBBs and derived structures. Recent 
studies on the molecular mechanisms involved in the assembly 
and function of cilia and flagella reveal that the ninefold sym-
metrical CBB and axoneme is universally dependent on mole-
cules such as SAS6, SAS4/CPAP, and BLD10/CEP135 (Fig. 1 B; 
Carvalho-Santos et al., 2010; Hodges et al., 2010). On the other 
hand, although it is not clear whether there is an ancestral mech-
anism for association of CBBs with the cytoplasmic cytoskeleton 

two emergent flagella (Cavalier-Smith, 2002). Branch color code: purple, Opisthokonts; blue, Amoebozoa; green, Plants; yellow, Alveolates; orange, Stra-
menopiles; rose, Rhizaria; brown, Excavates and Discicristates. We represent the symmetry and number of CBB MTs, either when nucleating an axoneme 
(basal body) or not (centriole), and of axonemes as well as the presence/absence of central MT pair (, not present). In organisms for which data were 
available, we also included the structure of the cartwheel and of several associated structures (transition fibers/distal appendages involved in CBB anchor-
ing at the cell membrane; lateral appendages including subdistal appendages, basal foot or connecting fibers linking CBBs to each other or to cytoskeleton 
components; and non-MT based rootlets that link the proximal part of the CBB to other organelles). We also included information on the presence/absence 
of axonemal-associated structures (dynein arms and radial spokes) as well as their beating patterns. Finally, we represent the pathways used for CBB 
assembly, canonical, de novo, or both. In Drosophila melanogaster, the gray centriolar MTs represent the fact that certain tissues present centrioles with 
doublets whereas others show triplets. The asterisk in D. melanogaster 9+0 sensory axoneme reflects the possibility that this structure is motile (Göpfert and 
Robert, 2003). In Acerentomon microrhinus, the CBBs formed during spermatogenesis have a different symmetry and the cartwheel is also represented 
in these structures. In the remaining cases, gray structures are used when evidence pointing to their presence is not robust (poor EM data or data from a 
related species). For references please check Table S1.

 

http://www.jcb.org/cgi/content/full/jcb.201011152/DC1
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POC1, and CEP164 involved in cartwheel, centriolar MTs, and 
appendage assembly (Figs. 1–4; Carvalho-Santos et al., 2010; 
Hodges et al., 2010; Azimzadeh and Marshall, 2010). In addi-
tion, multiple rounds of dynein duplication with subfunctional-
ization originated the outer and inner dynein arms, which 
produce the flagellar beating force (Wickstead and Gull, 2007). 
The emergence of a variety of molecules needed for biogenesis 
and orientation of the central MT pair would have allowed the 
evolution of more complex beat waveforms (Fig. 4, D and E). 
The ninefold symmetry of the axoneme appears to be the most 
efficient conformation to enclose the central pair (Mitchell, 
2004, 2007; Satir et al., 2008). Whether the CBB appeared first, 
at the same time, or after the axoneme is not clear, but morpho-
logical distinctions between the two structures (doublet vs. trip-
let MTs, central MT pair, etc.) were likely present in the LECA 
(Figs. 2 and 4).

Evolving a sensory organelle. The evolution of a 
sensory cilium required the targeted trafficking of receptors and 
signaling molecules to a specialized membrane domain. Jékely 
and Arendt (2006) recently proposed an evolutionary scenario 
in which the initial structure to appear during CBB/cilia evolu-
tion was an individualized sensory patch resulting from polar-
ized vesicle transport from the Golgi to the plasma membrane 
using specific coats (Fig. 4, B, B, and E). This polarized trans-
port relied on a system of motors and adaptors that would later 
evolve into the IFT system (Fig. 4, C and C). The combination 
between the sensory and motility functions on the proto-cilium 
would culminate in the evolution of an organelle similar to those 
found in extant organisms (Mitchell, 2007; Satir et al., 2008).

Ample evidence supports the idea that sensory functions 
of the cilium evolved from polarized trafficking. The IFT sys-
tem is likely to be a specialization of a more general transport 
system already present in the LECA: (a) coat proteins and small 
GTPases, typically found on the cytosolic face of organelles, 
have counterparts in the IFT machinery; (b) kinesins and dy-
neins involved in IFT have cytoplasmic counterparts involved in 
polarized transport (Wickstead and Gull, 2006, 2007; Wickstead 
et al., 2010); (c) some IFT components have nonciliary func-
tions such as polarized secretion in nonciliated lymphoid cells 
and in exocytosis at the synapse of nonciliated secondary neu-
rons in the retina (Finetti et al., 2009; Sedmak and Wolfrum, 
2010); (d) the kinesin-II family of IFT motors also functions  
in polarized cells including intracellular melanosome transport 
and mRNA and MT stabilization (Wickstead and Gull, 2006; 
Jaulin and Kreitzer, 2010; Wickstead et al., 2010); and (e) several 
IFT proteins localize to spindle poles in mitosis, suggesting  
cytoplasmic roles in microtubule organization and spindle posi-
tioning (Fig. 3; Fig. 4, B, B, C, C, and E; Wickstead and Gull, 
2006; Jaulin and Kreitzer, 2010; Wickstead et al., 2010; Delaval 
et al., 2011). Finally, cilia are specialized compartments, with 
different protein and lipid composition from those of cytoplasm 
and nonciliary membrane (Nachury et al., 2010). Diffusion bar-
riers are known to play important roles in the definition of cel-
lular compartments. It is plausible that the early creation of a 
diffusion barrier, perhaps organized by septins, which our un-
published data suggest are ancestral molecules, led to the indi-
vidualization of a ciliary membrane (Fig. 4, B, C, C, and E).

as this could have been the first proto-cilium–based motility 
(Satir et al., 2008). This is supported by the fact that this type  
of movement is found in at least three different eukaryotic 
groups (Plants, Discicristates, and Cercozoa; Bloodgood, 1981; 
Kozminski et al., 1993; Saito et al., 2003; Chantangsi et al., 
2008; Satir et al., 2008; Cavalier-Smith et al., 2009).

Several proteins had to emerge in early eukaryotes to  
allow the evolution of a motile structure with ninefold symme-
try, formed by triplets and doublets of closed and opened MTs. 
These probably include - and -tubulins, allowing for the con-
struction of the unique opened MTs of the CBB and cilium, and 
other proteins such as SAS6, SAS4/CPAP, BLD10/CEP135, 

Figure 3.  Phylogenetic profile of CBB/axoneme structure and compo-
nents. Simplified taxonomic tree representing major eukaryotic groups in 
different colors using the same color code as in Fig. 2 (adapted from 
Hedges (2002) and Baldauf (2003)). Phylogenetic profile of proteins in-
volved in CBB and cilia/flagella assembly and function. Data adapted 
from Jékely and Arendt (2006), Wickstead and Gull (2007), Carvalho-Santos 
et al. (2010), Hodges et al. (2010), Wickstead et al. (2010) and our 
unpublished data.
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Diversification of CBB/cilium structure and 
their molecular components
The CBB/cilium as a functional unit. Variations on the 
ancestral 9+2 axoneme configuration are observed among eu-
karyotes. Interestingly, these alterations correlate with changes 
in beat waveforms or loss of motility (Fig. 2). For instance, certain 
plants, diatoms, insects, and gregarines possess motile axonemes 

Less clear is whether the sensory patch predates the  
polarization of microtubules into a proto-cilium, whether the 
targeting of sensory and signaling molecules was a later  
adaptation, or even if they formed concomitantly. As the  
sensory and motility functions of the cilium appear to be wide
spread, it is not possible at this point to order their emergence  
in evolution.

Figure 4.  Autogenous theory for the origin of the sensory/motile flagellum. (A) The eukaryotic cell where the proto-cilium evolved likely had a cytoskeleton 
composed of actin and MTs that converged in the MTOC, a nucleus, and an endomembrane system. (B and B) Targeted traffic of cell membrane com-
ponents to a cell membrane patch that started protruding through the directed force produced by the MTs anchored at the MTOC. This protrusion would 
evolve to become a specialized structure with specific membrane composition maintained by diffusion barriers. (C) The evolving proto-cilium was likely 
capable of environmental sensing and gliding, which might have driven the implementation of this organelle. (C) An IFT system was recruited to assemble 
these structures. (D) Further on, the bundle of MTs would evolve in order to create a specialized arrangement of closed and open MTs forming a ninefold 
symmetric structure capable of bending due to the presence of molecular motors. The basal body gave support to the motile axoneme at the cell membrane.  
(E) In conclusion: the ancestral CBB/cilium apparatus would have been characterized by the following characteristics: (a) a ninefold symmetric CBB composed 
of MT triplets, with a cartwheel, lateral and distal appendages, and rootlets being defined by a set of proteins, the UNIMOD (UNIversal MODule); (b) an 
axoneme with both motile and sensorial functions presenting ninefold symmetry composed of nine doublets, central pair, outer and inner dynein arms, and 
maintained by the IFT system; (c) a specialized membrane created by a diffusion barrier both at the level of the membrane and of diffusion of components at 
the transition zone; and (d) targeted transport of membrane and other components from the Golgi to the ciliary base. Adapted from Satir et al. (2008).
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1979). It has been suggested that Chlamydomonas reabsorb 
their flagella due to the presence of a cell wall, which inhibits 
the migration of the basal bodies into opposite poles (Parker  
et al., 2010). In human cycling ciliated cells, where cilia dis
assembly is also observed, it seems plausible that this mech
anism requires regulatory coordination with the cell cycle, 
though currently little is known about the mechanisms regu-
lating this process.

Ancestral and acquired functions of the CBB. 
The animal CBB has a dual function as an axonemal nucleator 
and as part of the cytoplasmic MTOC. In animals, the centriole, 
as part of the centrosome, has important functions in embry
onic development, asymmetric divisions, and male meiosis 
(Rodrigues-Martins et al., 2008; Debec et al., 2010). A centro-
some composed of centrioles and PCM is primarily found in 
animals and Fungi (Opisthokonts); however, other examples are 
found outside of this taxon, such as in brown algae and Plasmo-
diophorids (plant parasites belonging to the Cercozoa group; 
Fig. 2 and Table S1). Although all species that present CBBs 
also present cilia, a weaker correlation is seen between the pres-
ence of the CBB and CBB-containing centrosomes. This obser-
vation suggests that the ancestral CBB function would be mainly 
to template/support the axoneme.

During cell division, the spindle ensures equal separation 
of the sister chromatids into the two daughter cells. The MTOCs 
that contribute to spindle MT nucleation and organization are 
highly variable among eukaryotes. The localization of CBBs at 
or close to the poles of the spindle is often achieved through the 
interaction of MTs nucleated by the CBB and the spindle itself. 
It has been suggested that this localization is a strategy to ensure 
equal inheritance of these structures so that both daughter cells 
can form cilia (Pickett-Heaps, 1971, 1974). However, even if 
this was originally the case, the CBB has important functions in 
cell division, suggesting possible cooption of the structure to 
actively participate in the process and coordinate it with other 
cell functions.

Molecular mechanisms in CBB evolution. There 
is a core mechanism of CBB assembly conserved among  
eukaryotes determined by an evolutionarily cohesive and an-
cestral gene module (UNIMOD; Fig. 1 B and Fig. 3). The use  
of that module extends to different tissues within the same  
organism, as we and others have shown that canonical, de novo 
and assembly in multiciliated cells use the same molecular 
pathway to assemble the centriole structure (Rodrigues-Martins 
et al., 2007a; Vladar and Stearns, 2007; Kuriyama, 2009). 
Perhaps one of the most striking features of the evolution  
of CBBs is the almost perfect correlation between the ab-
sence of the structure and absence of that ancestral gene 
module that is strictly required to assemble the structure 
(Figs. 2 and 3). Exceptions to this rule may provide interest
ing examples of eukaryotes that are in the process of losing 
the structure. That is the case of the smallest eukaryotic  
cell, the algae Ostreococcus, which does not seem to have a 
CBB but encodes some of its components in the genome 
(Figs. 2 and 3; Henderson et al., 2007; Merchant et al., 2007; 
Wickstead and Gull, 2007; Keller et al., 2009; Carvalho-Santos  
et al., 2010; Hodges et al., 2010).

that lack a central pair, outer or inner dynein arms, or show de-
viations from the ninefold symmetry (Fig. 2; Manton et al., 
1970; Heath and Darley, 1972; Baccetti et al., 1973; Schrevel 
and Besse, 1975; Prensier et al., 1980; Woolley, 1997; Okada  
et al., 2005; Riparbelli et al., 2009; Dallai et al., 2010). Although 
9+2 axonemes use planar or three-dimensional beat waveforms, 
axonemes lacking the central pair typically have a simpler heli-
cal beat (Fig. 2; Holwill, 1966; Leadbeater and Dodge, 1967; 
Prensier et al., 1980; Goldstein and Schrével, 1982; Gibbons  
et al., 1983; Werner and Simmons, 2008). Nonmotile sensory cilia 
can show a variety of axoneme structures, as it is in the extreme 
case of nonmotile Caenorhabditis elegans cilia (Inglis et al., 
2007). This observation suggests that the main constraint limit-
ing the variation in axoneme architecture is their motility 
(Mitchell, 2007; Satir et al., 2008).

Evolutionary constraints applied to the axoneme structure 
are likely to be extended to the CBBs. For example, C. elegans, 
which does not have motile cilia, contains a small MT doublet 
“basal body” at the base of sensory cilia, whereas its embryonic 
centrioles, which are not associated with cilia, only have singlet 
MTs (Fig. 2). Similarly, Drosophila embryonic centrioles, 
which are not associated with cilia, are composed of MT dou-
blets, whereas during motile flagella formation in spermato
genesis, CBBs that nucleate motile cilia are composed of MT 
triplets (Fig. 2; Callaini et al., 1997). In the extreme case, many 
species have completely lost their CBBs and cilia, such as Angio
sperms, some fungi, and certain amoebas (Fig. 2).

CBB and cilia assembly in different contexts. 
The pathway of CBB biogenesis varies among eukaryotes being 
performed either in proximity to an already existing “parental” 
structure or de novo (Fig. 1 B). Canonical and de novo CBB  
assembly can also coexist in the same organism, such as in par-
thenogenic insects (Riparbelli and Callaini, 2003; Ferree et al., 
2006). Because in animals and Chlamydomonas experimentally 
induced de novo biogenesis lacks control on the place, time,  
and number of CBBs assembled, it has been suggested that the  
presence of a parental structure provides a scaffold for the regu-
lation of new centriole assembly (Marshall et al., 2001;  
Rodrigues-Martins et al., 2007b). It is thus striking how organisms 
such as the amoeboflagellate Naegleria and sperm cells of Plas-
modium, ferns, or diatoms that form CBBs de novo show im-
pressive number, spatial, and time control (Fig. 2; Dingle and 
Fulton, 1966; Mizukami and Gall, 1966; Manton et al., 1970; 
Heath and Darley, 1972; Fritz-Laylin et al., 2010a). Perhaps in 
all organisms regulation of the location and numbers is achieved 
by controlled availability and localization of assembly compo-
nents, which is often but not always specified by a parental CBB.

Several unicellular organisms assemble new cilia/flagella 
apparatuses during cell division without disassembling the old 
cilia/flagella and with no disruption of the ability to move. This 
is the case for ciliates, Trypanosoma, and Giardia, among others 
(Allen, 1969; Dute and Kung, 1978; Iftode and Fleury-Aubusson, 
2003; Nohynková et al., 2006; Elias et al., 2007; Lacomble  
et al., 2010). Disassembly of cilia/flagella in mitosis, followed 
by reassembly in the next cycle is seen in unicellular and multi-
cellular organisms, such as Chlamydomonas and human cells 
(Johnson and Porter, 1968; Cavalier-Smith, 1974; Rieder et al., 
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from basal body to axoneme occurs, because its components are 
often involved in many human diseases. This type of analysis 
should help us to identify new molecular components of this 
structure as well as having a better understanding of their mech-
anism of action.

The identification of pairs of closely related species where 
these structures were maintained in one organism and lost from 
the other (e.g., Thalassiosira vs. Phaeodactylum [flagellated  
vs. nonflagellated diatoms], Chlamydomonas vs. Ostreococcus 
[flagellated vs. nonflagellated green algae], and Plasmodium  
vs. Theileria [flagellated vs. nonflagellated apicomplexa]) may 
provide additional insights into how cellular structures and genes 
are lost during evolution. Finally, in the future it will also be impor
tant to understand how different cellular mechanisms have co-
evolved, in particular complexes determining cell polarity, 
protein trafficking, and the MT cytoskeleton. The centriole and 
its derived structures are thus an ideal paradigm to study the 
mechanisms involved in the evolution of the eukaryotic cell.
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