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Abstract
In recent times genetic network analysis has been found to be useful in the study of gene-gene
interactions, and the study of gene-gene correlations is a special analysis of the network. There are
many methods for this goal. Most of the existing methods model the relationship between each
gene and the set of genes under study. These methods work well in applications, but there are
often issues such as non-uniqueness of solution and/or computational difficulties, and
interpretation of results. Here we study this problem from a different point of view: given a
measure of pair wise gene-gene relationship, we use the technique of pattern image restoration to
infer the optimal network pair wise relationships. In this method, the solution always exists and is
unique, and the results are easy to interpret in the global sense and are computationally simple.
The regulatory relationships among the genes are inferred according to the principle that
neighboring genes tend to share some common features. The network is updated iteratively until
convergence, each iteration monotonously reduces entropy and variance of the network, so the
limit network represents the clearest picture of the regulatory relationships among the genes
provided by the data and recoverable by the model. The method is illustrated with a simulated data
and applied to real data sets.
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1. INTRODUCTION
A gene regulatory network (also called a GRN or genetic regulatory network) is a collection
of DNA segments in a cell which interact with each other (indirectly through their RNA and
protein expression products) and with other substances in the cell, thereby governing the
rates at which genes in the network are transcribed into mRNA. From methodology point of
view, genetic networks are models that, in a simplified way, describe some biological
phenomenon from interactions between the genes. They provide a high-level view and
disregard most details on how exactly one gene regulates the activity of another. The gene-
gene pair wise relationships provide a special insight of the network and are of interest in the
study.

Our work is closely related to that of genetic network analysis, and we first give a brief
review of the methods. Some methods are deterministic, such as differential (difference)
equation models [1-3], which may not be easy to solve nor have unique solutions. Since the
genetic network is a complex system, any artificial model can only explain part of its
mechanism; the unexplained parts are random noises, so we prefer a stochastic model.
Existing stochastic methods for this problem including the linear models [4,5] or generalized
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linear models [6], the Bayesian network [7,8] etc. All these methods have their pros and
cons, but have the common disadvantage that the solution may not be unique and the results
are not easy to interpret. Also, when the network size exceeds that of the data, these methods
break down. In genetic work the pair wise regulatory relationships among the genes are
important. For such data, it is of interest to investigate the underlying patterns that may have
biologic significance, in particular those arising from pair wises regulatory relationships
among the genes. Here we study this problem from a different point of view. Given a
measure of pair wise gene-gene relationship, we compute the measures from the data, and
use the technique of pattern recognition and image restoration to infer the underlying
network relationships. The pair wise regulatory relationships among the genes are inferred
according to the principle that neighboring genes tend to share some common features, as
neighboring genes tend to be co-regulated by some enhancers because of their close
proximity [9]. In this method, the solution is unique and computationally simple, the results
are easy to interpret and the network can be of any size. In the following we describe our
method, study its basic properties, and illustrate its application. This method is used to
reveal the true relationships of structured high dimensional data array [10-12].

2. MATERIALS AND METHODS
The gene expression data are generally time dependent, as in Iyer et al. [14]. Let Xij (t) (i =
1, …, m; j = 1, …, n;t; = 1, …k) be the observed gene expression response for subject i, gene
j at time t. Denote xi (t) = (xi1(t), …, xin (t))′ be the observations across all the genes for
subject i, and we use x(t) to denote a general sample of the xi(t)'s. Often for this type of data,
m and k are in the low tens, and n in the tens to thousands.

The commonly used differential equation model for genetic network analysis is a set of first
order homogeneous differential equations with constant coefficients, in the simple case, has
the form

where W = (wij) is the n × n matrix of unknown regulatory coefficients to be solved. This
type of models and its more specific and complicated variations characterize well the
dynamic of the network over time. The base solution of the above equation set is the matrix

exponential , and the general solution of it has the
form , (i = 1, …,m), where the cj's are constants to be determined
by initial conditions from the data. So there are in total n2 + n = n(n + 1) coefficients, n2 of
them from W and n from the cj's, to be determined from a total of mnk data points. When
mnk < n(n + 1) these coefficients can not be determined; when mnk ≥ n(n + 1) they may be
uniquely or non-uniquely determined, or may still be not determined. For differential
(difference) equation models more complicated than this, solutions are more difficult to get.

The commonly used stochastic model is the multivariate linear model

where ε = (εi1, …, εin) ′ is the random deviations unexplained by the model. Denote X(t) =
(xij (t)), if X'(t)X(t) is non-singular, the least-squares solution of the above model is W = X'(t
+ 1) X(t) (X'(t) X(t))−1, and it may have multiple solutions for different t. For X'(tr)X(tr) to be
non-singular, one must have n ≤ m. Even for n < m, X'(tr)X(tr) may not necessarily be non-
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singular. This puts an immediate restriction on the size of the network to be analyzed. Also,
the solution of the above model may not be unique due to different time points.

For these reasons, we study the problem from a different point of view; by analyze the pair
wise gene-gene relationships in the network. In the following we describe our model in
which there is always an unique solution, the result is easy to interpret, and there is no
restriction on the size of the network. Since the pattern in the genetic network is based on
the principle of neighboring similarity, the order of the genes matters in the study, and
generally we assume the genes are arranged in their chromosome order.

First we need a measurement for the relationship between any pair of genes, and the network
can be represented by the matrix of the pair wise relationships. For large network, linear
relationship is not adequate to use, as most of the coefficients will be very small. Also, as
mentioned above, such model in this case has no solution because of the small sample size.
Pearson's correlation is a good choice for this purpose, other choices including Kendal's tau
and Spearman's rho, etc. Here we illustrate the method with Pearson's correlation, and our
goal is to infer the triangular correlation matrix R = (rij)1≤i<j≤n from the observed data,
where rij is the Pearson's correlation coefficient between genes i and j. As usually the
number m of individuals is small (sometimes as few as 2), estimate the correlations using
the data at each time point alone is inadequate. So we use all the data to estimate them. An
empirical initial version of these correlations are

(1)

where ,

here the xri (t)'s are not i.i.d. over the time t's, and the sample size mk is often not large, so
the above empirical correlations are very crude evaluations of the true correlations rij's. The
initial table R(0) = (rrj 

(0) :1≤i < j ≤ n) is used as the raw data for the next step analysis. For
each fixed i the observations xi(t) s at different time conditions reduced the common features
in the data, this table is biased as an estimate of R. We need to restore their values according
to the basic property of the genetic regulatory system. Many reports have shown that nearby
genes tend to have similar expression profiles [13-16], thus nearby pairs of genes tend to
have similar relationships, and their correlations tend to be close. This is just the same
principle as used in image restoration of data arrays of any size. In the following we use this
technique to reduce the bias and improve the estimate of R based on the observation R(0) .

Meloche and Zammar [10] considered a method for image restoration of binary data, here
we adopt their idea and revise their method to gene expression analysis for continuous data.
We assume the following model

(2)

for some unknown σ2 > 0, where the εij's represent the part of measurements unexplained by
the true regulatory relationships in the model. Define the neighbor Rij

(0) of rij
(0) to be the

Yuan et al. Page 3

J Biomed Sci Eng. Author manuscript; available in PMC 2011 July 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



collection of the nine immediate members of Rij
(0) of rij

(0) = {rab
(0) :|a − i|≤ 1, |b − j|≤ 1 },

which includes rij
(0) itself at the center. For rij

(0)'s on the boundary of R(0) the definition is
modified accordingly. For example, R1,2

(0) and Rn−1,n
(0) has only three members, R1, j

(0) (3
< j < n−1) has six members, etc. Larger neighbors of different shapes can also be
considered; here we only illustrate using the above neighbor systems. We assume the rij

(0)'s
only depend on their neighbors Rij

(0)'s. The aim is to provide estimates ȓij's for the true rij's
based on the records R(0). WE assume the estimates have the form for some function h(·) to
be specified. The performance of the estimates will be measured by the average conditional
mean squared error.

(3)

(4)

The optimal set of estimates is the one which minimizes (4). Although rij is deterministic,
we may view it as a realization of the random variable rIJ with (I, J) uniformly distributed
over the integer set

S = {(i, j) :1 i ≤ j ≤ n}. So (4) can be rewritten as

Thus by (3), the minimizer of (4) is achieved by

To evaluate the above conditional expectation, we need a bit more preparation. Note σ2 is
estimated by

Denote φ(t | σ1) the normal density function with mean 0 and variance σ2. Denote Sij as the
collection of indices for Rij

(0). Given Rij
(0), for (I, J ) ∈ Sij, view rIJ

(0) as a random vector
over indices (I,J). We define the conditional distribution of rIJ

(0) as

In the above we used the fact that the ruv
(0) are continuous random variables, so the

collection {members in Rij
(0) = ruv

(0)} = {ruv
(0)} almost surely. The corresponding

conditional probability is defined as
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By (2), we deduce E(rIJ | RIJ
(0), (I, J) = (u, v)) = ruv

(0), so we have

(5)

The matrix Ȓ = (ȓij) is our one-step restored estimate of the genetic correlation network R,
we also denote it by R = R(1) = (rij

(1)).

Denote F(·) the operator given in (5), as rij
(1) = F(Rij

(1)), and denote rij
(1) = F(Rij

(1)) R(1) =
F(R(0)) = E(R | R(0)). We view F(·) as a filter for the noises, so R(1) is a smoothed version of
R(0) . Let R = rIJ be the random variable of the rij's over the random index (I,J) and the
variation of possible values of the rij's with density p(·), its uncertainty can be characterized
by variance and entropy, which is defined as

It is maximized or most uncertain when R is uniformly distributed, and has smaller value
when the distribution of r is more certain. It has some relationship with variance. The former
depends on more innate features, such as moments, of the distribution than the latter, which
only measures the disparity from the mean. When p(·) is a normal density with variance σ2,

then . For many commonly used parametric distributions, entropy and
variance agree with each other, i.e. an increase in one of them implies so for the other. But
this is not always true and a general closed form relationship between variance and entropy
does not exists. Variance is more popular in practice because of its simplicity.

Although generally, in the image restoration context, R is estimated by just applying F once,
a natural question is what will happen if we use the operator F repeatedly? i.e. let R(k+) =
(rij

(k+)) = F(R(k)) = E(R | R(k)) for k ≥ 0. To investigate this question, we impose the model

(6)

The estimators rij
(k)'s are obtained by minimizing

and are given by
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similarly σ2(k) is estimated by

Since n is usually large, σ ̑2(k) is a good estimator of σ2(k). Corresponding to (5), we have

(8)

In the above we do not replace the rij
(0)'s by the rij

(k)'s in φ(·|·) but with σ2(0) replaced by the
step k estimator σ2(k), only for the reason of simplicity in the proof of the Proposition below.
Finally, σ2(k) is replaced by σ ̑2(k) in actual computation.

Although few density functions are convex, many of them are log-convex. For example, the
normal, exponential (in fact any quadratic exponential families), Gamma, Beta, chisquare,
triangle, uniform distributions. But some are not, such as the T and Cauchy distributions.
Condition A) does not require all the p(k) (·)'s to belong to the same parametric family, nor
even to be parametric. Condition B) is satisfied for almost all parametric families as few
parametric families require more than the first two moments to determine. The only
restriction we make is that all the p(k) (·)'s belong to the same parametric family.

View r(k) as a random realization of the rij
(k)'s and as of R(0), let p(k) (·) be the density

function of r(k). To study the property of the algorithm, we say a non-negative function f(·) is
log-convex if log f(·) is convex, and assume the following conditions

A) p(k) (·) is log-convex for all k.

B) All the p(k) (·)'s belong to a parametric family which is determined by the fist two
moments.

Our algorithm has the following desirable property (see Appendix for the proof)

Proposition.

1) Assume either A) or B), then H(p(k+)) ≤ H(p(k)), k≥0.

2) σ2(k+1) ≤ σ2(k), k≥0.

3) As k →∞, the table R(k) converges in the component wise sense:
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for some stationary array R* = R* (R(0), F).

This Proposition tells us that, if the assumption of neighboring similarity is valid for R(0),
then the estimates R(k) become more and more clear (less entropy), and more and more
accurate as an estimator of R (less variance). So R(*) is the sharpest picture the data R(0)

provide and can be restored by the filter F, the innate regulatory relationships among the
genes can be recovered by filter F and provided by the data R(0) under the ideal situation of
no noise. Intuitively, this picture has some close relationship with the haplotype block
structures.

As of small sample size (mk) and large number (n(n−-1)/2) of parameters, there is no way of
talking about the consistency of R to R. So in general R(*) and R may not equal, however our
algorithm enable us to do the best effort we can. Convergence of R(k) can be accessed by the
distance criteria: for a given > 0 (usually =1/100 or 1/1000)

or

Network at each time. We may also investigate the problem at each different time point t. In
this case (1) is replaced by

where, ,

and R(0) (t) = (rij
(0)(t) : 1 ≤ i < j ≤n) be the corresponding initial table at each t, and the

neighborhood for rij
(0)(t) is Rij

(0)(t) = {rab
(0) : |a-i|≤1,|b-j|≤1}. In this case (6) is

and ȓij
(k)(t) = E(rIJ

(k))(t) | Rij
(k)(t)).
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(8) is now

The matrix R(k)(t) = (r(k)
ij(t)) is the k-step restored estimate of the genetic correlation

network R(t) = (rij(t)) at time t. The proposition is then hold for each fixed t.

3. SIMULATION STUDY
We simulate 40 genes over 12 time conditions at time (hour) points (t1, …,t12 ) = (1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12) for 6 individuals by mimicking the setting of the data analyzed in
Iyer et al. [17]. We simulate the genes from 6 clusters, the numbers of genes in each cluster
are given by the vector (n1, …,n6) = (8, 6, 4, 4, 6, 12). The baseline values of the gene
expressions over time t ∈ [0,12] in cluster k are generated by functions of the form

Let h(t) be the vector of length 40, with first n1 components given by h1(t), second n2
components by h2(t), …., last n6 components by h6(t). Denote ak = (ak1, ak2, ak3). We
arbitrarily choose the ak's as a1 = (0.54, −0.18, 1.23), a2 = (−0.12, −0.25, 0.45), a3 = (1.0,
−0.55, −0.15), a4 = (−0.32, −0.15, −0.65), a5 = (0.15, 0.25, 0.35) and a6 = (−0.52, −0.45,
−0.55). First we need to simulate the rij 's with coordinated patterns. We divide the 40 genes
into the 6 clusters, and assume independence among the clusters.

Then for given a covariance matrix Ω = Ω1 ⊕…⊕ Ω6 we generate the data using this Ω and
the time conditions, where Ωk is the covariance matrix for the genes in cluster k. Directly
specifying a high dimensional positive matrix is not easy, we let each Ωk has the structure
Ωk = Q′k Qk, for some Qk is positive definite. Note that the Q′k Qk's may not be correlation
matrices, but they are covariance matrices, but they are covariance matrices, so is Ω . Let Qk
be upper diagonal with dimension nk. The non-zero elements of Q1 are drawn from
U(0.5,0.8); those for Q2 from U(0.2,0.4); those for Q3 from U(0.2,0.6), those for Q4 from
U(−0.3, −0.1); those for Q5 from U(0.6,0.9); and those for Q6 from U(−0.8, −0.6). Then let
Ω½ = Q1 ⊕ … ⊕ Q6 . The 6 individuals are i.i.d, so we only need to describe the simulation
of observation x1 = {x1j (t) : j = 1, …, 40;t 1, …,12}of the first individual. Note for each
fixed t, x1(t) = (x11(t), …, x1,40 (t)) has covariance matrix Ω . We first generate y = (y1, …
y40) with the components i.i.d. N(0,1), then x1(t) = (h(t) + Ω½ y + ε(t) is the desired sample,
where for each fixed t, ε(t) = (ε1(t), …,ε40(t)) is the noise, with the εi(t) 's i.i.d N(0,1) and
independent over t. Convert the covariance matrix Ω = (ωij) to a correlation matrix R = (rij)
as  only for i < j. Using the data X = (xij(t)), we compute the R(k) 's from (8)
then use perspective plots to compare the restored correlations after convergence at step k,
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R(k), the one-step restored R(1), the initial estimated R(0) and the true simulated correlations
R.

After computation, the algorithm meets the convergence criterion at iteration 14 with =
10−4. The distances between the observed, first step estimate and last step estimate are:
d1(R(0), R) = 0.125, d1(R(1),R) = 0.108 and d1(R(14), R) = 0.094. We see that the estimate
after convergence is closest to the true correlations. The results are displayed in Figure 1
below. We only display the correlations rij for j > i. Those values for rij is 1′s, and those for
rij (i > j) are set to zero's, which can be obtained by symmetry.

From this figure we see that the correlations computed from the raw data, panel (b), are very
noisy, the true pattern, panel (a), in the network is messed up. The one-step estimate, panel
(c), gives some limited sense, while the final estimates, panel (d), recover the true picture
with reasonably well. Considering the large number of 40(40+1)/2 = 820 parameters and the
small number of 15 individuals on 40 genes, the last step estimates are quite a success.
Large number of simulations yield similar results, the convergence criterion is met with 10
to 15 iterations.

Note we only used networks of 40 genes, as large networks are not easy to display
graphically. The computations of a network with n genes is in the order n(n−1)/2, so there
should be no computational problem for ordinary computer using this method to restore
even the whole genome.

4. RESULTS
We use the proposed method to analyze the data with 30 microarray chips from the Stanford
microarray database: http://smd.stanford.edu/cgi-bin/search/QuerySetup.pl. The Category is
Normal tissue and the subcategory is PBMC, the following 30 files are the Raw data in the
database: 19430.xls, 19438.xls, 19439.xls, 19446.xls, 19447.xls, 19448.xls, 19449.xls,
19450.xls, 19451.xls, 19500.xls, 19505.xls, 19506.xls, 19507.xls, 21407.xls, 21408.xls,
21409.xls, 21410.xls, 21411.xls, 21412.xls, 21413.xls, 21414.xls, 21415.xls, 21416.xls,
21424.xls, 21425.xls, 21426.xls, 21427.xls, 21428.xls, 21429.xls, 21430.xls. The data we
used are the overall intensity (mean), the 67th column in the 30 excel files. We choose three
subsets of genes on the 30 arrays: set I is genes 0-49, set II is genes 1000-1049 and set III is
genes 5000-5049 from the original data set. There are 80 variable for each array. We choose
the intensity from normal people for our analysis. The initial correlation coefficients among
the genes computed from the raw data in each set, and those estimated after convergence by
our algorithm are shown in Figures 2-4. Clearly the initial correlations are noisy and difficult
to see any patterned relationships among the genes. In contrast, the restored pictures are
quite clear. For set I, the coefficients are rather homogeneous with values around 0.5, but
there is a clear boundary around gene 43, which suggests that most of the genes in this set
have similar relationships, or functions. But gene 43 seems to have its own separate
mechanism. Genes 38 and 29 also have weak relationships with the other genes. For set II,
the relationships among the genes are not so homogeneous. The genes are moderately
correlated with coefficients around 0.5, some genes around positions 10, 16, 24, 30, and 38
have weak interactions with the other genes. For set III, there is moderate coordinating
pattern among the genes, but three genes, around positions 15, 29, and 40, appears to have
relatively independent patterns of regulatory functioning.

5. CONCLUDING REMARKS
We considered a image restoration method for genetic network analysis. This method gives
unique solution, the results are easy to interpret and computationally simple. We may
implement the genetic distances among the genes into the updating system given in (8). The
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method is not confined to correlation coefficients among genes, other measures of gene-gene
relationships can be considered analogously. Very large networks can be analyzed in
principle, the only challenge is how to display the results. We found when the number of
genes exceeds 50, the figure is difficult to distinguish visually. The computation for a
network of size 40 takes about a couple of minutes using the Splus software. It will be much
faster using the C program, and there should be no problem to analyze the whole genome by
this method. The only requirement is that the data be arranged in their chromosomal order,
otherwise the results may not easy to interpret.

The method can also be used for other analysis purposes and data types, such as cluster
analysis. Cluster objects by pattern similarities, etc. It can be used to analyze qualitative data
type such as haplotype analysis.
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Appendix

Proof of the Proposition
Recall r(k+1) = rIJ

(k+1) = rIJ
(k+1) (R(k)) is random in (I,J) and R(k); for fixed (I,J)=(i,j), rij

(k+1)

= rji
(k+1) (R(k)) is random in R(k); rIJ

(k+1) = rIJ
(k+1) (R(k) | R(0)) is random in (I,J) (discrete);

also r(k+1) = E(r(k) | RIJ
(k)) = E[rUV

(k) | RIJ
(k)] for random index (I,J) ∈S and random index

(U,V)∈SIJ.

1) We first prove the result under condition A). We have

which is the relative entropy between p(k+1)(·) and p(k)(·). It is known that D(p(k+1) ∥ p(k)) ≥ 0
with “=” if and only if p(k+1)(·) = p(k)(·). Note log-convexity of p(k)(·) imply, for each given
RIJ

(k),

Thus by the above two inequalities we get

Under condition B), the result in Ebrahimi et al. [18] states that entropy and variance agree
each other. i.e. one increase/decrease implies the other. Now the conclusion is immediate
from 2).

2) By the total variance formula, we have
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3) We only need to prove the convergence of the component rij
(k) for any fixed (i,j). In fact

from (8), for any integer m and k we have

Since σ(0) ≺ ∞ and σ(k) ≥ 0, by ii), we have σ(k) → σ* for some 0 ≤σ* < ∞. So if we let

then rij
(k+m) = r̃ij(k+m) +o(1) as k →∞, thus we only need to prove the convergence of

{r̃ij(k+m)}.

Note

We have 0 < Cij < 1, and for all m,

thus {r̃ij(k+m)}k=1,2, … is a Cauchy sequence, and the convergence follows.
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Figure 1.
Network Correlations: (a). Simulated R, (b) Initial R(0), (c) One-step Restored R(1), (d) k-
step Converged R(k)
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Figure 2.
Real data I: initial (left panel) and restored (right panel) correlations.
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Figure 3.
Real data II: initial (left panel) and restored (right panel) correlations.
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Figure 4.
Real data III: initial (left panel) and restored (right panel) correlations.
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