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     INTRODUCTION 

 Worldwide, 2.5 billion people are at risk of contracting den-
gue. Approximately 50 million dengue fever cases, 500,000 
cases of dengue hemorrhagic fever, and 22,000 deaths occur 
annually. 1  Local and regional control is complicated by the 
facts that no vaccine has yet been licensed for broad-scale 
application and that dengue epidemiology is complex. Not 
only are there four different virus serotypes with potentially 
different ecologies, but transmission dynamics are also influ-
enced by variation in the behavior and population dynamics 
of mosquito vectors and human hosts and the nature of their 
interactions with the environment and each other. 2  

 Mathematical and computer simulation models provide a 
systematic way to explore and analyze the complexity of den-
gue transmission and can be useful tools for devising more 
effective disease surveillance and control strategies. Models 
can integrate data from different sources and at different 
spatiotemporal scales, identify and prioritize gaps in data 
or knowledge, and address questions that are too complex, 
expensive, or dangerous to address in other ways. 3,  4  Models, 
therefore, provide a basic theoretical framework so that the 
intricate transmission processes of dengue can be represented 
in a simplified form that can be analyzed in ways that are not 
possible in the natural system itself. 

 To explore the complexity of infectious disease systems, 
both simple 5  and complex 6–  8  models have been developed. 
More complex disease models tend to be more realistic and 
can be used to develop location-specific control strategies. 
However, the behavior of complex models can be difficult 
to explore analytically, 9  and as the number of model param-
eters increases, the likelihood also increases that parameters 
for which little empirical data exist are included. Evaluating 
the suitability, accuracy, and performance of complex disease 
models can be difficult. 

 Sensitivity analysis provides a way to explore the behavior of 
complex disease models by identifying how variation in model 
parameters affects model output. 9  Model outputs obtained 

with different parameter values are evaluated to identify the 
parameters to which the model is most sensitive. In this way, 
sensitivity analysis can be useful not only for understanding 
model behavior, but also for identifying the biological pro-
cesses that may be most important in determining pathogen 
transmission. Obtaining accurate empirical estimates of the 
parameters capturing the most important biological processes 
may then improve the accuracy of disease models and the abil-
ity of models to inform surveillance and control strategies. 

 In this study, we conducted a sensitivity analysis of the com-
plex dengue simulation models originally developed by Focks 
and others. 7,  8  The Container-Inhabiting Mosquito Simulation 
Model (CIMSiM) simulates mosquito population dynamics, 
and the Dengue Transmission Model (DENSiM) simulates 
dengue transmission in a human population. Both models can 
be parameterized for a specific location using local weather 
and entomological and epidemiological data, and both can be 
used to test the effects of various prevention measures on local 
dengue transmission. Our objectives were to (1) parameterize 
the models for Iquitos, Peru, using data collected during longi-
tudinal studies in the city (i.e., set-up the models with required 
data from location to be modeled), (2) identify parameters to 
which the models are most sensitive using sensitivity analysis, 
and (3) determine parameters for which more empirical data 
are needed. Our overall goal was to evaluate the behavior of 
the model and set an empirical research agenda for improving 
the understanding and modeling of dengue and its control. 

   OVERVIEW OF MODELS 

 The dengue model is comprised of two interacting mod-
els. CIMSiM is an age- and stage-structured model that tracks 
the dynamics of mosquito eggs, larvae, pupae, and adults over 
time. 8  The model uses local weather information and infor-
mation obtained from a survey of breeding sites in the focal 
location. For the survey, users collect information about the 
number of water-filled containers in a defined area, container 
dimensions, container characteristics, and number of pupae in 
the containers. These raw data are used to define container 
categories for use in the model. Egg, larval, and water dynam-
ics within each container category are simulated with survival 
and development based on predation (for eggs), temperature, 
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saturation deficit, and food dynamics. Adult population 
dynamics are determined by age-dependent survival with two 
age classes (young and old), the effects of temperature and 
saturation deficit on survival, and host biting. 

 DENSiM takes information from CIMSiM and local infor-
mation about the human age structure, age-specific birth and 
death rates, age- and serotype-specific serostatus, and popula-
tion size to simulate infection dynamics in human and mos-
quito populations. It is individual-based and age-structured for 
the human population and tracks infection dynamics for all 
user-defined dengue serotypes circulating in the system. 7  The 
dengue transmission model uses CIMSiM results to model the 
mosquito population and its interaction with the human popu-
lation. Both models have stochastic and discrete elements. 

   METHODS 

  Data.   Long-term entomological and epidemiological surveys 
have been conducted simultaneously in Iquitos, Peru, since 
1999, 10  and data obtained from these surveys were used to 
parameterize the models. Iquitos is located in the northeastern 
part of Peru (73.2°W, 3.7°S; 120 m above sea level) and has a 
tropical climate with an average daily temperature of 25.8°C 
and an average annual precipitation of 3.4 m during the study. 
The study was restricted to an ~16 km 2  area in the districts of 
Mayanas, Punchana, Belen, and San Juan. 

 For the entomological component of the monitoring study, 
a team of researchers visited houses on a daily, rotational 
basis since 1999 and recorded information about each water-
filled container in and around each home. Each container was 
defined as a certain type (e.g., bucket, tire, or vase), and sev-
eral measurements related to container size, water use, loca-
tion, and number of pupae were obtained. Details of the study 
and results from the first 3 years of the study are presented by 
Morrison and others. 11  

 The epidemiological study monitored the serostatus of 
~2,400 individuals once every 6 months beginning in 1999. 
The sampled population represented a wide range of ages 
and individuals of both sexes. A team of phlebotomists 
obtained blood samples from study participants once every 
6 months, and the plaque reduction neutralization test was 
used to determine serotype-specific serostatus of individuals 
when blood was drawn. Differences in test results between 
subsequent blood draws were used to identify infections 
for each of the dengue serotypes, although the exact timing 
of the infection between negative and positive blood draws 
(~6-month intervals) could not be determined. This technique 
did, however, allow the detection of all infections, including 
those that were asymptomatic. 10  

   Model parameterization.    Containers.   CIMSiM simulates the 
dynamics of immature  Ae. aegypti  and water dynamics within 
user-specified container categories. Each container category 
should represent the average characteristics and density of that 
container category in the focal location. We used containers 
sampled in the long-term entomological study in Iquitos, Peru, 
just before the transmission season in 2000 to parameterize the 
model. 11  Container measurements used for the parameterization 
included shape (circular or rectangular), dimensions, presence 
or absence of lid, fill method (manual or rain), fill frequency 
(daily, weekly, or monthly), drawdown frequency (daily, weekly, 
or monthly), if it was located on the edge of a roof or similar 
device to capture rain water, if it was in shade or sun, and total 

number of pupae present. Drawdown percent was estimated 
by expert opinion (Morrison AC, personal communication). 
For each container, we calculated volume and watershed ratio 
where the watershed ratio was the surface area of the container 
opening divided by the surface area of the opening at its’ widest 
location in the container (i.e., the surface area of a horizonal 
plane in the widest part of the container). If the container was 
partially under a roof or rain gutter, the watershed ratio was 
multiplied by 5, and if the container was completely under a 
roof or similar device, the ratio was multiplied by 10. 

 Container categories for CIMSiM were then defined by the 
local container type (e.g., bucket or tire) and fill method (rain- 
or manually filled), and averages for all container character-
istics required in the model were calculated for the resulting 
68 container categories (Supplemental Appendix A,  Tables 1  
and  2 ). A few changes to these averages were necessary for 
the model to produce sustained transmission of dengue in 
DENSiM. Mean drawdown was reduced from 50% to 0% for 
rain-filled boxes, drawdown frequency was changed from daily 
to weekly for large rain-filled tanks, and height was changed 
from 100 to 1.1 cm for large rain-filled and elevated tanks. 

           Weather.   Weather data used for parameterization were 
obtained from the National Climatic Data Center for a 
weather station in Iquitos for 2000–2004 (station: 84377099999–
IQUITOS; information available at  http://www.ncdc.noaa
.gov/oa/ncdc.html ). Weather inputs included daily mini mum, 
average, and maximum temperature, precipitation, rela tive 
humidity, and saturation deficit. 

   Food.   After entering the appropriate container and weather 
data into the model, the food fitter described in Focks and 
others 8  was used to determine food inputs for each container 
category in CIMSiM using default values for biological 
parameters ( Table 1 ). Food values were modified within the 
food fitter until the difference between the predicted number 
of pupae and the observed number of pupae per hectare was 
less than or equal to one for each container category (calculated 
from the Iquitos entomological study described above) 
for each container category. In one case (rain-filled tires), 
changing food did not alter the difference between observed 
and predicted numbers of pupae. In this case, an arbitrary 
value of 60 for food was used. The food values obtained when 
using default values for biological parameters were used for 
all model runs in the sensitivity analysis described below (i.e., 
the food fitter was not used for each of the 5,000 parameter 
combinations described below). 

   Human demographics.   Data used to calculate the human 
population size of Iquitos were obtained for 1999 (simulations 
began January of 2000) from El Instituto Nacional de Estadís-
tica e Informática (INEI; information available at  http://www1
.inei.gob.pe/biblioineipub/bancopub/Est/Lib0004/Loreto
.htm ). Estimated population sizes for the districts of Iquitos 
and Punchana (the areas sampled in the longitudinal studies 
conducted in Iquitos) were summed to give a population size 
of 400,000 for DENSiM. Host density was then calculated as 
400,000 divided by the estimated area of the region surveyed 
(16 km 2 ). 11  

 Age-structure and age-specific fertility rates were obtained 
by the US Census Bureau international database online for 
Peru in 1999 (information available at  http://www.census.gov/
ipc/www/idb/country.php ). Age-specific death rates were cal-
culated from several sources. Numbers of age-specific deaths 
and population size for Peru in 2003 were obtained from the 
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 Table 1 
  Parameter defaults and ranges for CIMSiM sensitivity analysis  

Biology tab Parameters Distribution Default Minimum value Maximum value

Adults Young mosquito cut-off age Uniform 10 8 12
Adults Old mosquito survival Uniform 0.89 0.8 0.9
Adults Young mosquito survival Uniform 0.91 0.9 1
Adults Double blood mean high weight threshold Uniform 3.5 2.8 4.2
Adults Double blood meal high weight ratio Uniform 0.01 0.05 0.12
Adults Double blood meal low weight threshold Uniform 0.5 0 1.2
Adults Double blood meal low weight ratio Uniform 1 0.8 1
Adults Dry to wet weight factor Uniform 1.655 1.324 1.986
Adults Fecundity factor Uniform 45.9 36.72 55.08
Adults Interrupted feeds per meal Uniform 3 0 5
Adults Minimum oviposition temperature Uniform 18 14.4 21.6
Adults Proportion of mosquitoes feeding on humans Uniform 0.09 0.72 1
Adults Proportion of interrupted feeds on different host Uniform 0.35 0.2 0.6
Adults Survival at or above high saturation-deficit threshold Uniform 0.6 0.48 0.72
Adults High saturation-deficit threshold Uniform 30 24 36
Adults Low saturation-deficit threshold Uniform 10 4 16
Adults Second developmental threshold Uniform 0.58 0.464 0.696
Adults High-temperature threshold Uniform 40 30 45
Adults Survival at or above high lethal temperature threshold Uniform 0.05 0.04 0.06
Adults High lethal temperature threshold Uniform 50 45 60
Adults Low-temperature threshold Uniform 4 2 14
Adults Survival at or below low lethal temperature threshold Uniform 0.05 0.04 0.06
Adults Low lethal temperature threshold Uniform 0 −10 2
Eggs Flood hatch ratio Uniform 0.596 0.4768 0.7152
Eggs Minimum hatch temperature Uniform 22 13.5 26.4
Eggs Nominal survival Uniform 0.99 0.792 1
Eggs Predation survival at high-temperature threshold Uniform 0.7 0.56 0.84
Eggs High-temperature predation threshold Uniform 30 25 36
Eggs Low-temperature predation threshold Uniform 20 14 25
Eggs Survival at or above high saturation-deficit threshold Uniform 0.95 0.76 1
Eggs High saturation-deficit threshold Uniform 40 32 48
Eggs Survival at low saturation-deficit threshold Uniform 0.99 0.792 1
Eggs Low saturation-deficit threshold Uniform 10 2 18
Eggs High sun-exposure threshold Uniform 0.85 0.68 1
Eggs Survival at or above high sun-exposure threshold Uniform 0.95 0.76 1
Eggs Spontaneous hatch ratio Uniform 0.197 0.1576 0.2364
Eggs High-temperature threshold Uniform 30 20.6 38.5
Eggs Survival at or above high lethal temperature threshold Uniform 0.05 0.04 0.06
Eggs High lethal temperature threshold Uniform 47 38.5 56.4
Eggs Low-temperature threshold Uniform −6 −10 3.4
Eggs Survival at or below low lethal temperature threshold Uniform 0.05 0.04 0.06
Eggs Low lethal temperature threshold Uniform −14 −23.4 −10
Larvae Cadaver weight to food ratio Uniform 0.4 0.32 0.48
Larvae Dry container survival Uniform 0.05 0.04 0.06
Larvae Assimilation rate Uniform 0.3 0.24 0.36
Larvae Exploitation rate Uniform 0.8 0.64 0.96
Larvae Exploitation rate independence Uniform 0.1 0.08 0.12
Larvae Metabolic weight-loss rate Uniform 0.016 0.0128 0.0192
Larvae Metabolic weight-loss exponent Uniform 0.667 0.5336 0.8004
Larvae Fasting survival with lipid reserve Uniform 0.95 0.76 1
Larvae Fasting survival with no lipid reserve Uniform 0.5 0.4 0.6
Larvae Non-depletable lipid reserves Uniform 0.15 0.12 0.18
Larvae Minimum weight for survival Uniform 0.0009 0.00072 0.00108
Larvae Nominal survival Uniform 0.99 0.792 1
Larvae Minimum weight for pupation Uniform 0.1 0.08 0.19
Larvae Pupation survival Uniform 0.95 0.76 1
Larvae High-temperature threshold Uniform 39 30.2 41.5
Larvae Survival at or above high lethal temperature threshold Uniform 0.05 0.04 0.06
Larvae High lethal temperature threshold Uniform 44 41.5 52.8
Larvae Low-temperature threshold Uniform 10 7.5 18.8
Larvae Survival at or below low lethal temperature threshold Uniform 0.05 0.04 0.06
Larvae Low lethal temperature threshold Uniform 5 −3.8 7.5
Larvae Weight at hatch Uniform 0.001 0.0008 0.0012
Pupae Emergence survival Uniform 0.83 0.664 0.996
Pupae Female emergence ratio Uniform 0.5 0.4 0.6
Pupae Nominal survival Uniform 0.99 0.792 1
Pupae High-temperature threshold Uniform 39 30.2 41.5
Pupae Survival at or above high lethal temperature threshold Uniform 0.05 0.04 0.06
Pupae High lethal temperature threshold Uniform 44 41.5 52.8
Pupae Low-temperature threshold Uniform 10 7.5 18.8
Pupae Survival at or below low lethal temperature threshold Uniform 0.05 0.04 0.06
Pupae Low lethal temperature threshold Uniform 5 −3.8 7.5
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United Nations (UN) Statistics Division online (information 
available at  http://unstats.un.org/unsd/demographic/sconcerns/
mortality/mort2.htm , table 19). Estimated age-specific death 
rates were calculated from these data. The crude death rate for 
Peru in 2003 was one-half the crude death rate estimated by 
the US Census Bureau for the same year. It has been suggested 
that only 50% of deaths are reported in Peru. 12  Doubling age-
specific death rates calculated from the UN Statistics Division 
generated a crude death rate that matched the crude death 
rate estimated by US Census Bureau. We used these doubled 
mortality rates in the parameterization of DENSiM. 

   Age- and serotype-specific serostatus.   Data used for esti-
mating age- and serotype-specific serostatus for the human 
population were obtained from the epidemiological survey 
conducted in Iquitos, Peru. 10  Because simulations began in 
2000, we used results from the last blood sample collected from 
individuals in 1999 ( N  = 852). Date of birth was not recorded 
during the study, and only age at first blood draw in 1999 was 
known. Age- and serotype-specific serostatus was calculated 
from the data assuming that all individuals remained the same 
age throughout the entire year (i.e., January 1 to December 31). 
Sample sizes differed across age groups, with high sample sizes 
for younger individuals and relatively small sample sizes for 
the older age groups. To obtain better estimates of age-specific 
serostatus for the older age groups, a logistic curve was fit 
to the proportion of individuals immune to each serotype in 
each age class for dengue 1 (DEN-1) and 2 (DEN-2), the only 
serotypes present in 1999. The equation was fit to the first 8, 
9, 10, and 11 age classes (which had relatively large sampling 
sizes) with and without forcing through the origin. The fit 
obtained using the first nine age classes and forcing through 
the origin produced immunity rates of 84% and 78% for DEN-1 
and DEN-2, respectively, by age 25–29, which best matched 
expected age-specific seroprevalence for 1999. 10  Predicted 

values for rates of immunity by serotype and age class from 
this logistic equation were used in the simulations. 

   Infection introduction.   In Iquitos, DEN-1 was first detected 
in 1990, DEN-2 was first detected in 1995, and DEN-3 was first 
detected in 2001. For our simulations, we introduced DEN-1 
and DEN-2 on January 1 and January 3, 2000, respectively, and 
DEN-3 on January 1, 2001. Virus was introduced monthly for 
the first year for each serotype, with one infected human to 
produce sustained transmission of the three serotypes. 

    Sensitivity analysis.    Parameter ranges.   Because most of 
the parameter defaults for the models were determined 
from empirical studies and because parameter ranges were 
rarely presented in those studies, we set parameter ranges 
for parameters included in the sensitivity analysis as ±20% 
of the default value, which produced reasonable parameter 
ranges based on expert opinion ( Tables 1  and  2 ). The ±20% 
rule was modified in the following ways. (1) If the 20% range 
gave values that were not possible (e.g., negative values 
when minimum value should be zero or values above one for 
survival), the range was truncated to match data requirements. 
(2) If an empirical range existed and if this range was larger 
than the 20% range, the empirically measured range was used. 
(3) If an empirical range existed and if the 20% range was 
wider than this range on one side of the default but smaller 
than the empirical range on the other side, the range of the 
parameter was expanded on the one side where empirical 
range is wider, but the 20% range was maintained on the 
other side. (4) For egg, larvae, pupae, and adult survival versus 
temperature and egg predation survival versus temperature, 
the numbers of degrees within the 20% range calculated 
for the highest lethal temperature threshold were used to 
define the ranges for the lower survival temperature thresholds. 
In many cases, temperature threshold ranges overlapped. The 
sensitivity analysis was originally run with the overlapping 

 Table 2 
  Parameter defaults and ranges for DENSiM sensitivity analysis  

Parameter Distribution Default Minimum value Maximum value

Duration of maternally acquired neutralizing titers of antibody (days) Uniform 90 30 180
Duration of maternally acquired enhancing titers of antibody (days) Uniform 270 216 324
Duration of heterologous immunity Uniform 60 30 180
DEN-1 viremia (MID-50   ) Uniform 1,000,000 4 8
DEN-1 incubation duration (days) Uniform 4 2 8
DEN-1 viremic duration (days) Uniform 5 3 8
DEN-2 viremia (MID-50) Uniform 1,000,000 4 8
DEN-2 incubation duration (days) Uniform 4 2 8
DEN-2 viremic duration (days) Uniform 5 3 8
DEN-3 viremia (MID-50) Uniform 1,000,000 4 8
DEN-3 incubation duration (days) Uniform 4 2 8
DEN-3 viremic duration (days) Uniform 5 3 8
Probability of infection in biters at or below low titer set point (4 logs) Uniform 0.1 0 0.3
Probability of infection in biters at or above high titer set point (8 logs) Uniform 1 0.8 1
Nominal probability of mosquito to human infection Uniform 0.9 0.72 1
EIP factor at or below low set point (3 logs) Uniform 1.25 1.1 1.4
EIP factor at or above high set point (8 logs) Uniform 0.75 0.6 0.9
Double blood meal low weight ratio Uniform 1 0.8 1
Double blood meal low weight limit Uniform 0.5 0 1.2
Double blood meal high weight ratio Uniform 0.1 0.05 0.12
Double blood meal high weight limit Uniform 3.5 2.8 4.2
Proportion of mosquitoes feeding on humans Uniform 0.9 0.72 1
Interrupted feeds per meal Uniform 3 0 5
Proportion of interrupted feeds on a different host Uniform 0.35 0.2 0.6
Young mosquito survival Uniform 0.91 0.9 1
Young mosquito cutoff age Uniform 10 8 12
Old mosquito survival Uniform 0.89 0.8 0.9

  MID-50 is the 50% monkey infectious dose  
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ranges, and runs were omitted when parameter values selected 
for lower thresholds were higher than the parameter values 
selected for the higher thresholds. Because far more runs were 
omitted than maintained, the midpoint of the overlapping 
section of temperature threshold ranges was calculated, and 
the ranges were shorted to that midpoint so that they did not 
overlap. In CIMSiM, weight at hatch and minimum weight 
for survival were rank-correlated to reduce the probability 
of obtaining impossible parameter values during the Latin 
Hypercube sampling (LHS) of parameter values (discussed in 
next section), and because they are likely correlated in natural 
systems. Because we were only interested in the relative 
effect of different parameters on model output and because 
parameter distributions are unknown for most parameters, we 
assumed a uniform distribution for all parameter values. 

   LHS and model runs.   Sensitivity analyses were conducted 
separately for CIMSiM and DENSiM using the Iquitos 
parameterization. DENSiM uses output and parameter values 
for adult mosquitoes from CIMSiM to resimulate the mos-
quito population and track infection dynamics in mosquitoes. 
Thus, for DENSiM sensitivity analysis, parameter defaults 
for CIMSiM were used in every run except the parameters 
associated with biting and adult survival, which were varied 
in both CIMSiM and DENSiM tests. LHS was performed on 
each set of parameters using Sandia’s LHS program (Version 
0.5 Beta, 1997; Sandia National Laboratories, Risk Assessment 
and Systems Modeling Department, Albuquerque, NM) with 
5,000 samples for each parameter (Sandia’s LHS program was 
modified to allow 5,000 as opposed to the original maximum 
of 1,000 samples). A module was created to read the output of 
the LHS program and automatically run CIMSiM or DENSiM 
using parameter values selected for each of the 5,000 runs. All 
simulations used the established population, random food, 
and food values obtained by using the food fitter with default 
parameter values. 

   Analysis of output.   For each run of the model, daily measures 
of several outputs over the 5-year period (2000–2004) of 
the simulation were obtained. For CIMSiM, we focused on 
the total daily number of eggs, larvae, pupae, females, new 
females, host-seeking females, ovipositing females, and new 
eggs laid summed over all containers in Iquitos and the 
average weight of female mosquitoes in the city. For DENSiM, 
we evaluated the total daily number of infective mosquitoes, 
persons incubating, persons viremic, and persons with virus for 
each of three serotypes. Because the outputs are time series, 
we conducted several analyses to facilitate the evaluation of 
the relative effects of each parameter on model output. First, 
we calculated several time series descriptors for each output 
listed: mean, median, minimum, maximum, variance, period, 
amplitude, first, second, and third autocorrelation coefficients, 
and 25% and 75% quantiles. 13  Principal components analysis 
was then conducted to reduce the time series descriptors to 
three new independent variables (i.e., principal components) 
for each output and for DENSiM, each output by serotype. 
Finally, step-wise regressions of the first three principal compo-
nents    against parameter values was conducted for each output. 
 P  value to enter and remove was set at 0.15, because the goal 
was to be more inclusive than exclusive. Thus, for each of the 
nine outputs in CIMSiM, three regressions were performed, 
one for each of the three principal components (27 regressions 
total). For DENSiM, 36 regressions were performed—three 
for each of four outputs for each of the three serotypes. The 

order in which the parameters were added (i.e., rank) reflects 
the relative amount of variation in the principal component 
explained by the parameters and therefore, can be interpreted 
as their relative importance in determining model output. To 
assess overall sensitivity of the models to changes in parameters, 
regressions that had similar principal component loadings on 
time-series descriptors were grouped and compared. For each 
regression group, the number of times that the parameter was 
selected in the regression (output variable versus principal 
component) and its average rank were calculated, and relative 
importance was assigned based on count and rank across 
regression groups. 

     RESULTS 

  CIMSiM sensitivity analysis.   For CIMSiM, principal com-
ponent (PC) loadings for the mean, quantiles, minimum, 
maximum, amplitude, and to a lesser degree, variance were 
high and positive for PC1 across all output variables. Loadings 
on the first three autocorrelation coefficients and amplitude 
were high and positive for PC2 across all output variables 
and loadings for PC3 varied across output variables but were 
generally very high and positive for period (Supplemental 
Appendix A, Table 3A). Loadings for PC3 were similar for 
eggs, larvae, and host-seeking females and similar for pupae 
and total females. 

 For each of these groupings (defined by similarities in PC 
loadings), the number of times each parameter was included 
and its average rank (order of inclusion) were calculated 
(Supplemental Appendix A, Table 4A   ). Results showed that 
model outputs for CIMSiM (with total numbers of each life 
stage summed across containers) were sensitive to (1) nominal 
survival for eggs, larvae, and pupae and young and old adult 
survival (a partial surrogate for adult nominal survival pres-
ent in earlier model versions that allows the potential for age-
dependent mosquito mortality), (2) parameters associated 
with larval feeding (i.e., exploitation rate, assimilation rate, 
and exploitation rate independence), (3) parameters associ-
ated with egg predation (i.e., high and low predation tempera-
ture thresholds and predation survival at the high-temperature 
threshold), (4) parameters associated with pupation (i.e., 
survival while metamorphosing into pupae, survival while 
emerging from the pupal stage, and female emergence ratio), 
(5) high-temperature thresholds for eggs and adults, (6) adult 
fecundity factor, dry to wet weight ratio, second develop-
mental  threshold, and low saturation-deficit threshold, and 
(7) minimum egg-hatch temperature. Particularly important 
variables were the larval exploitation rate, high-temperature 
thresholds for eggs, adults, and egg predation, and nominal 
survival for larvae and young adults. Overall, the parameters 
identified as important in determining dynamics of the mos-
quito population were related to survival within each life stage. 

   DENSiM sensitivity analysis.   For DEN-1, DEN-2, and the 
three output variables for human infection (i.e., persons incu-
bating, persons viremic, and persons with virus), PC1 loadings 
were high and positive for mean, variance, the first three 
autocorrelation coefficients, and amplitude. PC2 loadings were 
high for quantiles (all negative), the first three autocorrelation 
coefficients (all positive), and period (positive), and PC3 
loadings were high for variance (negative), median (positive), 
maximum (negative), and amplitude (negative). For DEN-3 
and the three human infection outputs, loadings for PC1 were 
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high and positive for mean variance, maximum, the first three 
autocorrelation coefficients, and amplitude. PC2 loadings for 
DEN-3 and the three human infection outputs were high for 
the first quantile (positive), median (positive), autocorrela-
tion  coefficients (negative), and period (negative), and for 
PC3, they were high for variance (negative), all quantiles 
(positive), maximum (negative), and autocorrelation coef-
ficients (negative). Loadings for infective mosquitoes were 
generally different from loadings for the other output 
variables but were similar across each serotype for each 
principal component. PC1 loadings for infective mosquitoes 
were high and positive for mean, variance, median, third 
quantile, maximum, and amplitude. PC2 loadings were high 
and positive for the three autocorrelation coefficients, and 
PC3 loadings were high for first quantile (positive), median 
(positive), maximum (negative), and amplitude (negative). 
Counts and average ranks were obtained for each of these 
groupings (Supplemental Appendix A, Table 3B). 

 Results showed that infection of humans and mosquitoes 
were most sensitive to the number of interrupted mosquito 
feeds per blood meal and parameters associated with age-
dependent adult mosquito survival, particularly survival of 
the older-aged individuals (i.e., young and old survival and 
cut-off age between young and old adults) (Supplemental 
Appendix A, Table 4B). For each serotype, the duration of 
the viremic period was important. The duration of incubation 
in the humans was occasionally important for each serotype, 
although viremia was not important. Proportion of mosquito 
feeds on different hosts, proportion of feeds on humans, dura-
tion of heterologous immunity, and double blood meal low 
weight limit for mosquitoes were also important. 

    DISCUSSION 

 Sensitivity analysis results suggest that patterns of mosquito 
population dynamics and dengue transmission may be pri-
marily determined by factors influencing the survival of each 
life stage of the mosquito, larval food competition, adult mos-
quito biting behavior, and duration of the infectious period in 
humans. These results are consistent with other modeling stud-
ies reporting the importance of mosquito survival or mortal-
ity, 14–  21  biting rate, 6,  14,  15,  17,  18,  22  and length of the infectious period 
in the host 6,  14,  21,  23–  27  in determining the dynamics of mosquito-
borne diseases. However, our results go one step further by 
identifying specific causes of mosquito mortality and the 
aspects of biting behaviors that may be most influential. Age-
dependent adult mortality, exploitation and assimilation of 
larval food, egg predation and hatching, survival due to tem-
perature for all life stages, pupation survival, adult fecundity, 
number of feeds per complete blood meal, and proportion of 
interrupted or incomplete blood meals that resume on differ-
ent hosts may all be important in determining mosquito popu-
lation and virus transmission dynamics. 

 Unfortunately, little detailed empirical information exists 
on mosquito survival and biting behavior, and accurate esti-
mates of the length of the host infectious period for mos-
quito-borne diseases are often difficult to obtain. A growing 
number of studies have shown age-dependent mortality in 
mosquitoes, 28–  32  but the form of the relationship between age 
and mortality and how it changes in space and time in natu-
ral systems are not known for most mosquito vector species. 
Accurate estimates of age-dependent mortality are important, 

because adult survival determines the probability that a mos-
quito will live long enough to become infectious and transmit 
a pathogen during its lifetime. Studies have identified poten-
tial causes of mortality throughout the mosquito life cycle, 33–  35  
but the rates at which mortality occurs for each mortality 
factor are not known. Larval food competition is known to 
occur in the laboratory and field, 36–  39  but the extent to which 
it occurs in nature is unclear. In most cases, the resources that 
larvae consume in natural systems have not even been iden-
tified. Finally, many investigators have estimated mosquito 
biting rates in the field, 40–  46  but few have defined details of bit-
ing behavior that we identified as important in our sensitivity 
analysis. 

 CIMSiM and DENSiM are most sensitive to parameters 
for which little empirical information exists, and although this 
information can be extremely valuable for setting research 
priorities, it also places constraints on the use and interpre-
tation of model outputs. Uncertainty in estimates of impor-
tant parameters limits confidence that the models accurately 
capture mosquito population and transmission dynamics in a 
specific location. 47  Outputs should not, therefore, be used to 
make explicit predications about transmission dynamics or the 
effect of intervention strategies on them. However, even with 
limitations in the current state of understanding of dengue 
transmission, models can be extremely useful tools. 3,  4  CIMSiM 
and DENSiM are based on currently available information, 
and they can be useful for improving understanding about 
the complex processes that interact to determine transmission 
dynamics and allowing users to visualize how slight changes in 
biological parameters or certain components of intervention 
strategies (i.e., percent coverage of indoor residual spraying) 
can have dramatic effects on mosquito populations and den-
gue transmission. The models are useful for encouraging users 
to think critically about ecological and transmission processes 
occurring in their locations, providing the relative effects of 
different perturbations to mosquito population dynamics 
and patterns of virus transmission to aid in developing more 
informed local control strategies that specifically target key 
components of the virus transmission process. 

 In addition to restrictions in model use, the limitations 
and constraints of our analysis and results should be consid-
ered. First, we did not test model sensitivity to differences in 
container classification, weather, human demographics, and 
serostatus. Model output may be sensitive to a slightly differ-
ent set of parameters across locations. Second, we focused on 
the linear effects of parameters and sensitivity of model out-
puts to individual parameters and not on interactive effects. 
Because of the large numbers of parameters and because 
our goal was to conduct an initial analysis of the model, we 
chose to use linear step-wise regression to evaluate param-
eter importance. Although non-linear effects may occur, this 
method permits a simplified first analysis. Interactive param-
eter effects were also not examined, although results did iden-
tify related groups of parameters as being important (e.g., 
interrupted feeds per meal and proportion resuming on differ-
ent hosts). More complete analyses of parameter interactions 
are needed. Finally, the structure of the models may restrict 
the type of information that can be extracted from them. For 
example, the models do not include movement of vectors or 
hosts or heterogeneous distribution of mosquito bites among 
humans, which prevent an evaluation of the relative impor-
tance of these factors in determining transmission dynamics. 



263SENSITIVITY ANALYSIS OF DENGUE MODELS

Unlike some other studies, 14,  19,  48  we did not identify parameters 
associated with the extrinsic incubation period (EIP) in the 
mosquito as being important. This may be a function of how 
the processes determining the EIP are incorporated into the 
model and not because it is unimportant. Mosquito survival 
interacts with the EIP to determine the number of mosqui-
toes that become infectious, but the interaction may operate 
primarily through the parameters determining adult mosquito 
survival in the model and only secondarily through parame-
ters associated directly with EIP. Overall, the importance of 
mosquito survival, biting behavior, and length of the incuba-
tion period in the host are likely to have important effects 
across all systems, although the details of those processes that 
are most important may vary. 

 Because of their importance in determining transmission 
dynamics and the scant empirical information about them, 
mosquito mortality, biting behavior, and duration of the infec-
tious period should be top priorities for empirical research on 
mosquito-borne diseases. Specifically, studies are needed to 
better understand (1) age-dependent adult mosquito mortal-
ity, (2) mortality factors and rates for all mosquito life stages, 
(3) the strength, nature, and occurrence of larval density 
dependence, (4) the number of times a mosquito feeds per 
replete blood meal, and (5) the number of different hosts that 
are fed on per meal in natural systems. Focusing empirical 
research on parameters that have been identified as potentially 
important in models of virus transmission dynamics will not 
only improve understanding of transmission patterns but will 
also improve the accuracy of models and their use as tools for 
developing more effective surveillance and control strategies   . 
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