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     INTRODUCTION 

  West Nile virus  (WNV) is a member of the family  Flaviviridae  
and genus  Flavivirus . 1,  2  This virus family includes several other 
medically important arboviruses, including the mosquito-
borne viruses  St. Louis encephalitis virus ,  Yellow fever virus , 
and  Dengue virus  (DENV), and the tick-borne viruses  Tick-
borne encephalitis virus  and  Powassan virus . West Nile virus is 
naturally maintained through an enzootic transmission cycle 
between  Culex  mosquito vectors and avian reservoir hosts. 
Although small mammals can become infected with WNV 
and outbreaks in humans and horses regularly occur, mamma-
lian infection is not thought to substantially contribute to viral 
maintenance in nature. 3–  7  

 The envelope (E) protein of most flaviviruses contains an 
N-linked glycosylation site at amino acids 153/154; DENV con-
tains a second site at E protein amino acid 67. Glycosylation 
of the E protein is not required for virion formation or infec-
tivity because naturally non-glycosylated isolates of St. Louis 
encephalitis virus, yellow fever virus, and WNV have been 
identified. 8–  15  However, the presence or absence of a glycan 
on the E protein can affect the viral phenotype. E protein 
glycosylation increases  in vitro  infectivity of DENV and 
WNV, although particle release is significantly inhibited. 16,  17  
 In vivo  studies have demonstrated that E protein glycosy-
lation enhances WNV virulence in mice and chickens. 18–  20  
Additionally, we have previously found that WNV lacking 
the E protein glycan replicated less efficiently  in vivo  and was 
almost completely defective in spread beyond the mosquito 
midgut in two important  Culex  vector species ( Cx. pipiens  and 
 Cx. tarsalis ). 21  However, a recent study found no significant 
differences in WNV titer after intrathoracic inoculation and 
dissemination after peroral infection of another member of 
the  Cx. pipiens  complex,  Cx. pipiens pallens . 19  

 Our current study further addresses the possibility that E 
protein glycosylation affects WNV–vector interactions differ-

ently depending on the specific mosquito species, by examin-
ing the interactions of previously characterized recombinant 
viruses in which the E protein glycosylation site is either pres-
ent or absent with  Cx. quinquefasciatus , an important vec-
tor species common in the southern United States, South 
America, Africa, and Asia, 22  and comparing these results with 
our previous results in  Cx. pipiens  and  Cx. tarsalis . 21  We first 
determined whether WNV replication  in vivo  was affected 
by the presence of the E protein glycan. We then examined 
the effects of E protein glycosylation on  Cx. quinquefascia-
tus  vector competence. The results of these studies will help 
clarify the effects of WNV glycosylation on virus-vector rela-
tionships and shed additional light on the potential for indi-
vidual vector species to interact differently with variant WNV 
strains. 

   MATERIALS AND METHODS 

  Viruses, cells, and mosquitoes.   Baby hamster kidney cells 
were used for viral growth. Viruses were titrated on African 
green monkey kidney (Vero) cells. Construction and recovery 
of the viruses used for these studies (WNV-WT and WNV-
N154I) have been described. 21,  23  WNV-WT is a recombinant 
virus based on a NY99 genotype strain isolated in New York 
City. 23  WNV-N154I contains an asparagine to isoleucine 
mutation at amino acid 154 in the E protein, but is otherwise 
identical to WNV-WT. 21  All experiments involving infectious 
WNV were performed in the BioSafety Level 3 Laboratories 
at Wadsworth Center Arbovirus Laboratories. 

  Culex quinquefasciatus  mosquitoes were derived from a lab-
oratory colony (F 30+ ) kindly provided by Dina Fonseca, who 
originally received egg rafts obtained in the southern United 
States from Benzon Research, Inc. (Carlisle, PA). Colonized 
mosquitoes were maintained on goose blood (for egg laying) 
and given 10% sucrose  ad libitum . Larvae were reared and 
adults maintained under controlled conditions of temperature 
(27°C), humidity (70% relative humidity), and light (16:8 hour 
light:dark diurnal cycle) in 12² × 12² × 12² cages. All mosquito 
experiments involving infectious WNV were conducted in 
insectaries in the BioSafety Level Laboratories. 
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   Viral replication in mosquito bodies after intrathoracic 
exposure.   WNV-WT and WNV-N154I were diluted in mos-
quito diluent (MD) (20% heat-inactivated fetal bovine serum 
in Dulbecco’s phosphate-buffered saline plus 50 μg/mL of 
penicillin/streptomycin, 50 μg/mL of gentamicin, and 2.5 μg/mL 
of fungizone) to a titer of 10 5  plaque-forming units (PFU)/
mL. Three-to-five day–old mosquitoes were inoculated intra
thoracically with 10 PFU of either WNV-WT or WNV-N154I 
under CO 2  anesthesia and held at 27°C for a 16:8 hour 
light:dark photoperiod for up to 10 days post-inoculation. At 
daily intervals from 0 to 10 days post-inoculation, 10 mosqui-
toes inoculated with each virus were removed to individual 
aliquots of 1 mL of MD. All samples were stored at –80°C. 
Mosquitoes were homogenized by using a mixer mill (Qiagen, 
Valencia, CA) and clarified by centrifugation. The viral loads 
of infected mosquitoes were determined by plaque titration 
on Vero cells and compared by using analysis of variance 
(ANOVA). 

   Viral replication in mosquito salivary glands after intra-
thoracic exposure.   Three-to-five day–old mosquitoes were 
intrathoracically inoculated with either WNV-WT or WNV-
N154I, as described above, and held for up to 10 days post-
inoculation. At 2, 4, 6, 8, and 10 days post-inoculation, salivary 
glands from 5–10 mosquitoes per virus were removed, washed 
in MD to remove hemolymph, and individually stored in 
0.5 mL of MD at –80°C. Salivary glands were homogenized by 
using a mixer mill and clarified by centrifugation. Viral loads 
of infected salivary glands were determined by plaque titration 
on Vero cells and compared by using ANOVA. Salivary gland 
infection rates were compared by using Fisher’s exact test. 

   Viral replication in mosquito midguts after peroral 
exposure.   Five-to-seven day–old adult female mosquitoes 
were deprived of sucrose for 48 hours before feeding. 
Either WNV-WT or WNV-N154I was added to 5 mL of 
defibrinated goose blood containing 2.5% sucrose to a final 
titer of 10 8  PFU/mL. Mosquitoes were fed for 1–2 hours by 
using a Hemotek membrane feeding apparatus (Discovery 
Workshops, Accrington, United Kingdom) as recommended 
by the manufacturer. After feeding, fully engorged mosquitoes 
were separated under CO 2  anesthesia into 0.5-liter cartons 
supplied with 10% sucrose  ad libitum , and held at 27°C for 
a 16:8 hour light-dark photoperiod for up to 14 days post-
feeding. At 2, 4, 6, 8, and 10 days post-feeding, midguts from 
10–20 mosquitoes per virus were removed, washed in MD to 
remove blood and/or hemolymph, and individually stored in 
0.5 mL of MD at –80°C. Midguts were homogenized by using 
a mixer mill and clarified by centrifugation. The viral loads of 
infected midguts were determined by plaque titration on Vero 
cells and compared by using ANOVA. 

   Vector competence of mosquitoes.   Five-to-seven day–old 
adult female mosquitoes were fed blood meals containing 
either WNV-WT or WNV-N154I, as described above. After 
feeding, fully engorged mosquitoes were separated under 
CO 2  anesthesia into 0.5-liter cartons supplied with 10% 
sucrose  ad libitum , and held at 27°C for a 16:8 hour light:dark 
photoperiod for up to 20 days post-feeding. Transmission 
was evaluated at 7, 9, 14, and 20 days post-feeding  in vitro , 
essentially as described. 24  Briefly, 50–75 mosquitoes per 
virus were anesthetized with triethylamine (Sigma, St. Louis, 
MO), and their legs were removed and placed in 1 mL of 
MD. Mosquito mouthparts were placed into a capillary tube 
containing approximately 10 μL of a 1:1 mixture of fetal 

bovine serum and 50% sucrose for approximately 30 minutes, 
after which the contents of the capillary tube were expelled 
into 0.3 mL of MD. Mosquito bodies were placed in 1 mL of 
MD, and all samples were stored at –80°C. Mosquito bodies 
and legs were homogenized by using a mixer mill and clarified 
by centrifugation. The proportion of mosquitoes with infected 
bodies, legs, and salivary secretions was determined by plaque 
assay on Vero cells. Infection, dissemination, and transmission 
were defined as the proportion of mosquitoes with infected 
bodies, legs, and salivary secretions, respectively. Proportions 
were compared by using Fisher’s exact test. 

   Sequencing of mosquito-derived viral genomes.   Viral 
genomic RNA was purified from infected bodies, legs, 
and salivary secretions of mosquitoes that fed on WNV-
N154I using RNeasy spin columns (Qiagen) according to the 
manufacturer’s instructions. A one-step reverse transcription–
polymerase chain reaction (PCR) (Qiagen) was performed 
by using primers designed to amplify the 500-basepair region 
of the E gene surrounding the glycosylation site (nucleotides 
1,208–1,700). PCR products were purified and visualized by 
electrophoresis on 1% agarose gels. Automated sequencing 
of purified PCR products was performed at the Wadsworth 
Center Applied Genomics Technology Core. 

    RESULTS 

  Replicative ability of WNV-WT and WNV-N154I  in vivo .  
 Adult female  Cx. quinquefasciatus  were intrathoracically 
inoculated with either WNV-WT or WNV-N154I to examine 
whether the glycosylation state of the E protein affected 
viral replication in this mosquito species. Titers in whole 
mosquitoes inoculated with WNV-N154I were significantly 
lower than those inoculated with WNV-WT beginning at 1 day 
post-inoculation and continuing throughout the experiment 
( P  < 0.01;  Figure 1A ). The infection rate after inoculation was 
also significantly higher over the course of the experiment in 
mosquitoes inoculated with WNV-WT than in those inocu-
lated with WNV-N154I (92% versus 66%;  P  < 0.0001). 

  We also examined the effect of E protein glycosylation on 
WNV replication in  Cx. quinquefasciatus  midguts after pero-
ral exposure and salivary glands after inoculation. Mosquitoes 
exposed perorally to WNV-WT had slightly higher viral loads 
in their midguts than those exposed to WNV-N154I. However, 
the differences were only significant at 8 days post-feeding 
( P  = 0.02;  Figure 1B ). WNV-WT replicated to significantly 
higher titers in mosquito salivary glands at days 4, 6, and 8 
post-intrathoracic inoculation ( P  < 0.01;  Figure 1C ). 

   Vector competence of  Cx. quinquefasciatus .   To assess the 
importance of E protein glycosylation on the ability of WNV 
to infect and spread within  Cx. quinquefasciatus  mosquitoes 
after peroral exposure, we determined their vector competence 
for WNV-WT and WNV-N154I. Infection rates of WNV-WT 
were significantly higher than those of WNV-N154I at all days 
post-feeding ( Table 1 ). However, viral loads in the bodies of 
mosquitoes infected with WNV-WT were similar to those 
observed in those of WNV-N154I-infected mosquitoes at 7, 14, 
and 20 days post-feeding ( Table 1 ). 

      Viral dissemination in WNV-WT–infected mosquitoes was 
significantly lower than in mosquitoes infected with WNV-
N154I at 7 days post-feeding, but no significant differences 
in dissemination were observed at 9, 14, or 20 days post-
feeding ( Table 1 ). No significant differences were found in 
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 Figure 1.    Viral replication of West Nile virus WNV-WT and WNV-
N154I in  Culex quinquefasciatus .  A , Mosquitoes were intrathoracically 
inoculated with 10 plaque-forming units (PFU) of either WNV-WT or 
WNV-N154I and held for up to 10 days. At daily intervals, 10 mos-
quitoes per virus were removed and the viral titers present in their 
bodies were determined by plaque titration on Vero cells. Mean viral 
titers from infected mosquitoes at each time point are shown as log 10  
PFU/mosquito.  B , Mosquitoes were fed on defibrinated goose blood 
containing 10 8  PFU/mL of either WNV-WT or WNV-N154I and held 
for up to 10 days post-feeding. At the indicated time points, midguts 
were removed from 20 mosquitoes per virus and their viral titers were 
determined by plaque titration on Vero cells. Mean viral titers from 
infected midguts at each time point are shown as log 10  PFU/midgut.  C , 
Mosquitoes were intrathoracically inoculated with 10 PFU of either 
WNV-WT or WNV-N154I and held for up to 10 days. At the indi-
cated time points, salivary glands were removed from 10 mosquitoes 
per virus and their viral titers were determined by plaque assay on 
Vero cells. Mean viral titers from infected salivary gland pairs at each 
time point are shown as log 10  PFU/salicary gland pair. LOD = limit of 
detection. * P  ≤ 0.05.    
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transmission of WNV-WT or WNV-N154I at any individual day 
post-feeding ( Table 1 ) or in overall transmission over the 
course of the experiment. We sequenced a 500-basepair region 
of the E gene from viruses present in the salivary secretions 
of  Cx. quinquefasciatus  that fed on WNV-N154I (n = 20); in 
all cases, the virus in the salivary secretions was the virus on 
which the mosquito had fed. 

    DISCUSSION 

 Although glycosylation of flavivirus premembrane proteins 
appears to be absolutely required for efficient virion assem-
bly and maturation, 16,  25–  28  WNV strains lacking a glycosylation 
site in the E protein have been isolated from naturally infected 
vertebrates and mosquitoes. 8–  13  Previously, we have shown that 
WNV lacking the E protein glycan is attenuated in the natural 
vector species  Cx. pipiens  and  Cx. tarsalis . 21  In the current study, 
we expanded upon our previous work to examine the effect 
of E protein glycosylation on WNV interactions with a third 
important vector species in the United States ( Cx. quinque-
fasciatus ) because vector competence differences have been 
noted among members of the  Cx. pipiens  species complex. 

 We first examined whether E protein glycosylation affected 
WNV replication in  Cx. quinquefasciatus  mosquitoes. WNV-WT 
replicated to significantly higher titers than WNV-N154I in 
the bodies and salivary glands of intrathoracically inoculated 
mosquitoes ( Figure 1A  and C), similar to previous results for 
 Cx. pipiens  and  Cx. tarsalis . 21  However, results in perorally 
infected mosquitoes differed strikingly from our previous 
data. Although WNV-WT titers were slightly higher than those 
of WNV-N154I in  Cx. quinquefasciatus  midguts, the differ-
ences were only significant at 8 days post-feeding ( Figure 1B ), 
whereas in  Cx. pipiens  and  Cx. tarsalis  WNV-WT titers were 
significantly higher at all days post-feeding. 21  Overall viral 
loads in mosquitoes infected with WNV-WT and WNV-N154I 
through feeding were also similar in  Cx. quinquefasciatus  
( Table 1 ), and significant differences were observed in  Cx. pip-
iens  and  Cx. tarsalis . 21  

 We then examined the effect of E protein glycosylation on 
 Cx. quinquefasciatus  vector competence after peroral infec-
tion. Although the infection rate of WNV-N154I was signifi-
cantly lower than that of WNV-WT at all days post-feeding, 
dissemination and transmission of both viruses were similar 
( Table 1 ). These results also differ strikingly from our previous 
data, in which dissemination and transmission in  Cx. pipiens  
and  Cx. tarsalis  were significantly inhibited by the lack of an 
E protein glycan. 21  

 Because of the contrast between these results, we sequenced 
the E genes of viruses present in the salivary secretions of  Cx. 
quinquefasciatus  that had fed on WNV-N154I to determine if 
they had reverted to a wild-type glycosylation phenotype. In 
our previous study, WNV presence in the salivary secretions 
of  Cx. pipiens  and  Cx. tarsalis  that had fed on WNV-N154I 
was strongly associated with reversion to a wild-type sequence 
at the E protein glycosylation site. 21  However, in the current 
study, all of the viral E genes sequenced contained the N154I 
mutation that had been engineered into the virus on which 
the mosquitoes had fed. Our results in this study indicate that 
although E protein glycosylation has significant effects on 
WNV replication in and infectivity for  Cx. quinquefasciatus  
mosquitoes, it has little to no effect on viral spread within this 
vector species. 

 Our results appear to contradict recent work by Murata and 
others that found no detectable difference between  in vivo  
replication or disseminated infection of glycosylated and non-
glycosylated WNV. 19  Several differences between our studies 
and the study of Murata and others could contribute to the 
apparent discrepancy between our results. The viruses used in 
the study of Murata and others contained genome changes in 
addition to those that affect E protein glycosylation, whereas 
our viruses differed by a single amino acid. The mutation 
resulting in the loss of the E protein glycosylation site differed 
between our studies and the study of Murata and others, which 
could have affected the results. However, other groups have 
used several different amino acid mutations to remove the E 
protein glycosylation site and have obtained similar results  in 
vitro  and in mice. 16,  20,  29  Therefore, would not expect that our 
results were caused solely by the presence of an isoleucine at 
anino acid position 154, rather than the lack of the E protein 
glycan. Additionally, if an isoleucine at amino acid position 154 
was universally detrimental to the virus, we would expect to 
see reversion to the wild-type asparagine in  Cx. quinquefascia-
tus , as we had previously seen in other  Culex  species. However, 
no reversion was detected in any  Cx. quinquefasciatus  that fed 
on WNV-N154I. 

 Perhaps most importantly, the study of Murata and oth-
ers used  Cx. pipiens pallens  mosquitoes, another member of 
the  Cx. pipiens  species complex. As we describe in this report, 
WNV–vector interactions may differ significantly depending 
on the vector species, even among members of the  Cx. pipiens  
species complex, such as  Cx. pipiens  and  Cx. quinquefascia-
tus . Therefore the inconsistency between these results is not 
entirely surprising. It would be interesting to determine the 
genetic basis for the differences in WNV–vector interactions 
between closely related mosquito species. The differences in 
infectivity and spread in individual  Culex  species also suggest 
that WNV midgut infection and escape barriers may differ in 
a species-specific manner. Future work examining the impact 
of viral sequence changes and vector species on these barri-
ers should yield additional information regarding how WNV 
interacts with its various vector mosquito species. 

 Although WNV strains lacking a glycosylation site on their 
E proteins have been isolated in nature, their frequency of 
isolation is fairly low. 8–  13  Multiple studies have found that 
WNV strains lacking the E protein glycosylation site are less 
infectious for mammalian and avian hosts than glycosylated 
strains. 13,  18–  20  Additionally, our data indicate that the lack of 
E protein glycosylation decreases WNV infectivity and/or 
spread within several species of vector mosquitoes, both of 
which have the overall effect of decreasing the likelihood that 
a mosquito will transmit a non-glycosylated strain ( Table 1 ). 21  
It is interesting to note that there is significant overlap 
between the worldwide  Cx. quinquefasciatus  distribution and 
the regions from which non-glycosylated WNV strains have 
been isolated. 8–  13  Because transmission of WNV by some vec-
tor species, including  Cx. quinquefasciatus , does not appear to 
be affected by E protein glycosylation, this finding could indi-
cate that low level transmission of non-glycosylated strains by 
permissive mosquito species enables this subset of viruses to 
persist in nature. However, even in regions where  Cx. quinque-
fasciatus  is the predominant WNV vector, such as in the south-
ern United States, non-glycosylated strains are only isolated 
intermittently, which is likely caused by the infectivity advan-
tage of glycosylated strains for avian hosts. 19  The combination 
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of decreased transmission of non-glycosylated strains by mos-
quito vectors and low infectivity of these strains for vertebrate 
hosts could explain the apparent dearth of naturally non-
glycosylated WNV isolates. 
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