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Abstract

Biogenic amines have been demonstrated to protect cells from apoptotic cell death. Herein we show for the first time that
serotonin and dopamine increase H2S production by the endogenous enzyme cystathionine-b-synthase (CBS) and protect
cells against hypothermia/rewarming induced reactive oxygen species (ROS) formation and apoptosis. Treatment with both
compounds doubled CBS expression through mammalian target of rapamycin (mTOR) and increased H2S production in
cultured rat smooth muscle cells. In addition, serotonin and dopamine treatment significantly reduced ROS formation. The
beneficial effect of both compounds was minimized by inhibition of their re-uptake and by pharmacological inhibition of
CBS or its down-regulation by siRNA. Exogenous administration of H2S and activation of CBS by Prydoxal 59-phosphate also
protected cells from hypothermic damage. Finally, serotonin and dopamine pretreatment of rat lung, kidney, liver and heart
prior to 24 h of hypothermia at 3uC followed by 30 min of rewarming at 37uC upregulated the expression of CBS, strongly
reduced caspase activity and maintained the physiological pH compared to untreated tissues. Thus, dopamine and
serotonin protect cells against hypothermia/rewarming induced damage by increasing H2S production mediated through
CBS. Our data identify a novel molecular link between biogenic amines and the H2S pathway, which may profoundly affect
our understanding of the biological effects of monoamine neurotransmitters.
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Introduction

Ischemia is a condition suffered by cells in tissues when deprived

of blood flow due to inadequate nutrient and oxygen supplemen-

tation. The restoration of blood flow following an ischemic

condition causes reperfusion damage [1] mainly due to the rapid

generation of ROS from the start of reperfusion [2] and

characterized by apoptotic cell death [3]. Likewise, many

mammalian cell types are vulnerable to prolonged and profound

hypothermic storage mainly due to the burst of reactive oxygen

species (ROS). Particularly during the rewarming phase, low ATP

production, Ca2+ overload and cell swelling result in apoptotic cell

death [4,5]. Thus, the apoptotic damage brought about by either

ischemia or hypothermia results from a burst in ROS formation

during reperfusion or rewarming. Several observations suggest

that catecholamines protect from cell death after hypothermia and

the subsequent rewarming. Dopamine has been shown to limit

oxidative stress in cultured cells during cold storage [6] and to

improve kidney graft function after transplantation [7]. In initial

experiments in search of mechanisms conveying a natural

resistance to hypothermia on cells of a hibernating species, the

Syrian hamster, we found that their ductus deferens (DDT-1 MF2)

cells are protected from hypothermia induced apoptosis. This was

found to be due to the secretion and reuptake of serotonin, a

tryptamine (non-catecholamine) bioamine, by these cells and

conveyed by increasing the production of endogenous H2S.

Cystathionine-b-synthase (CBS) is the most likely endogenous

candidate enzyme to increase H2S production. Endogenous H2S is

mainly synthesized by CBS and cystathionine-c-lyase [8,9]. Both

enzymes depend on pyridoxal 59-phosphate (PLP) as a cofactor

[10]. However, only CBS contains a heme moiety, which may

bind oxygen and make the enzyme function dependent on oxygen

levels, as demonstrated in recombinant human CBS [11]. In

addition, a range of biogenic amines, including serotonin,

dopamine and noradrenalin bind the heme moiety of various

enzymes, possibly modulating different cell functions [12].

Therefore, in this study we examined the involvement of CBS

and H2S production in the protective effect of serotonin and

dopamine on cold induced cellular damage in a cell line that

showed the highest vulnerability to hypothermia, by studying cell

numbers, caspase activity, and ROS formation. Moreover, we

examined the expression of CBS in serotonin and dopamine

treated rat tissues after static cold preservation in parallel to

apoptosis and tissue acidosis/ischemia.
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Methods

Cell culture and hypothermic insult
Five cell lines including NRK-52E (normal rat kidney cells,

ATCC, USA; 87012902), DDT-1 MF2 (hamster ductus deferens

muscle cells, ATCC, USA CRL1701) and A7R5 (rat vascular

smooth muscle cells, ATCC, USA CRL1444) cultured in DMEM

(Gibco) and SMAC (rat smooth muscle aortic cells, ATCC, USA

CRL1476) and THMC (transformed human mesangial cell IP15)

cultured in DMEM/F12 (Gibco) were chosen to study hypother-

mia resistance. All media were supplied with 10% (v/v %) fetal calf

serum and 100 U/mL penicillin, 100 mg/mL streptomycin and

cultured at 37uC in 5% CO2 in 25 cm2 or 75 cm2 flasks. Cells

were plated in 6 or 96 wells plates and grown to confluence.

Induction of cellular damage by hypothermia consisted of placing

cells at 3uC for 24 h. Cell viability was measured by MTS assay

(Promega) according to the manufacturer’s instructions. For the

latter, 20 ml of MTS solution was added to each well and cells were

subsequently placed in the incubator at 37uC in 5% CO2 for 3 h

after which cell viability was determined by measuring absorption

at 490 nm.

Production of H2S
H2S was assayed according to Stipanuk and Beck [13] and

Zhao et al. [14] with some modifications. Zinc Acetate (1%) was

added to each 4 ml of cell free supernatant to trap the evolved

H2S. Diamine-ferric solution was prepared by mixing 100 ml of a

400 mg N, N-dimethyl-p-phenylenediamine dihydrochloride dis-

solved in 10 ml 6 M HCl and 100 ml of 600 mg ferric chloride in

10 ml 6 M HCl. Two hundred ml of this mixture was added to the

cell supernatant and after an incubation time of 30 min at 37uC,

the amount of methylene blue formed in the supernatant was

measured at a wavelength of 670 nm. Blanks were made following

the same procedure without cells. The concentration of H2S was

calculated by extrapolation using a standard curve obtained from

different concentrations of methylene blue and spectrophotometric

measurement at a wavelength of 670 nm.

Hypothermia challenge and MTS assay
Confluent SMAC cells in 96 wells were treated with serotonin

(30 mM), dopamine (20 mM) and pyridoxal 59-phosphate (PLP,

50 mM). After 15 min the plates were placed at 3uC for 24 hr.

Incubation of SMAC with NaHS/sodium hydrosulfate (0.2 mM)

was performed just before rewarming cells, to assure presence of

H2S during the rewarming phase, as NaHS only briefly releases

H2S after being dissolved. Non-treated cells were kept as controls.

MTS assay was performed 15 min after rewarming as previously

described.

siRNA for cystathionine-b-synthase
The expression of CBS in SMAC was reduced by applying a

predesigned siRNA (sc-60336, Santa Cruz) and compared to a

silencer negative control (Ambion, AM4644). DDT-1 and SMAC

cells at 60–80% confluence were seeded in 96 or 6 well plates in

antibiotic-free normal growth medium supplemented with FCS.

Cells were transfected using lipofectamine 2000 (Invitrogen) at a

final concentration of 100 pmol siRNA in 5 ml lipofectamine for

each well in a 6 well plate and 5 pmol siRNA in 0.25 ml

lipofectamine for each well in a 96 well plate. After 24 h, the

medium was changed to the medium containing antibiotics and

FCS. Cells were left to proliferate for 48 hr at 37uC. Then, control

cells, siRNA treated cells and cells transfected with the negative

control silencer were incubated at 37uC or 3uC in the presence

and absence of serotonin (30 mM) or dopamine (20 mM) for 24 h.

Measurement of reactive oxygen species
Reactive oxygens species (ROS) were detected as described in

the supplementary information using the fluorescent probe CM-

H2-DCFDA (2,7 dichloroflourescein diacetate), which detects

both formation of superoxide anions and hydroxyl radicals.

Experiments on tissue and analysis
Tissue samples (lung, kidney, liver and heart) from male Sprague

Dawley rats (300–350 g) were harvested and each cut into three

separate pieces and placed in glass containers containing 2 ml of

PBS (phosphate buffered saline, pH 7.4) either treated with

serotonin (90 mM) or dopamine (60 mM) for 30 min at 37uC prior

to 24 h of hypothermic treatment (3uC) followed by 30 min of

rewarming at 37uC. The same procedure was followed for control

samples using untreated PBS. As tissue pH monitoring has proven

to be a valuable means in assessing tissue ischemia [15], pH of each

medium was assessed after rewarming. Tissue slices for immuno-

histological studies were placed in zinc fixative solution (0.1 M Tris-

HCl, pH 7.4; 0.05% calcium acetate, 0.5% zinc acetate, 0.5% zinc

chloride) at room temperature for 12 h and then processed and

embedded in paraffin. Paraffin blocks were cut in 3 mm sections,

deparaffinized, and submitted to CBS antibody staining according

to the procedure described in Histology and Immunostaining in

supplementary information. Further, the apoptosis level in tissue

slices was also investigated by measuring caspase activity, following

the procedure described in supplementary information. Animal

experiments were approved by the Ethics committee of the

university medical center Groningen (DEC 5920).

Statistical analysis
Statistical data analyses were performed using the One-way

ANOVA with Tukey’s test (GraphPad Prism version 5) and

p,0.05 was considered as statistically significant.

* Details on the experiments are included as supplemental

information with the article.

Results

Resistance to hypothermic cell injury depends on cellular
uptake of serotonin and dopamine

Survival of DDT-1 MF2 cells (DDT-1 cells) was unaffected by

hypothermic storage (3uC, 24 h) and subsequent rewarming

(37uC, 3 h), whereas other cell lines showed substantial cell death

(Figure S1A). Medium obtained from hypothermic DDT-1 cells

(3uC, 18 hrs) protected vulnerable cell lines against hypothermic

injury, whereas medium from normothermic DDT-1 cells was

ineffective (Figure S1B and Text S1; Supplemental Information

Materials and Methods). Thus, hypothermia induced the release of

a protective factor from DDT-1 cells into the medium. Staining of

DDT-1 cells with Ehrlich reagent or serotonin antibody

demonstrated the presence of serotonin containing vesicles in

DDT-1 cells (Figure S2). Mass spectrometry confirmed the

released compound to be serotonin (medium concentration at

37uC: ,3.0 mM; at 37uC with 1 mM fluoxetine: 20.5 mM; at 3uC:

24.9 mM). To demonstrate that serotonin conveys resistance to

hypothermic cell death in DDT-1, synthesis of serotonin, its

intracellular uptake and its receptors were inhibited by pharma-

cological interventions. Four days of pretreatment with the

tryptophan hydroxylase inhibitor parachlorophenylalanine

(PCPA, 1 mM) decreased intracellular serotonin content of

DDT-1 cells by 50610% (n = 8) and concentration-dependently

decreased its survival to subsequent hypothermia (24 hr, 3uC;

figure 1A). Blockade of serotonin uptake in DDT-1 by inhibition of

its transporter (SERT) with fluoxetine (1 mM) abrogated the

Endogenous H2S Protects from Hypothermic Damage
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Figure 1. Serotonin and dopamine protect cells from hypothermia/rewarming cell death through an intracellular action. Cells
subjected to hypothermia (black bars) were incubated at 3uC for 24 h, followed by rewarming to 37uC for 3 h, and compared to non-cooled control
cells (37uC, gray bars). Cell survival was assessed by adding MTS to the cells upon rewarming and spectrophotometrical formazon measurement. (A)
DDT-1 cells show natural resistance to hypothermia, which is abrogated by the serotonin transporter (SERT) inhibitor fluoxetine (Fluox, 1 mM, 15 min)
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natural resistance of DDT-1 to hypothermic cell death (24 h, 3uC)

and resulted in cell death of over 50% (Figure 1A). In contrast,

blockade of serotonin receptors with ketanserin (1 mM) did not

affect DDT-1 cell survival following hypothermic treatment (24 h,

3uC; data not shown).

These experiments identify the monoamine serotonin (5-

hydroxytryptamine) as a protective compound against hypother-

mic cell death. Previously, dopamine (hydroxytyramine) was found

to exert similar effects in cultured endothelial cells [6]. Thus, the

actions of both compounds were explored in rat smooth muscle

aortic cells (SMAC), shown to be vulnerable to hypothermic cell

death (Figure S1). Pretreatment (15 min, 37uC) of SMAC with

either serotonin or dopamine provided a concentration-dependent

resistance to hypothermic cell death (24 h, 3uC; figure 1B and 1C).

Inhibition of the serotonin transporter SERT (fluoxetine, 1 mM)

and dopamine transporter DAT (vanoxerine, 1 mM), however,

completely abrogated serotonin and dopamine induced resistance

to hypothermic damage in SMAC (Figure 1D). In contrast, non-

specific antagonists of serotonin (ketanserin, 1 mM) and dopamine

(spiperone, 1 mM) receptors did not affect serotonin or dopamine

induced protection of SMAC from hypothermic cell death

(Figure 1D). Serotonin or dopamine also prevented hypother-

mia/rewarming induced increase of caspase 3/7 activity, which

was abrogated by inhibitors of re-uptake (Figure 1E). Together,

these experiments identify serotonin to protect from cold-induced

cell death and demonstrate that the protective effect of serotonin

and dopamine depends on their cellular uptake and is independent

of the presence of either receptor.

Serotonin and dopamine induce CBS mediated H2S
production

As medium from hypothermic DDT-1 cells slightly smelled like

certain sulfur-containing compounds, the cellular production of

H2S was investigated. Therefore, H2S content in homogenates

and medium of DDT-1 and SMAC was measured. While DDT-1

cells produce considerable amounts of H2S at 37uC (Figure 2A),

SMAC show only a marginal production (Figure 2B). H2S

production of DDT-1 was reduced by inhibition of SERT

(fluoxetine 1 mM, Figure 2A). Incubation of SMAC at 37uC with

serotonin and dopamine increased H2S production (Figure 2B).

Pretreatment of SMAC with serotonin and dopamine also strongly

increased H2S production during a subsequent hypothermic

treatment (3uC, 24 h), which was abrogated by co-treatment with

their respective uptake inhibitors (Figure 2C).

Immunohistological staining established the expression of CBS

both in DDT-1 and SMAC (Figure 3A and 3B). To confirm that

the protective effect was due to CBS mediated production of H2S,

the expression of the enzyme was reduced using siRNA in SMAC

prior to stimulation with serotonin, dopamine and the endogenous

activator of CBS, PLP. Silencing RNA substantially reduced CBS

expression compared to control (Figure 3C, inset). Importantly,

downregulation of CBS expression with siRNA inhibited H2S

production and attenuated the serotonin, dopamine and PLP

induced resistance to hypothermic cell death in SMAC (Figure 3C).

In addition, pharmacological blockade of CBS by amino-oxyacetic

acid (AOAA, 1 mM) also diminished the protective effect of

serotonin, dopamine and PLP on hypothermic cell death (24 h,

3uC; figure 3C). Finally, NaHS, as a substance which releases H2S,

was used as a second control to demonstrate the protective effect of

H2S against hypothermia induced cell damage. Pretreatment with

NaHS (0.2 mM) protected against hypothermia/rewarming even

in the presence of AOAA (Figure 3C). PLP, serotonin and

dopamine increase H2S production in SMAC while addition of

AOAA to each treatment does not affect the level compared to

control (Figure 3D). Collectively, these data show that the

protective effect of serotonin and dopamine against hypothermic

Figure 2. Induction of cellular H2S production by serotonin and dopamine. H2S content was measured in cell medium of non-cooled cells
(gray bars, 37uC) and hypothermic cells (black bars, 3uC) after incubation for 24 h. (A) H2S content in DDT cells was unaffected by cooling, but
reduced by the serotonin transporter (SERT) inhibitor fluoxetine (1 mM, 15 min pretreatment prior to cooling). (B to C) Serotonin (30 mM) and
dopamine (20 mM) induce H2S production in SMAC both at 37uC and 3uC compared o untreated cells (control), which is blocked by inhibition of their
respective transporters fluoxetine (1 mM, 15 min) and vanoxerine (1 mM, 15 min). ANOVA tests, different from non-cooled cells (37uC or control)
P,0.05 (*); different from untreated hypothermic cells (Con) P,0.05 (#). Experiments consist of n$4. Means 6 SEM.
doi:10.1371/journal.pone.0022568.g002

and pretreatment with the tryptophan hydroxylase inhibitor parachlorophenylalanine (PCPA, 24 h). (B to C) Concentration-dependent inhibition of
hypothermic cells death by serotonin (B) and dopamine (C) in SMAC. (D) The protective effect of serotonin (30 mM, 15 min) and dopamine (20 mM,
15 min) pretreatment on hypothermic cell death is precluded by inhibition of their respective transporters with fluoxetine (1 mM, 15 min) and
vanoxerine (1 mM, 15 min), but unaffected by non-specific receptor antagonists ketanserin (1 mM, 15 min) and spiperone (1 mM, 15 min). (E)
Serotonin (30 mM, 15 min) and dopamine (20 mM, 15 min) pretreatment prevent caspase3/7 activation induced by hypothermia in SMAC cells, which
is precluded by inhibition of their uptake by fluoxetine (1 mM, 15 min) and vanoxerine (1 mM, 15 min). ANOVA tests, different from non-cooled cells
(37uC) P,0.05 (*); different from untreated hypothermic cells (Con) P,0.05 (#). Experiments consist of n$4. Means 6 SEM.
doi:10.1371/journal.pone.0022568.g001
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cell death in SMAC is dependent on CBS mediated H2S

production.

Serotonin and dopamine upregulate and activate
cystathionine-b-synthase and inhibit hypothermia/
rewarming induced ROS formation in CBS containing
cells

Next, we examined the effect of serotonin and dopamine on the

expression and the activity of CBS. Pretreatment of SMAC with

serotonin and dopamine upregulated the expression of CBS, an

effect being most pronounced after 24 hr of incubation (Figures 3E

and S3A). Upregulation was likely dependent on the increase in

protein synthesis of CBS and it was attenuated by rapamycin

(30 nM), an inhibitor of protein synthesis by inhibition of

mammalian target of rapamycin (mTOR) [16]. In addition to

upregulation, we examined whether increased H2S production

was due to activation of CBS [17,18]. To substantiate allosteric

activation of CBS by serotonin and dopamine, their action on

isolated CBS was examined in an in vitro assay, employing PLP as a

positive control. In this assay at 37uC, serotonin and dopamine

substantially induced the formation of H2S, as was observed with

PLP. In addition, both compounds increased H2S production of

isolated CBS (Figure S3B and Text S1). Thus, the area under the

curve (AUC) of H2S production following 10 min incubation

increased significantly from 13.964.4 in controls to 56.3613.7,

111.3616.4 and 47.963.6 after stimulation with PLP, serotonin

and dopamine, respectively (all p,0.05 compared to control).

These results implicate that serotonin and dopamine activate CBS

allosterically. Collectively, these data indicate that serotonin and

dopamine induce formation of H2S through upregulation and

allosteric activation of CBS.

A fluorescent probe was used to assess the formation of ROS

following rewarming of hypothermic cells (Figure 3F). Serotonin

and dopamine did not affect ROS levels of control or CBS siRNA

treated cells at 37uC. Hypothermic treatment of cells induced a

strong increase in ROS formation, which was further aggravated

in cells in which CBS was knocked out by siRNA. Serotonin and

dopamine treatment completely normalized ROS production in

cooled and rewarmed control cells. In CBS siRNA treated

hypothermic cells, serotonin and dopamine only slightly reduced

ROS production to a level observed in non-treated cells. Thus,

CBS is necessary to convey the protective effect of serotonin and

dopamine against the formation of ROS.

Serotonin and dopamine upregulate CBS in cold-stored
organs and attenuate apoptosis

Finally, to examine whether serotonin and dopamine induce the

upregulation of CBS in organs as seen in cells, rat heart, liver,

kidney, and lung were pre-incubated with serotonin (90 mM) and

dopamine (60 mM) for 30 min prior to cold exposure (3uC, 24 h)

and fixed 30 min after rewarming. In serotonin treated liver, lung,

kidney and heart, CBS expression is higher following the

hypothermic treatment and rewarming as compared to controls

(Figures 4 and 5). Furthermore, serotonin pretreatment prevented

activation of caspase in these tissues following prolonged cold

storage and subsequent rewarming (Figure 4). Similar effects were

observed in organs treated by dopamine (data not shown).

To assess tissue hypoxia after hypothermic preservation, the pH

of the preservation medium was measured after rewarming.

Storage and rewarming induced substantial acidosis in untreated

tissues. Pretreatment with dopamine and serotonin prevented

acidosis and maintained the physiological pH value with

significant differences compared to the untreated tissues which

suffered acidosis (Table S1).

Discussion

Our data show that the cellular uptake of serotonin and

dopamine prevents hypothermia/ rewarming induced cell apop-

tosis by H2S formation through CBS upregulation and probably

allosteric activation. Both compounds attenuate the increase in

ROS formation in cells subjected to hypothermia/rewarming. The

ROS inhibitory action of dopamine or serotonin in cooled SMAC

was minimized after siRNA mediated knock-down of CBS protein.

Moreover the attenuation of CBS upregulation by rapamycin

treatment of SMAC, points at a potential beneficial effect of

mTOR activation in hypothermia/rewarming induced damage

through upregulation of CBS and production of H2S. In accord,

PLP as an activator of CBS and NaHS as a substance which

releases H2S also protected against cell death induced by

hypothermia/rewarming. Finally, whereas cooling downregulates

CBS in various rat tissues as observed in our experiments,

dopamine and serotonin attenuate and even upregulate CBS

expression throughout the treatment and protect against acidosis

and apoptosis. Thus, we expand the previous findings on cell

protective properties of dopamine and serotonin [6,19] and

identify the activation of H2S pathway as a main effector in

prolonged protection against hypothermia/rewarming damage.

Previous data corroborate the presence of serotonin filled

vesicles in vas deferens smooth muscle from which DDT-1 cells

are derived. Fuenmayor et al. [20] and Celuch and Sloley [21]

described the presence and release of serotonin, dopamine and

noradrenalin (NA) from rat vas deferens. It is conceivable that

protection from hypothermia in SMAC cells is dependent on the

cellular uptake of serotonin, in view of the failure of its protection

in the presence of an SSRI and the unchanged effectiveness of

serotonin in the presence of the non-selective 5-HT2 receptor

blocker ketanserin.

Figure 3. Serotonin and dopamine prevent hypotherma/rewarming cell death via increased H2S production through upregulation
and allosteric activation of cystathionine-b-synthase (CBS). (A and B) Immunostaining demonstrating the expression of CBS in DDT-1 (A) and
SMAC (B). Magnification 806. (C) Downregulation of CBS by siRNA precludes protection of SMAC from hypothermic cell death by serotonin (30 mM),
dopamine (20 mM) and PLP (50 mM). NaHS protects cells against hypothermia even in the presence of AOAA (1 mM) an inhibitor of CBS. The
hypothermia protocol consisted of 24 h at 3uC for, followed by rewarming to 37uC for 3 h. Cell survival was assessed by adding MTS to the cells upon
rewarming and spectrophotometrical formazon measurement. Inset: Silencing RNA substantially decreases the expression of CBS in SMAC cells. con:
untreated cells, mock: negative control siRNA. (D) The increase in production of H2S as measured in cell medium of hypothermic cells (24 h at 3uC)
treated with serotonin (30 mM) or dopamine (20 mM) was abrogated by pretreatment of the cells with the inhibitor of CBS, amino-oxyacetic acid
(+AOAA, 1 mM, 15 min at 37uC+24 hr at 3uC ). (E) Treatment with serotonin (30 mM, 15 min at 37uC+24 hr at 3uC )) upregulates CBS expression,
which is prevented by pretreatment with rapamycin (rap, 30 nM, 15 min at 37uC+24 hr at 3uC). Inset: western blot with time points as indicated. (F)
Cooling SMAC induces the production of ROS in cells which is reduced by dopamine and serotonin treatment and aggravated by CBS siRNA
transfection. ROS formation is measured by the level of Fluorescin fluorescence in SMAC in dopamine and serotonin treated cells compared to
controls at 3uC and 37uC individually. Experiments consist of n$3. Means 6 SEM. # indicates significant difference to untreated control and
* indicates significant difference to control within each treatment group.
doi:10.1371/journal.pone.0022568.g003
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Figure 4. Serotonin increases cystathionine-b-synthase (CBS) expression and minimizes apoptosis in rat tissue during cold storage.
Rat tissues were cut in slices in isotonic PBS and subjected to 24 h storage at 3uC followed by processing for analysis by fixation or snap-freezing.
(A to D) cold storage of indicated tissues activates caspase 3/7 (left panels) and downregulates CBS (right panels), which is reversed by serotonin
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H2S is already known as being a cell and tissue protective

molecule in ischemia/reperfusion damage. This study discloses the

feasibility to limit hypothermia/ rewarming cell injury by

increasing the endogenous production of H2S. In addition, it

discloses a novel molecular link between two important biogenic

amines and the H2S pathway. The protection by H2S against

apoptotic injury and cell death following cooling and rewarming

extends previous reports showing H2S to protect from hypoxic

injury in cells and tissues, and in animals [9,22]. However, it

should also be noted that a number of studies identified a lack of

effect of H2S administration, mainly in larger animals such as

sheep or pig [23,24]. Presently, the reason for the lack of

protection by H2S administration under these conditions is

unclear, but this may relate to kinetics of the H2S, particularly

following bolus injection of H2S donors [25]. As our data show

that the therapeutic potential of endogenously produced H2S may

be disclosed via a relatively simple pharmacological approach to

protect against cold ischemia-reperfusion injury and it will be of

interest to explore the effectiveness of compounds boosting

endogenous H2S production in organ transplantation models in

larger animals. This is the first report of serotonin and dopamine

limiting cellular damage following cooling and rewarming through

H2S production. The mechanism by which H2S attenuates

apoptosis is unknown, but has already been suggested to constitute

of compensation for the loss of SH-reduction equivalents during

cold preservation [26], or alternative mechanisms [27,28]. On the

molecular level, various signal transduction pathways downstream

of H2S have been implicated (reviewed in [9]), including the

opening of ATP-sensitive K+ channels, activation of eNOS and the

activation of pro-survival kinases ERK, PKC isoforms and PI3K-

Akt, resulting in augmented expression of heat shock proteins, Bcl-

2 and Bcl-xL. Dopamine has been shown previously to protect

from hypothermia induced apoptosis in cultured cells [6,26] and to

improve graft patency in human kidney transplantation [7]. This

beneficial effect has been mainly contributed to its antioxidant

properties [26]. As its already known that dimerization and

reduction of serotonin and dopamine in the presence of free

radicals occurs very quickly annihilating the antioxidant effect

[6,29] our results on the production of H2S through CBS following

dopamine and serotonin treatment may further expand and fortify

the protective effect of these compounds. The importance of CBS

in redox regulation and reaction mechanism has already been

reviewed [30] although a direct link to cellular resistance against

ROS due to the presence of CBS has never been made. Further, as

a contradictive addition to the above report on dopamine and

serotonin being antioxidants, these bioamines have also the ability

to induce ROS formation in cells, for example due to the

activation of proteins in mitochondrial metabolic pathways such as

monoamine oxidases (MAOs) [31,32]. ROS formation was not

observed in our cells indicating a potential inhibition of MAOs,

which could also be contributed to the possible inhibition of these

enzymes by H2S [33].

Our study demonstrates that the increased H2S production in

cells is due to both upregulation and allosteric activation of CBS.

Figure 5. Localization of serotonin induced increase in cystathionine-b-synthase (CBS) expression during cold storage. Preincubation
of slices with serotonin (90 mM, 30 min) and the subsequent 24 hr of hypothermic storage (3uC) causes substantial increase in the expression of CBS
(A3-D3) compared to freshly processed control tissue (37uC, A1-D1) or nontreated cooled controls (3uC, A2-D2). Rat tissues were cut in slices in
isotonic PBS and subjected to 24 h at 3uC, followed by processing for analysis by fixation. CBS is represented by brown staining and indicated by
arrows. Magnification 406.
doi:10.1371/journal.pone.0022568.g005

pretreatment (90 mM, 30 min) of tissues. Insets show typical examples of western blots. Western blot: left lanes: fresh tissue (Control 37uC), middle
lanes: tissue stored for 24 h at 3uC (Control 3uC), right lanes: tissue pretreated with dopamine prior to storage at 3uC (Dopamine 3uC). ANOVA tests,
different from non-cooled cells (Controls 37uC) P,0.05 (*); different from untreated hypothermic cells (Controls 3uC) P,0.05 (#). Experiments consist
of n$3. Means 6 SEM.
doi:10.1371/journal.pone.0022568.g004
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The upregulation of CBS expression following serotonin and

dopamine incubation is most likely caused via activation of mTOR

kinase and subsequent activation of the protein synthesis

machinery. In accord, serotonin and dopamine have been shown

to activate mTOR through their respective receptors [34] in this

case indicating the beneficial role of this kinase in protection

against hypothermia/rewarming damage and ROS formation

through CBS upregulation.

A second way of enhancing H2S production by serotonin and

dopamine constitutes of the allosteric activation of CBS. The exact

nature of the interaction of serotonin and dopamine with CBS

needs further exploration. However, as biogenic amines were

previously found to modulate the catalytic activity of various heme

enzymes [12], the N-terminal heme moiety of CBS constitutes an

important candidate as the site of interaction. In addition, CBS is

known to be allosterically modulated by S-adenosyl-L-methionine

(SAM) via interaction with its C-terminal (regulatory) domain,

increasing its activity about 3-fold [35]. Our finding that dopamine

and serotonin upregulate CBS in four different cold stored organs,

even in the ones such as lung and heart which were previously

identified to not exhibit CBS activity in rats [36], hints at a

presence and importance of the system in different organs.

Although CBS enzyme activity is not found in all cells, its

expression in brain, liver and kidney is known to be substantial

[37]. The profound CBS upregulation found in cold stored liver in

the present study is in agreement with the high expression of CBS

reported in this organ [22,37]. One of the consequences of

hypothermia is cold induced hypoxia [38], which in turn induces

tissue acidosis [39]. In mammalian cells, regulation of basic cell

membrane function is closely linked to cellular pH and a stable

tissue pH is considered to reflect cell viability [40]. The assessment

of pH value of the tissue medium after hypothermic preservation

demonstrates tissue acidosis in control tissues and its absence in

treated tissues, suggesting maintenance of membrane integrity in

cold induced acidosis of tissue probably due to a lower ROS

production. The importance of CBS in peripheral organs is

underscored by the phenotype of genetic defects of the CBS gene.

In humans, genetic mutations invoking CBS deficiency lead to the

clinical condition of homocystinuria, not only characterized by

severe disorders of brain, but also of eyes, and the musculoskeletal

and cardiovascular system [41]. Also in heterozygote CBS knock-

out mice, abnormalities in liver [41], kidney [42] and the

cardiovascular [43] and pulmonary system [44] are prominent.

Together, these expression profiles indicate crucial roles for CBS

activity.

In broader sense, our results identified a novel molecular link

between major monoamine neurotransmitters and the H2S

pathway. While prominently expressed in brain, a significant

expression of the uptake pumps for serotonin and dopamine,

SERT and DAT, was also found in peripheral organs, e.g. in liver,

kidney and lung [45,46]. Various drug classes profoundly affect

serotoninergic and dopaminergic systems, including medicines

such as anti-depressants (reviewed in [47]) but also recreational

drugs including cocaine, amphetamines and XTC. In theory, any

drug that interferes with synthesis, cellular uptake and/or

metabolism of these neurotransmitters may affect H2S signaling.

In turn, H2S has been implicated in various physiological

processes including modulation of blood pressure [48,49] and

neuromodulatory effects, including nociception [22,50,51]. To

what extent CBS function and H2S production influence the

physiological action of monoaminergic transmitters and the

pharmacological effects of related drugs needs further exploration.

Our results implicate that cells that do not express CBS are prone

to oxidative injury even in the presence of serotonin and

dopamine. Possibly, differences in CBS expression in different

cells in an organ may explain conflicting data on the effects of

these bioamines in various settings.

In summary, this study reveals that the cellular uptake of

serotonin and dopamine limits cold induced cellular damage, ROS

production, and apoptosis by CBS induced H2S formation. This

finding discloses an additional effector pathway of biogenic amines

and enlightens the potential of the CBS enzyme in attenuating

oxidative stress.

Supporting Information

Figure S1 Natural resistance of DDT-1 cells to hypo-
thermic damage is due to secretion of a hypothermia-
protecting factor into medium of cooled cells. Cells

subjected to hypothermia (black bars) were incubated at 3uC for

24 h, followed by rewarming to 37uC for 3 h. Cell viability was

assessed by adding MTS to the cells upon rewarming and

spectrophotometrical formozan measurement. (A) DDT-1 cells

show natural resistance to hypothermia/rewarming, in contrast to

THMC (transformed human mesangial cell), A7R5 (rat vascular

smooth muscle cells), SMAC (rat smooth muscle aortic cells) and

NRK (normal rat kidney cells). (B) Hypothermia/rewarming

injury of vulnerable cell lines is precluded when the protocol is

executed in medium from cooled DDT-1 cells (conditioned

medium from 3uC cells: CM 3uC), whereas medium from non-

cooled DDT-1 cells (CM 37uC) is not protective. ANOVA tests,

different from non-cooled cells (37uC ). P,0.05 (*); different from

CM 37uC conditioned cells P,0.05 (#).Experiments consist of

n$3. Means 6 SEM.

(TIF)

Figure S2 DDT-1 cells contain serotonin filled vesicles.
(A and B) show representative photographs of DDT-1 cells stained

with Ehrlich reagent (A; blue color) and serotonin antibody (B;

brown color), respectively.

(TIF)

Figure S3 Upregulation of cystathionine-b-synthase
(CBS) expression by dopamine and H2S production by
isolated enzyme. A. Treatment with dopamine (20 mM, 15 min

at 37uC+24 hr at 3uC) upregulates CBS expression in SMAC cells,

which is inhibited by pretreatment with rapamycin (rap, 30 nM).

Inset: typical western blot with time points as indicated. ANOVA

tests, different from non-treated cells (0) P,0.05 (*).Experiments

consist of n$3. Means 6 SEM. B. Serotonin and dopamine

induce H2S production by CBS in vitro at 37uC, as does the

endogenous activator of CBS, pyridoxal 5-phosphate (PLP)

ANOVA tests, different from non-cooled cells (37uC or Con )

P,0.05 (*); different from untreated hypothermic cells (Con)

P,0.05 (#); different from min serotonin treated cells P,0.05 (&).

Two way ANOVA with Bonferroni, different from substrate

incubated cells P,0.01 ({). Experiments consist of n$4. Means 6

SEM.

(TIF)

Table S1 pH values of medium of tissue slices following
rewarming. Preincubation of slices in 2 ml of PBS containing

serotonin (90 mM), dopamine (60 mM) or PBS with no treatment

(vehicle) for 30 min followed by 24 hr of hypothermic storage

(3uC) and 30 min of rewarming (37uC) causes acidosis in medium

of control tissues compared to those tissues treated with serotonin

and dopamine. The data each represent the mean of 3 separate

experiments (Mean+SEM) * significantly different compared to

vehicle treated controls within each tissue group.

(DOC)
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Text S1 Caspase activity measurement in cells and
tissue samples using Promega Apo-ONER assay obtain-
ing conditioned medium from DDT-1 cells by cold
storage. Inhibition of serotonin synthesis by parachlorophenyl-

alanine (PCPA) incubation. Quantitative assessment of serotonin

in cells by Ehrlich’s reagent and mass spectrometry. Western Blot

conditions and detection of protein bands in samples from cells

and tissue. Histology and immunostaining procedures in cells and

tissue slices. Measurement of reactive oxygen species.

(DOC)
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