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Abstract

Background: Gamma (c) oscillations (30–50 Hz) have been shown to be excessive in patients with schizophrenia (SCZ)
during working memory (WM). WM is a cognitive process that involves the online maintenance and manipulation of
information that is mediated largely by the dorsolateral prefrontal cortex (DLPFC). Repetitive transcranial magnetic
stimulation (rTMS) represents a non-invasive method to stimulate the cortex that has been shown to enhance cognition and
c oscillatory activity during WM.

Methodology and Principal Findings: We examined the effect of 20 Hz rTMS over the DLPFC on c oscillatory activity
elicited during the N-back task in 24 patients with SCZ compared to 22 healthy subjects. Prior to rTMS, patients with SCZ
elicited excessive c oscillatory activity compared to healthy subjects across WM load. Active rTMS resulted in the reduction
of frontal c oscillatory activity in patients with SCZ, while potentiating activity in healthy subjects in the 3-back, the most
difficult condition. Further, these effects on c oscillatory activity were found to be specific to the frontal brain region and
were absent in the parieto-occipital brain region.

Conclusions and Significance: We suggest that this opposing effect of rTMS on c oscillatory activity in patients with SCZ
versus healthy subjects may be related to homeostatic plasticity leading to differential effects of rTMS on c oscillatory
activity depending on baseline differences. These findings provide important insights into the neurophysiological
mechanisms underlying WM deficits in SCZ and demonstrated that rTMS can modulate c oscillatory activity that may be a
possible avenue for cognitive potentiation in this disorder.
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Introduction

Gamma (c) oscillations (30–50 Hz) are associated with working

memory (WM). WM involves the maintenance and manipulation

of information [1] and has been shown to increase c oscillations

with increases in WM load in healthy subjects [2], particularly in

the dorsolateral prefrontal cortex (DLPFC; [3]). Schizophrenia

(SCZ) patients have marked deficits in WM [4] that has been

attributed to altered c oscillatory activity. For example, we

demonstrated that SCZ patients compared to healthy subjects

elicit excessive c oscillatory activity while performing the N-back

task at all WM loads that was accompanied by impaired

performance [5]. Although previous studies provide evidence for

reduced c oscillatory activity in SCZ patients during cognitive
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control [6] and sensory oddball [7] tasks, recent findings suggest

that c oscillatory activity is excessive in the frontal cortex during

WM performance [2,5]. Excessive c oscillatory activity has also

been shown in the posterior cortex in patients with SCZ during

visual stimulation [3,8]. Altered c oscillatory activity in SCZ

patients may therefore be related to impaired WM function in this

disorder.

Animal studies have shown that c oscillations during WM are

supported by c –aminobutyric acid (GABA) interneurons in the

DLPFC [9,10,11]. Specifically, GABAergic activity may be

involved in the generation and inhibition of c oscillations [12,13,

14,15], a mechanism that has been shown to be impaired in SCZ

[16,17,18,19]. In line with these studies, Farzan et al. (2010) mea-

sured neurophysiological indices of GABAB receptor inhibition

from the DLPFC in SCZ patients compared to bipolar disordered

patients and healthy subjects through combined transcranial mag-

netic stimulation (TMS) electroencephalography (EEG) [20]. It

was demonstrated that the inhibition of c oscillations was sig-

nificantly reduced in DLPFC of SCZ patients compared to the

other 2 groups [20]. It is possible, therefore, that deficits in the

inhibition of c oscillations in the DLPFC in SCZ results in

excessive c activity as was previously reported [5], which may

contribute to WM deficits in this disorder. By contrast, in healthy

subjects it was demonstrated that repetitive TMS (rTMS) over the

DLPFC selectively enhanced c oscillatory activity that was most

pronounced in 3-back [3], which may be related to its ability to

potentiating effects on GABAergic neurotransmission [21,22].

Methods

Objective
The objective of this study was to administer high frequency

rTMS over the DLPFC to measure its effect on c oscillatory

activity during the N-back task in patients with SCZ and healthy

subjects. It was hypothesized that excessive c oscillatory activity in

patients with SCZ would be reduced with rTMS compared to

sham stimulation and in contrast to healthy subjects.

Participants
Twenty-four (males = 14; females = 10) patients with a diagnosis

of SCZ or schizoaffective disorder confirmed by the Structured

Clinical Interview for DSM-IV [23] and 22 (males = 11; females

= 11) healthy individuals participated in this study. Eighteen of the

twenty-two subjects overlapped with a study previously published

[3]. All subjects were right handed confirmed using the Oldfield

Handedness Inventory [24]. Patients with SCZ were all treated

with antipsychotic medication (14.4610.9 mg olanzapine, 6

patients; 233.36230.9 mg clozapine, 3 patients; 5.263.0 mg

risperidone, 7 patients; 733.36416.3 mg of quetiapine, 3 patients;

2.461.6 mg fluphenazine, 3 patients ; 25 mg haloperidol, 1

patient; 15 mg aripiprazole, 1 patient). Demographic data of the

subject groups are shown in Table 1. The subject groups were

similar in age (t(44) = 20.754, p = 0.455), but differed in education

(independent t-tests: t(44) = 2.954, p,0.05; Table 1). Severity of

psychopathology was evaluated using the positive and negative

symptom scale (PANSS; [25]), scale for the assessment of negative

symptoms (SANS; [26]) and the Calgary Depression Scale (CDS;

[27]; Table 1). Exclusion criteria for all subjects included a history

of substance abuse or dependence in the last 6 months determined

through the DSM-IV, a concomitant major and unstable medical

or neurologic illness or pregnant. In healthy subjects the presence

of psychopathology was ruled out through the personality

assessment screener (PAS; Psychological Assessment Resources,

Inc).

Description of Procedures
This study was a randomized, double-blind, placebo-controlled

design. Patients with SCZ and healthy subjects were randomized

into two groups allocated to receive either active or sham rTMS

and were blind to their group assignment. Furthermore, active and

sham rTMS was administered by treatment nurses who were not

involved in any other the experimental measures or data analysis.

The clinical rater and the experimenter who analyzed and inter-

preted the data were both blind to the rTMS group assignment.

The experiment took place over two testing days. On the first day,

subjects performed the N-back test while their EEG was recorded.

One week later, rTMS was administered over the DLPFC

followed by the final testing of the N-back task. The final N-

back task was performed approximately 20 minutes following the

rTMS administration to allow for cortical plasticity to take place as

well as for the placement of the EEG cap. These two N-back

testing sessions will be referred to ‘pre’ and ‘post’ measures relative

to the rTMS administration here on in.

N-Back Task. Subjects performed the N-back task while

their EEG was recorded (STIM2, Neuroscan, U.S.A.) pre and post

rTMS. Stimuli were presented on a computer monitor one at a

time and participants were required to push one button (target) if

the present stimulus was identical to the stimulus presented ‘‘N’’

trials back; otherwise, subjects pushed a different button (non-

target). Thus, the effect of increasing cognitive demand on oscil-

latory activity was tested by varying the ‘‘N’’ in the 1-, 2- and

3-back conditions. Stimuli consisted of black capital letters

presented for 250 msec followed by a delay period of 3000 msec

during which the subject was required to respond (Figure 1). In the

1- and 2-back conditions, stimuli were presented continuously for

15 minutes and for 30 minutes in the 3-back condition. The 3-

back was administered for double the length of time to ensure a

satisfactory number of correct responses were contained for the

data analysis (Table 2). The number of target letters in each

condition was: 46 of 198 (23.2%) 1-back; 31 of 197 trials (15.7%)

2-back, and 59 of 400 trials (14.6%) 3-back condition. The N-back

task took 1 hour for subjects to complete with the order of con-

ditions randomized and counterbalanced to control for order effects.

Repetitive TMS. Repetitive TMS was administered using a

Medtronic MagPro stimulator (Medtronic, Inc., U.S.A.) with a

Table 1. Demographic Data for Healthy Subjects (HS) and
patients with schizophrenia (SCZ) and the assessment of
psychotic symptoms in patients with SCZ rTMS (6) 1 standard
deviation.

HS SCZ

Age 44.500 (6) 11.43 47.21 (6) 12.80

Age Range 23–61 23–70

Female (n) 11 10

Male (n) 11 14

PANSS Scores Positive NA 17.50 (6) 6.40

Negative NA 14.71 (6) 7.09

Global NA 27.45 (6) 7.60

Total NA 57.54 (6) 16.05

Psyrats Score Total NA 13.42 (6) 13.52

CDS Score Total NA 2.94 (6) 2.99

SANS Score Total NA 37.67 (6) 21.42

doi:10.1371/journal.pone.0022627.t001
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70 mm diameter figure-of-8 coil to the right and left DLPFC at

20 Hz, 90% resting motor threshold for 25 trains comprising of 30

pulses per train, inter-train interval of 30 seconds for a total of 750

pulses per hemisphere in accordance with published safety

guidelines [28]. The total time for the rTMS administration was

25 minutes, 12.5 minutes per hemisphere. The resting motor

threshold was defined as the lowest intensity that produced a

motor evoked potential of at least 50 mV in 50% of the trials

delivered. Sham stimulation was delivered at the same rTMS

parameters as active stimulation with the coil held in a single wing-

tilt position at 90 degrees to induce similar somatic sensations as in

the active stimulation with minimal direct brain effects. The order

of stimulation (right then left versus left then right) was also

randomized and counterbalanced to control for order effects.

DLPFC Site Localization. The localization of the DLPFC

was determined through neuronavigational techniques using

the MINIBIRD system (Ascension Technologies) combined with

MRIcro/reg software using a T1-weighted MRI scan obtained for

each subject with seven fiducial markers in place. Repetitive TMS

was targeted at the junction of the middle and anterior one-third

Figure 1. A representation of the 1-, 2- and 3-back conditions that were completed in a randomized order by patients with
schizophrenia (SCZ) and healthy subjects (HS) pre-post rTMS. Subjects were required to push one button (target) if the current letter was
identical to the letter presented ‘‘N’’ trials back; otherwise the participants pushed a different button (non-target). Correct responses for target (TC)
and non-target (NTC) were included in the data analysis (A). The timing of one trial from the presentation of a one letter separated by a (+) sign
followed by a subsequent letter for a total time of 3000 msec (B).
doi:10.1371/journal.pone.0022627.g001

Table 2. Total number (TC+NTC) of trials analyzed for healthy subjects (HS) and patients with schizophrenia (SCZ) in the 1-, 2-, and
3-back task conditions pre- post-rTMS (6) 1 standard deviation.

No of Trials Condition HS SCZ

Pre Post Pre Post

Active Sham Active Sham Active Sham Active Sham

1-Back 130.91 130.00 127.09 114.81 82.00 84.17 104.00 81.00

(±) SD 39.77 24.61 42.37 48.82 42.21 43.79 35.60 41.97

2-Back 150.00 130.36 139.82 104.91 101.92 96.08 54.42 90.50

(±) SD 32.75 33.14 43.21 26.36 42.39 44.07 36.39 45.57

3-Back 283.82 225.64 264.45 181.64 157.27 168.42 122.08 131.83

(±) SD 76.22 62.92 79.65 77.80 73.38 76.71 59.42 78.26

doi:10.1371/journal.pone.0022627.t002
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of the middle frontal gyrus (Talairach coordinates (x, y, z) = +/

250, 30, 36) corresponding with posterior regions of Brodmann

area 9 (BA9), and overlapping with the superior region of BA46

(Figure 2). The selection of this site was based on recent meta-

analyses of functional imaging studies that examined WM and the

activation of the DLPFC [29,30,31].

EEG Measurement of Evoked c Oscillatory Acti-

vity. Evoked and induced oscillatory methods have both been

used to examine oscillatory activity elicited during WM. These two

analytical methods differ in their relationship with the stimulus

onset. Evoked oscillatory responses are phase-locked to the

stimulus onset with a fixed latency following stimulus onset and

are measured by stimulus-triggered averaging of responses in a

time domain [32]. By contrast, induced oscillatory activity is not

phase-locked to stimulus onset and appears as a jitter in latency

that varies from trial to trial, thus, these responses are cancelled

out when trials are averaged [32]. In other words, evoked re-

sponses are characterized by a constant time and phase relation-

ship with the stimulus while a loose temporal relationship with the

stimulus characterizes induced activity. In the frontal region,

evoked and induced oscillatory activities have been shown to

overlap during the N-back task [33]. Furthermore, it was initially

suggested that early evoked activities reflect perceptual processes

while induced activities reflect more attentional and WM processes

[32]. However, there is increasing evidence for the modulation of

evoked oscillatory activity with WM load particularly when longer

delay periods are examined [2,3,34] thereby suggesting that

evoked oscillations are involved in both attentional and other WM

processes (e.g., retention and retrieval) and are not simply limited

to perception. In addition, during EEG recordings both eye

movement and cranial musculature artefact have been a concern

with the measurement of oscillatory activity during cognitive

paradigms specifically in the c band. For example, Yuvel-Green-

berg et al (2008) measured microsaccadic eye movement and EEG

simultaneously while subjects performed a cognitive task and

demonstrated that induced c oscillatory activity corresponded with

microsaccadic eye movement rather than neuronal processing

[35]. It was concluded that evoked measurement of c oscillatory

activity is less susceptible to eye movement artefact owing to the

fact that this activity is cancelled out when multiple trials are

averaged. This also applies to activity from cranial musculature

which is another source of artefact that has been a concern with

the examination of c oscillatory activity during cognition [36].

That is, the modulation of c band activity has been associated with

cranial musculature as the difficulty of cognitive tasks increases.

However, it has been reported that such artefact due to cranial

musculature is characterized by irregular spikes present across

spectral frequencies [37] and therefore are more likely to influence

induced measurement of c oscillatory activity. The measurement

of evoked oscillatory activity during WM performance is less

susceptible to both eye movement and cranial musculature artefact

[38]. As such, we measured mean evoked c power from frontal

electrodes while subjects completed the N-back task before (pre)

and after (post) rTMS was administered over the right and left

DLPFC.

EEG Recording. EEG data were acquired using a 64-

electrode cap and Synamps2 DC-coupled EEG system (Com-

pumedics, U.S.A.). Four electrodes placed on the outer side of

each eye, above, and below the left eye were used to monitor eye

movement artefact. Data was recorded at a rate of 1000 Hz DC

and with a 0.3 to 200 Hz band pass hardware filter. Electrode

impedances were lowered to ,5 kV. All channels were referenced

to an electrode placed posterior to the Cz electrode.

Offline EEG processing. We measured mean evoked

oscillatory power over the delay period according to published

protocol [3]. Data was filtered off-line using a 1 to 100 Hz band

pass zero phase shift filter (slope, 24 dB/oct). Epochs were defined

as 21000 to +3095 msec relative to the cue onset and were

baseline corrected with respect to the prestimulus interval (21000

to cue onset). All trials were manually inspected and any error

trials or epochs containing artefact (movement or electro-

oculogram exceeding +/250 mV) were excluded from further

analysis.

Ethics
All subjects provided their written informed consent and the

protocol was approved by the Centre for Addiction and Mental

Health in accordance with the declaration of Helsinki.

Data Analysis and Statistical Methods
Behavioural Analysis. The total number of correct trials

(target correct (TC) and non-target correct (NTC)) including those

trials rejected due to artefact were included in the data analysis for

WM performance and reaction time. Two separate repeated

measures ANOVA were conducted on the baseline measures of

WM performance and reaction time with N-back as a within-

subject factor (1- versus 2-versus 3-back) and group (patients with

SCZ versus healthy subjects) as the between-subject factor. Two

separate mixed model repeated measures (MMRM) for WM and

reaction were then performed on change score (post rTMS-pre

rTMS) with Group (patients with SCZ versus healthy subjects) and

rTMS (active versus sham) as between-subject factors and WM

load (1- versus 2- versus 3-back) as the within-subject factor with a

significance level set at p,0.05. Interaction effects were further

examined with Bonferroni-adjusted pairwise comparisons (SAS

System v.9.1.3; SAS Institute, NC, USA).

EEG Analysis. Artefact-free EEG data were imported into

MATLAB (The MathWorks, Inc. Natick, MA, USA) using the

Figure 2. Targeting the Dorsolateral Prefrontal Cortex (DLPFC)
for rTMS stimulation. Transverse view from a single subject with
exposed cortex and overlap of Brodmann areas 9 & 46, highlighted
(white) on a T1-weighted 3D MRI. Using MRI-to-MiniBird co-registration,
the centre of the TMS coil was held over this region.
doi:10.1371/journal.pone.0022627.g002
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EEGLAB toolbox [39] for subsequent analysis. Evoked oscillatory

power for each frequency band was examined using a zero phase

shift Hamming based FIR filter (in the order of 100) to decompose

the EEG signal into d (1–3.5 Hz); h (4–7 Hz); a (9–12 Hz); b (14–

28 Hz) and c, (30–50 Hz) and averaged over the delay period (0–

3000 msec from cue onset) for the target correct (TC) and non-

target correct (NTC) responses for each WM load pre and post

rTMS for each subject. Mean evoked oscillatory power was then

assessed during these responses (TC and NTC) from the frontal

electrodes (AF3, AF4, F5, F3, F1, FZ, F2, F4, and F6), and

averaged for each subject. Since spectral analysis of EEG activity is

often not normally distributed [40], the data was log transformed

prior to analysis. A series of five (across oscillatory power in the 5

frequency bands) repeated measures ANOVA were conducted at

baseline with N-back condition (1- versus 2- versus 3-back) as a

within subject factor and group (patients with SCZ versus healthy

subjects) as the between subject factor with a significance level set

at p,0.05. Next, a series of five MMRM were performed on

change score (post rTMS-pre rTMS) with Group (patients with

SCZ versus healthy subjects) and rTMS (active versus sham) as

between-subject factors and WM load (1- versus 2- versus 3-back)

as the within-subject factor with a significance level set at p,0.05.

The exclusion of the time (pre rTMS versus post rTMS) within

subject factor was chosen to simplify the model to allow for an

easier interpretation of a 3-way interaction versus a 4-way inter-

action term that would have been highly unstable. As such, the

MMRM analyses were carried out on change scores for oscillatory

power and behavioural data (post rTMS-pre rTMS). Interaction

effects were further examined with Bonferroni-adjusted pairwise

comparisons (SAS System v.9.1.3; SAS Institute, NC, USA).

MMRM analyses were therefore conducted on the change in WM

performance and oscillatory activity following rTMS as the 4-way

interaction (e.g., group (patients with SCZ versus healthy subjects),

rTMS (active versus sham) and N-back (1- versus 2- versus 3-back))

would have been unstable as directed by our biostatistician.

Subsequent exploratory analyses that were not set out as a priori

hypotheses were carried out using repeated measures ANOVAs.

Results

Baseline N-Back Performance
A repeated measures ANOVA on N-back performance pre

rTMS found a significant main effect of N-back (F(2,78) = 52.29;

p = 0.0001) such that performance decreased with increased WM

load across subjects. A significant group effect was also revealed

(F(1,39) = 6.87; p = 0.012) reflecting poorer N-back performance in

patients with SCZ compared to healthy subjects. The interaction

was not significant. A repeated measures ANOVA on response

time pre rTMS also revealed a significant main effect of N-back

(F(2,84) = 29.45; p = 0.0001) indicative of increased response time

with increased WM load. The group and interaction were not

significant.

Baseline Evoked c Power
Prior to rTMS, a repeated measures ANOVA on evoked c

power revealed a significant main effect of N-back (F(2,80) = 4.21;

p = 0.018) reflecting the increase in c power from 1- to 2-back

(t = 22.61, df = 43, p = 0.012) with a subsequent decrease in c
power from the 2- to 3-back (t = 2.37, df = 42, p = 0.022) found

through paired t-tests. The N-back6group interaction was also

found significant (F(2,80) = 10.38; p = 0.018) whereby an indepen-

dent t-test revealed reduced c power in the 3-back condition

(t = 24.68, df = 1,40, p = 0.004). To examine if this effect was due

to a difference in performance, first an independent t-test was

conducted on 1-back performance of SCZ patients compared to

healthy subjects’ 3-back performance and found no difference

(t = 21.23, df = 42, p = 0.226) followed by an independent t-test on c
power which found that patients still generated significantly greater

activity (t = 23.70, df = 43, p = 0.001) at equivalent performance

levels. Finally, the group effect was significant (F(1,40) = 9.15;

p = 0.004) reflective of significantly greater c power generated by

the SCZ group compared to the healthy subject group.

EEG Spectral Analysis of Other Frequency Bands
Four separate repeated measures ANOVA conducted on the d,

h, a, and b frequency bands revealed a group effect in b power

(F(1,38) = 11.68; p = 0.002) such that SCZ patients generated sig-

nificantly reduced b activity compared to healthy subjects.

Change in N-Back Behavioural Performance
N-back performance accuracy was significantly worse in

patients with SCZ compared to healthy subjects pre and post

rTMS; however, there were no significant improvements in N-

back performance accuracy following either active or sham rTMS

stimulation in either subject group found through the MMRM

analysis (Table 3). Similarly, the MMRM analysis found no effect

of rTMS on response time in either subject group (Table 3).

Change in Evoked c Power
The MMRM analysis on the change in mean c power (post

rTMS c power-pre rTMS c power) found a significant Group

difference between patients with SCZ and healthy subjects

(F(1,42) = 18.23; p = 0.0001). Further, significant Group6rTMS

(F(1,42) = 10.37; p = 0.0025) and Group6N-back condition (F(2,42)

= 6.41; p = 0.0037) interaction effects were found. The Group6
rTMS6N-back interaction was also significant (F(2,42) = 3.75; p =

0.0317; Figure 3A) indicating that the effects of Group and rTMS

differed across WM load. A series of 15 Bonferroni-adjusted

pairwise comparisons were then performed to better understand

this 3-way interaction. Active stimulation was found to reduce c
power in patients with SCZ, while potentiating c power in healthy

subjects. Moreover, this effect of active stimulation on c power

differed significantly in patients with SCZ compared to healthy

subjects in the 3-back condition (p,0.0001), while trending

differences were observed in the 1- (p = 0.0750) and 2-back

(p = 0.0795) conditions. To explore whether the effects of rTMS in

the 3-back condition were specific to the frontal brain region, we

compared mean c power from the frontal versus parieto-occipital

brain region (electrodes: OZ, O1, O2, PO3, and PO4). A repeated

measures ANOVA was conducted with Group, Time, and rTMS

as between subject factors and brain region as a within subject

factor (SPSS 15.0, SPSS Inc. Chicago, Illinois, USA) and a

significant Time6Region6Subject6rTMS (F(1, 35) = 9.072; p =

0.005; Figure 3B) interaction was revealed. Pairwise comparisons

found no differences in the parieto-occipital brain region in both

subject groups following both active and sham stimulation. The

effects of active rTMS on c oscillatory activity therefore were

specific to the frontal brain region in the 3-back condition. These

results suggest that active rTMS over the DLPFC reduced frontal

c power in patients with SCZ, while potentiating this activity in

healthy subjects that was most pronounced in the 3-back condition

with the greatest difficulty.

Change in EEG Spectral Analysis of Other Frequency
Bands

Although c oscillatory activity is most closely associated with

higher order cognitive tasks, we explored the effect of rTMS on

rTMS and Gamma Oscillations in Schizophrenia
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the mean change in oscillatory activities (post rTMS power-pre

rTMS power) in the other frequency bands (d, h, a, and b) with

four separate MMRM analyses. Although we observed a

significant effect of Group on the change in mean oscillatory

power in the h, a, and b frequency bands, no significant Group

6rTMS interactions were observed (Figure 4). However, there was

a significant Group6rTMS6N-back interaction found in the d
frequency band such that active rTMS reduced activity in patients

with SCZ in the 3-back condition compared to sham stimulation

(p = 0.0048; Figure 4). To examine if the reduction in d power was

related to the reduction in c power, a Pearson correlation

coefficient was conducted and found significant positive relation-

ships in the 1-back (r = 0.745; p = 0.008) and 3-back (r = 0.779;

p = 0.008). No differences were found in healthy subjects in d
activation following rTMS administration.

Effect of Antipsychotic Medication
A Pearson correlation coefficient was performed to determine if

the changes in c and d oscillatory activity in the 3-back were

related to antipsychotic medication using chloropromazine equi-

valents (CPZ; [41]) in the SCZ patient group. No relationships

were found between c or d oscillatory activities and CPZ equi-

valents in the 3-back pre or post rTMS administration.

Discussion

Consistent with our previous report [3], patients with SCZ

elicited excessive frontal c and reduced frontal b oscillatory activity

compared to healthy subjects prior to rTMS. Following rTMS,

excessive frontal c oscillatory activity in SCZ patients was

significantly reduced following bilateral rTMS to DLPFC. By

contrast, rTMS significantly potentiated c oscillatory activity in

healthy subjects. These effects were most pronounced in the 3-

back and were specific to the frontal cortical regions. rTMS also

reduced d activity in patients only. These results suggest that

rTMS to DLPFC reduces excessive frontal c oscillatory activity

during the N-back in SCZ patients an effect that was opposite to

that observed in healthy subjects.

The opposing effect of rTMS on c oscillatory activity in patients

and healthy subjects may be related to differential changes in

GABAergic activity. For example, Daskalakis et al. (2006)

demonstrated that 20 Hz rTMS applied to the motor cortex in

healthy subjects had different effects depending on level of baseline

GABAergic inhibitory neurotransmission. That is, rTMS poten-

tiated short interval cortical inhibition (SICI), a neurophysiological

paradigm that is related to GABAA receptor inhibition [42], in

subjects with relatively low baseline SICI and suppressed SICI in

subjects with relatively high baseline activity [21] suggesting that

rTMS can produce variable effects on GABAA receptor mediated

inhibition depending on baseline levels. As GABAA inhibitory post

synaptic potentials are involved in generation of c oscillations

[12,13,14] such findings can be used to explain the variable effects

of rTMS on c oscillatory activity in SCZ patients and healthy

subjects. That is, rTMS inhibited c oscillatory activity in SCZ

patients with relatively greater c activity at baseline, while

potentiating activity in healthy subjects with relatively lower c
activity at baseline. Such effects may also be related to homeostatic

plasticity, a brain mechanism that maintains neuronal activity

within a useful physiological range and is critical to neuronal

stability [43]. There is considerable evidence for the role of

GABAA receptor activity in the regulation of homeostatic plasticity

[44,45,46,47,48] by modulating the number of post-synaptic

GABAA receptors that are activated to increase or decrease

inhibitory neurotransmission [46,49,50,51]. Regulation of GABAA

receptors in homeostatic plasticity have also been shown to be

involved in the synchronization of neuronal activity [52,53,54,55].

The opposing effect of rTMS on c oscillatory activity in the

current study, therefore, may reflect differential regulation of

inhibitory activity through efficacy of GABAA receptors important

in homeostatic plasticity and generation of c oscillations.

Alternatively, the effect of rTMS on c oscillatory activity may

reflect the regulation of cortical excitability to maintain homeo-

static plasticity as GABA neurons are dependent on excitatory

drive in generation of c oscillations [12,14,56,57,58]. In this

regard, the main source of neuronal excitation is through release

of glutamate which typically activates N-methyl-D-asparate

Table 3. Working memory (WM) behavioural performance (%) and reaction time (RT; msec) during the N-back in healthy subjects
(HS) versus patients with schizophrenia (SCZ) pre-post either active or sham rTMS (6) 1 standard deviation pre-post rTMS.

Behavioural Condition HS SCZ

Pre Post Pre Post

Active Sham Active Sham Active Sham Active Sham

Score (%) 1-Back 83.19 92.12 83.58 94.01 79.05 77.33 76.22 69.42

(±) SD 11.61 2.26 7.80 3.15 15.16 18.31 21.07 29.75

2-Back 74.18 88.03 72.49 89.93 66.25 72.46 62.95 79.61

(±) SD 16.29 13.57 13.32 6.87 11.58 22.99 24.11 16.72

3-Back 66.86 77.41 60.85 62.65 48.38 59.99 48.55 57.46

(±) SD 11.58 15.39 3.12 3.71 16.08 20.84 15.40 15.97

RT (msec) 1-Back 793.56 720.78 756.73 706.81 945.02 754.36 874.35 796.48

(±) SD 147.18 99.26 90.68 134.15 276.11 192.41 277.71 192.70

2-Back 924.42 891.49 861.96 861.11 1130.73 865.01 1012.17 902.22

(±) SD 257.44 272.74 204.21 216.49 434.34 245.49 340.66 288.48

3-Back 990.42 970.08 956.42 865.53 1114.51 938.66 937.35 929.60

(±) SD 317.13 247.70 257.75 203.11 277.71 236.39 322.09 252.02

doi:10.1371/journal.pone.0022627.t003
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(NMDA) and non-NMDA receptors in the post-synaptic mem-

brane [59]. The duration of non-NMDA excitatory post synaptic

potentials (EPSPs) are optimal for fast signaling and coincidence

detection. As such, non-NMDA EPSPs are important in the

precise control of spike timing needed in the synchronization of

cortical oscillations. The generation of oscillatory activity, there-

fore, may not only depend on GABA mediated inhibition but also

on the recruitment of interneuron firing by glutamate excitation

[59]. Homeostatic plasticity has been shown through the alteration

of cortical excitability with transcranial direct current stimulation

(tDCS) and rTMS administered to the motor cortex in healthy

subjects [60]. Siebner et al. (2004) demonstrated that, cathodal

tDCS reduced corticospinal excitability followed by 1 Hz rTMS

that resulted in a sustained increase in corticospinal excitability. By

contrast, increased corticospinal excitability by anodal tDCS was

subsequently reduced with 1 Hz rTMS. Those subjects with the

greatest changes induced by tDCS priming also exhibited the

greatest change in corticospinal excitability following rTMS [60].

Siebner et al. (2004) therefore demonstrate that rTMS can

produce variable effects on cortical excitability depending on base-

line activity level. Given the importance of excitatory drive on c
oscillations, the homeostatic regulation of cortical excitability

through rTMS may also have produced our finding of opposing

effects on c oscillatory in patients versus healthy subjects.

As previously shown, rTMS had no effect on the d, h, a, and b
frequency bands in healthy subjects [3], that included an overlap

of 82% of the subjects tested in the current study. In SCZ patients,

however, rTMS reduced d oscillatory activity in the 3-back

compared to sham stimulation. This finding is consistent with a

previous rTMS study in patients with SCZ with predominant

Figure 3. Mean log transformed gamma oscillatory power (c; 30–50 Hz; uV2) for target correct (TC) and non-target correct (NTC)
responses during the N-back task pre-post rTMS in healthy subjects (HS; N = 22) versus patients with schizophrenia (SCZ; N = 24)
(A). Mean log transformed c oscillatory power (uV2) for target correct (TC) and non-target correct (NTC) responses during the 3-back condition
measured from the frontal and parieto-occipitalbrain regions pre-post rTMS in patients with schizophrenia (SCZ; N = 24) and healthy subjects (HS;
N = 22) (B). Bars represent (6) 1 standard deviation.
doi:10.1371/journal.pone.0022627.g003
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negative symptoms [61]. For example, Jandl et al. (2005), reported

a reduction in negative symptoms and d oscillatory activity when

rTMS was applied at 10 Hz to the left DLPFC for 5 days a [61].

Furthermore, it is possible that the reduction of d activity following

rTMS in SCZ patients observed in the current study was related to

reduction of c oscillatory activity reflecting the non-random

relationships between oscillatory frequencies [62]. That is, cross-

frequency interactions or ‘‘nesting’’ is observed when the power of

a discrete frequency band is modified by the phase of a lower

frequency band that coexists during information processing [62].

In this regard, hierarchies of nested rhythms have been observed

in the neocortex [63] between d, h, and c oscillatory activities.

These findings suggest that c oscillations are nested within d
oscillations that may explain the concomitant reduction in both

activities following rTMS.

The current study contributes to the considerable evidence

associating abnormal prefrontal functioning with WM impairment

in patients with SCZ. However, the nature of prefrontal dys-

function remains controversial. That is, previous studies have

reported similar [34], reduced [6,64] and increased [2,5] c
oscillatory activity in patients with SCZ compared to healthy

subjects while performing WM tasks. Similar divergent findings

have also been reported in fMRI studies that may be accounted for

the sensory domain of the WM tested. In this regard, Brahmbhatt

et al. (2006) tested patients with SCZ and their first degree relatives

and reported hyperactivity of the prefrontal cortex during verbal

WM while hypoactivation was observed when this task was

administered in the visual domain [65]. Alternatively, differences

in the activation of the prefrontal cortex may result from dif-

ferences in the performance levels of patients with SCZ. For

example, Callicott et al. (2003) observed both hyper- and hypo-

activation of the prefrontal cortex during the N-back task in

patients with SCZ compared to healthy subjects [66]. However,

when patients were compared in terms of performance, it was

found that low performers generated low activity while high

performers generated relatively higher activity. Furthermore,

when high performing patients were compared to high performing

healthy subjects, hyperactivation of the prefrontal cortex was

observed. Callicott et al. (2003) therefore demonstrate that at

equivalent performance levels, patients with SCZ show hyper-

activation of the prefrontal cortex that is consistent with our

previous study [5] and prior to rTMS in the current study. The

nature of prefrontal abnormalities underlying WM impairments

continues to be debated. Moreover, factors such as performance

levels, sensory domain, experimental paradigms, antipsychotic

medication and the heterogeneity in the DLPFC warrants further

examination vis à vis measuring c oscillatory activity during WM

in patients with SCZ.

Limitations
This study is limited in some important ways. First, although

rTMS decreased excessive c oscillatory activity in SCZ patients

and potentiated activity in healthy subjects, this change was not

related to improved WM performance and may suggest that the

relationship between c oscillatory and WM performance may be

epiphenomenal. Previous studies, however, have shown that

rTMS induced cognitive changes are either delayed or optimal

at some later time point [67,68] and that repeated rTMS sessions

may be needed to produce changes in gene expression and synapse

formation associated with changes in short-term plasticity and

cognition [69]. Nevertheless, this study provides early and

interesting neurophysiological evidence for the modulating effect

of rTMS on c oscillatory activity, a finding that warrants further

investigation as a potential therapeutic mechanism which under-

lies WM impairments in SCZ. Second, the relatively small sample

size tested may be insufficient to detect an improvement in

performance on the N-back following rTMS. Replication studies

may consider using a larger sample size to examine this relation-

ship. However, the fact that rTMS altered c oscillatory activity

compared to sham, suggests that the change in c was not related to

the small sample size. Nevertheless, such findings should be repli-

cated in a larger sample to minimize Type II error and stabilize

statistical parameter estimates [70]. Third, our finding of reduced

c oscillatory activity following rTMS may be related to the effect of

anti-psychotic medication. In this regard, Hong et al. (2004)

reported enhanced 40 Hz oscillations in SCZ patients that were

treated with second generation compared those taking conven-

tional antipsychotics [71]. In this study, oscillations were parsed

into 20, 30 and 40 Hz; however, 30–50 Hz range is most

conventionally examined during cognitive tasks [72]. Similarly, a

differential effect of antipsychotic medication on cognitive per-

formance has also been reported with SCZ patients on second

generation performing better than those patients on conventional

antipsychotics on a variety of cognitive tests, including WM

[73,74,75]. In our sample, only 4 subjects were on conventional

antipsychotics and these subjects happened to be randomly

assigned to the sham group. Nevertheless, there were no dif-

ferences found in c oscillatory activity or in WM performance pre

or post sham rTMS in those patients on conventional versus

second generation antipsychotics. We were unable therefore to

evaluate the effect of rTMS on c oscillatory activity in SCZ

patients on conventional versus second generation antipsychotics.

This study did not include measures of neurotransmitter activity or

dynamics pre or post rTMS and represents a final limitation to this

study. For example, indices of GABAergic activity have been

shown to be measured reliably through combined TMS-EEG

techniques from both motor and the DLPFC in healthy subjects

and patients with bipolar and SCZ [76,77,78] that may provide a

greater understanding of the mechanism through which rTMS

exerted the effects observed in this study. In addition, combined

rTMS-PET can be used to detect changes in the level of

extracellular dopamine [79] which could provide a better under-

standing of the action of rTMS on oscillatory activity. Future

studies measuring indices of neurotransmitter action and dynamics

through TMS-EEG or PET pre- and post-rTMS could provide a

better understanding of how rTMS exerts its action on oscillatory

activity in patients with SCZ.

Summary
In summary, we demonstrated that rTMS over DLPFC alters

frontal c oscillatory activity, with the greatest effect at higher WM

loads. In patients, rTMS reduced excessive c oscillatory activity

across WM load. In contrast, rTMS potentiated c oscillatory

activity in healthy subjects. The differential effect of rTMS on c
oscillatory activity may be related to the concept of homeostatic

plasticity involving the regulation of GABAergic inhibitory mecha-

nisms that maintain neuronal excitability within a useful phy-

siological range. These findings provide important insights into the

Figure 4. Mean log transformed oscillatory power (uV2) for target correct (TC) and non-target correct (NTC) responses during the N-
back task pre-post rTMS in healthy subjects (HS; N = 22) versus patients with schizophrenia (SCZ; N = 24) across delta (d; 1–3.5 Hz),
theta (h; 4–7 Hz), alpha (a; 8–12 Hz), and beta (b; 12.5–28 Hz) frequency ranges. Bars represent (6) 1 standard deviation.
doi:10.1371/journal.pone.0022627.g004
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neurophysiological mechanisms that may lead to cognitive

potentiation in this disorder.
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