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Abstract
Research suggests variability supports successful categorization, however, the scope of
variability’s support at the level of higher-order generalization remains unexplored. A longitudinal
study examined the role of exemplar variability in first- and second-order generalization in the
context of early nominal-category learning. Sixteen eighteen-month-old children were taught
twelve categories. Half were taught with sets of highly similar exemplars; half with sets of more
variable exemplars. Participants’ learning and generalization of trained labels and their
development of more general word-learning biases were tested. All children learned labels for
trained exemplars, but children trained with variable exemplars generalized to novel exemplars of
these categories, developed a discriminating word-learning bias generalizing labels of novel solid
objects by shape and nonsolids by material, and accelerated in vocabulary acquisition. These data
demonstrate that variability leads to better abstraction of individual and global category
organization, increasing learning outside the laboratory.

Philosophers, poets, and playwrights have long proclaimed the role of variability in giving
life meaning, from Euripides’ (408 BCE) “The variety of all things forms a pleasure,” to
Cowper’s (1785) “Variety’s the very spice of life that gives it all its flavor.” Empirical
evidence similarly suggests that variability enhances the quality of learning and plays a
critical role in generalization (e.g., Estes & Burke, 1953; Munsinger & Kessen, 1966). The
idea that variability helps learners form a category abstraction leading to more successful
generalization has roots in seminal work by Posner and Keele (1968) and is related to
classical accounts of categorization (see Murphy, 2002)1. Further, variability has a pervasive
role: helping non-native speakers learn new perceptual categories (Lively, Logan, & Pisoni,
1993), and being critical in same/different discrimination in humans and animals (Castro,
Young, & Wasserman, 2007).

Perhaps nowhere is the role of variability in learning more evident than in early
development, leading some to propose that variability is the driving force of development
(Siegler, 1996). This is supported by work showing variability plays an essential role in
domains ranging from motor development (Thelen, Corbetta, Kamm, Spencer, Schneider, &
Zernicke, 1993) to problem solving (Siegler, 2007) to studies probing children’s ability to
learn grammatical features of natural and artificial languages (Gomez, 2002; Hudson Kam &
Newport, 2005). Further, infant research demonstrates that the amount of variability present

1We note that while variability often overlaps with typicality, typicality emerges out of experience with a learned category and its
members. Thus, in an examination of novel category learning, exemplar-typicality should depend on presentation frequency—if a
child sees all exemplars equally often, as is the case in our experiment, they should be equally typical. For these reasons, we make no
claims about separating these dimensions here but discuss our work in terms of variability as is common in developmental literature.
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in a learned category impacts breadth of generalization. For example, Oakes Coppage, &
Dingel (1997) found that familiarizing infants with highly similar exemplars led to a strict
basis for category organization. Likewise, work by Gentner and colleagues suggests that
similarity promotes comparison, leading to more accurate generalization of part names
(Gentner, Loewenstein, & Hung, 2007). On the other hand, using variable exemplars leads
children to extend both novel verbs (Childers & Paik, 2009) and spatial mappings
(Loewenstein & Gentner, 2001) farther.

Clearly, variability plays a central role in development. However, prior work has focused on
generalization to novel instances of the trained learning set. Less understood is how
variability at one level of cognitive organization impacts learning and generalization at other
levels. This is a central issue in development where multiple cognitive abilities are emerging
in parallel. Thus, in the present study, we examined whether the amount of variability
present in a learned category impacts, not only the breadth of generalization for the trained
set, but how children learn about object categories in general. We examined this issue in the
context of children’s acquisition of object names.

At the local level of individual nominal categories, it is clear that variability among learning
exemplars could influence learning. To learn the nominal category chair, for example, a
child must come to understand that the word “chair” refers not just to one item, but applies
across all examples of chairs she has experienced. This seems difficult when one considers
the variety of chairs a child might encounter. One might think it easier to learn the category
chair from a set of similar instances that clearly shared commonalities central to the
category. In fact, research has demonstrated that adults learning similar instances of novel
categories are faster than those learning diverse instances (Hahn, Bailey, & Elvin, 2005;
Posner, Goldsmith, & Welton, 1967). On the other hand, more variation across exemplars
has been shown to lead to better abstraction of the invariant features of the category (Zentall,
Wasserman, Lazareva, Thompson, & Rattermann, 2008; Posner & Keele, 1968). Thus,
learning the category chair by seeing a number of variable instances named “chair” might
promote generalization of the newly-acquired nominal category to new instances (see also
Smith, 2005).

At a higher level of abstraction, recent theoretical proposals suggest a means by which
variability at the level of individual nominal categories may influence second-order
generalizations. In particular, Smith and colleagues proposed that children’s acquisition of a
bias to attend to shape when learning novel object names—a second-order generalization—
is the developmental product of prior learning of individual nominal categories (Samuelson,
2002; Smith, Jones, Landau, Gershkoff-Stowe & Samuelson, 2002). More specifically,
Smith and colleagues (2002) proposed a four-step process to describe how the shape bias is
acquired from the child’s productive vocabulary. The fact that many early nouns children
learn name solid objects in categories well-organized by similarity in shape (Samuelson &
Smith, 1999) helps children get from learning words for individual instances (step 1) and
individual categories (step 2) to acquiring a bias to attend to shape when learning novel
names (step 3). This bias, then, helps children acquire new words more quickly (step 4).

Support for the four-step process comes from studies of the statistics of the early vocabulary
(Gershkoff-Stowe & Smith, 2004; Samuelson & Smith, 1999), cross-linguistic studies
showing that the biases learned depend on the language being learned (Smith, Colunga, &
Yoshida, 2003; Yoshida & Smith, 2003), data suggesting atypical learners do not develop
the same word-learning biases as typically developing children (Jones & Smith, 2005), and
connectionist models of the learning process (Samuelson, 2002; Colunga & Smith, 2005).
Further support comes from a series of longitudinal training studies (Smith et al., 2002;
Samuelson, 2002) showing that teaching children names of multiple categories organized by
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shape similarity helps them develop a precocious shape bias and acquire vocabulary outside
the lab more quickly than those not given such training. Results from these training studies
suggest between-category similarity—the fact that many earlyacquired nominal categories
are organized by similarity in shape—is important for children’s higher-order
generalizations such as the shape bias. Left unexplained, however, is how factors impacting
learning of individual categories—such as exemplar variability—influence the extraction of
a higher-order generalization.

A starting point for examining this issue comes from Samuelson’s (2002) prior finding that
children taught names for many categories well-organized by shape similarity
overgeneralized the shape bias to nonsolid stimuli. Rather than teaching children that shape
is particularly critical for categories of solid things, training children with names for similar
categories may have taught them to attend to shape indiscriminately. The fact that variability
promotes extraction of the invariant features of a category (e.g. Posner & Keele, 1968) may
mean category training with more variable instances will help children learn both when to
attend to shape, and when not to; thereby promoting appropriate generalization at the global
level.

The goal of the current study, therefore, is to examine the role of exemplar variability on
each step of the four-step process of shape bias development; that is, to examine how
learning at the local level of individual categories influences global learning about what to
attend to in the context of a novel noun. More specifically, we ask how training children
with sets of highly similar category exemplars versus more variable exemplars, affects their
learning of names for individual exemplars (step 1), generalization to novel within-category
exemplars (step 2), generalization of novel names for novel stimuli (step 3), and acquisition
of new words outside the laboratory (step 4). In this way, then, we examine whether
variability at the local level has consequences for the entire developmental cascade that
underlies early nominal category learning and generalization.

Experiment
We taught children the names of 12 categories of common solid objects not usually learned
until after 26 months (Dale & Fenson, 1993) (see Table 1). The categories were ones adults
judged to be well-organized by similarity in shape (Samuelson & Smith, 1999). Category
exemplars used in training were either highly similar (tight condition) or more variable
(variable condition). We then tested children’s learning of exemplar names, generalization to
new instances, novel noun generalization (NNG), and overall vocabulary acquisition.

Method
Participants—Sixteen typically developing English-learning children (M= 18mos., range:
15-21mos., 10 females) participated in one of two between-subjects conditions. Children
were matched across conditions based on their productive noun vocabularies at week one
(tight: M=17.25, range: 3-37; variable: M=17.75, range: 4-37; t(14)=.19, ns). Children were
recruited via birth records and received a toy for participation after each session.

Stimuli—Twelve sets of objects, each made up of 10 exemplars, were used in training and
testing (see Table 1). Within-category similarity of exemplars was determined by adult
judgments using a placement method with the actual objects (Perry, Cook & Samuelson,
2010; see also, Goldstone, 1994). Adults judged similarity by arranging the objects on a
table such that more similar objects were closer together and more dissimilar objects were
farther apart. A multi-dimensional scaling solution was created for each category using the
average pairwise distances. Using these solutions, the three most similar exemplars of each
category were used for training in the tight condition, and the most dissimilar were used in
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the variable condition (see Figure 1). The remaining four exemplars in each set were used in
tests of generalization.

Novel noun generalization was tested with five sets of solid stimuli and five sets of nonsolid
stimuli. Each set consisted of an exemplar, two items matching the exemplar in shape only,
and two items matching the exemplar in material only (see Figure 2). Additionally, two of a
possible twenty sets of common familiar objects were used as warm up stimuli at each
session. Each set consisted of two identical items (e.g. purple plastic eggs) and one
completely different item (e.g. a red wooden block).

Procedure—We used the same training procedure as prior longitudinal studies of this kind
(e.g. Samuelson, 2002). Children came to the lab for 9 weekly visits and a 1-month follow
up. Using naturalistic play, they were taught 12 object names. Training was broken into
three three-week blocks with four training words. The order of training words was
randomized across participants. We periodically tested individual exemplar learning with
our learning test and individual category learning with our extension and exclusivity tests
(see below). We also periodically tested novel noun generalization (NNG). Noun vocabulary
development was measured by parent-report on a subsection of the MacArthur-Bates
Communicative Development Inventory, Words and Sentences (Fenson et al., 1994). Table
2 presents a breakdown of training and test sessions over the course of the study.

Step 1: Learning: The learning test examined acquisition of names for training exemplars.
Children were presented with one exemplar previously used to teach a target word, a second
item previously used to teach one of the other trained words, and asked to get the target
item.

Step 2: Firstorder generalization: We examined generalization of trained labels to novel
exemplars in two ways. In the extension test, children were presented with an exemplar
belonging to a trained target category and a second item belonging to another trained
category, neither of which were used in training. In the exclusivity test, children were
presented with an exemplar from a trained category that had not been used in training, and a
second item from a highly similar, but untrained category (e.g, for the trained category
“bucket,” the foil category was “box”). In both tests children were asked to get the target
item.

Step 3: Higherorder generalization: The NNG task examined development of children’s
attention to shape when generalizing novel nouns for both solid and nonsolid exemplars.
Children were presented with a novel solid or nonsolid exemplar object that was given a
novel name (e.g. “This is a wug”). Then two novel test objects, one matching the exemplar
in shape only and another in material only, were presented and the child was asked to “Get
the wug!” The order of solid and nonsolid sets was counterbalanced across participants.

Coding & Analysis—Children’s choices were coded off-line. One-third of all data were
re-coded for reliability purposes. Inter-coder reliability was 95%. Learning, extension, and
exclusivity test results are reported as proportion correct. NNG test results are reported as
proportion shape responding.

We examined the effects of condition and links between the four steps using mixed logistic
regression for forced-choice tasks and mixed linear regression for rate of vocabulary
acceleration. We took this approach because recent arguments suggest ANOVA’s on
categorical outcome variables such as ours are inappropriate (see Jaeger, 2008).
Additionally, these models enable control for individual differences in children’s vocabulary
and prior experiences with the potentially familiar stimuli via the inclusion of random
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subject and item effects. We report one model per step including condition and performance
in the previous step as predictors of performance in the current step. We removed
collinearity from the models by sum-coding data and scaling continuous variables. We
began with a completely specified random effects structure including random slopes for all
variables included in a given model. Using model comparison we systematically removed
uninformative random effects to find an appropriate model (c.f.
http://hlplab.wordpress.com/2009/05/14/random-effect-structure/). All final models included
random intercepts for subject and items, unless otherwise specified.

Results and Discussion
Steps 1 & 2: Learning and Firstorder generalizations—Children in both conditions
learned labels of trained exemplars at levels significantly better than chance (.50), tight:
M= .63; t(7)=7.49, p<.0001, d=2.5; variable: M= .67; t(7)=4.13, p<.005, d=1.42. A logit
model including the interaction between vocabulary size and condition as predictors found
only vocabulary size predicted learning, z= 2.59 p<.01. Children in both conditions learned
names of trained exemplars equally well, but those with higher vocabularies learned best
(see Figure 3).

Next we asked how variability influenced generalization to new instances. Because both our
extension and exclusion tests are measures of this second step in the four-step process, we
created a combined generalization score for each child such that higher values indicated
extension of the name to novel category members and appropriate exclusion of non-
members. A logit model revealed a significant interaction between condition and learning,
z=−2.01, p<.05, such that children in the variable condition who previously showed more
learning had higher generalization scores. Thus, it was not just successful learning of trained
categories, but rather successful learning of categories in the variable condition that led to
the most accurate generalization to novel exemplars (see Figure 3).

To summarize, although children in both conditions evidenced learning of trained
exemplars’ names, children in the variable condition who learned these names best were
more likely to generalize names to novel category instances and exclude members of other
similar categories. This suggests that more variable instances lead to better generalization at
the local level.

Step 3: Higherorder generalizations—Neither group evidenced a shape bias at the
start of the study, solids—tight: M= .54, t(7)=.36, ns; variable: M= .56, t(7)=.51, ns;
nonsolids—tight: M= .44, t(7)=.55, ns; variable: M=.56, t(7)=.51, ns. However, those in the
variable condition were more likely to develop a discriminating shape bias by the end,
attending to shape with solid stimuli and material with nonsolid stimuli. A mixed logit
model including random slopes for condition for both subjects and items, in addition to the
random intercepts, showed that individual children’s combined generalization score did not
predict whether they demonstrated a shape bias in the NNG test with solid stimuli, z=.03, ns.
However, the interaction between condition and combined generalization did negatively
predict shape responding with nonsolid stimuli, z=−1.97, p<.05. That is, in the variable
condition children with higher combined generalization scores were more likely to
generalize by material while those in the tight condition were significantly more likely to
generalize novel nouns for nonsolid things by shape, thus evidencing an overgeneralized
shape bias (see Figure 3).

Thus, the more successful a child was at generalizing trained labels to novel exemplars but
not other similar things—which requires knowing when a feature indicates something is a
member of a category and when it does not—the more likely she was to form a
discriminating shape bias, learning when to generalize by shape and when not to. And recall,
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it was children in the variable condition who were more discriminating in their
generalizations of learned labels to novel instances. Thus, training with variable categories
supported more precise second-order generalizations.

Step 4: Vocabulary growth—As can be seen in Figure 4, during the first 3 weeks,
children in both conditions learned new words outside the lab at roughly the same rate, tight:
3.63 words per week; variable: 4.44 words per week, F(1, 14)=.09, ns. During training,
however, the rate of new word acquisitions began to change markedly such that children in
the variable condition acquired new words at a significantly faster rate than children in the
tight condition between week 9 and the 1-month follow-up visit, tight: 4.03 words per week;
variable: 9.78 words per week, F(1,14)=5.45, p<.04, h2=.28. This rate of change for the tight
group compares to a matched set of participants from the no training condition (4.68 words
per week) of Samuelson’s (2002) training study, while the rate of change for the variable
group is even higher than that of a matched set of participants from the natural statistics
condition (7.64 words per week) of that study.

A mixed linear model of the link between Steps 3 and 4—how individual children’s
performance in the NNG task predicted rate of vocabulary acceleration between the end of
training and the one-month follow-up visit—showed that individuals who had a
discriminating shape bias evidenced greater acceleration in vocabulary development t=5.31,
p<.00022. This suggests that it was the variable group’s abstraction of a precise second-
order generalization that led to their acceleration.

The developmental cascade
Finally, we tested the cascading influence of variability by putting the individual steps in the
four-step sequence together, creating a model including training condition, learning,
combined generalization, and NNG task performance as predictors of vocabulary
acceleration. A mixed linear model using these standardized predictors was significantly
stronger than models that excluded Learning, X2

(1) =53, p<.0001, or Combined
Generalization, X2

(1) =290, p<.0001. Thus, each predictor was necessary to capture
differences in children’s learning and development over time. Critically, in the best model
(according to our model comparison), having a discriminating shape bias (generalizing
novel names for nonsolids by material rather than shape) was the strongest predictor of
acceleration in vocabulary development, t=4.31, p<. 0004.

General Discussion
The current study makes important contributions to our understanding of both the processes
supporting early word learning and the role of variability in category development. By
concretely establishing links between the steps in Smith et al.’s four-step process, we have
shown how variability in individual nominal categories leads to a cascade of effects that
build from the learning of individual words to the development of general word-learning
biases to an acceleration in vocabulary development. These findings complement prior work
on the development of the shape bias demonstrating that the similarity between categories in
the language environment (most early-learned nouns name categories well-organized by
shape similarity) guides children to attend to shape when learning names, and subsequently
helps them learn new names more quickly (Samuelson, 2002; Smith et al., 2002; Colunga &
Smith, 2005). The current data add to this account by demonstrating that children trained
with low within-category variability learned individual exemplars and extracted a general

2Because of the difficulty in determining degrees of freedom in mixed linear models, we conducted MCMC sampling to find p-values
(see Baayen et al., 2008).
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basis for category organization, but over-applied this bias. These children also did not
accelerate in their vocabulary development outside the laboratory. In contrast, children
trained with more variable within-category exemplars were more likely to discriminate in
their application of the shape bias, applying it only to novel solid things. These children did
accelerate in vocabulary development outside the laboratory. In this way, then, we have
shown how individual children’s current developmental state has a cascading influence on
each step in the learning process and then on subsequent vocabulary learning—a finding that
goes beyond the original four-step process and highlights how individual developments
provide the foundation for later learning.

Importantly, this is the first demonstration of the benefits of variability in making both first-
and second-order generalizations. Prior research had focused on the local level and shown
that training with less variable exemplars speeds learning, but training with more variable
instances increases accurate generalization to novel category members. The exciting effect
shown here is that local learning influenced something global—children in the variable
condition not only showed better generalization for learned categories, but also
discriminating second-order generalizations. Thus, we have linked a manipulation of local
learning directly to a global learning effect.

This is an important contribution and a remarkable one because we have demonstrated how
teaching children about individual nominal categories can change the word learning biases
they develop, which in turn, has consequences for their vocabulary development outside the
laboratory. Children in both conditions learned something more than the importance of
particular shapes for particular noun categories. Children in the tight condition learned to
attend to shape when generalizing novel nouns—even nouns that referred to nonsolid things.
However, children in the variable condition learned even more than that—they learned when
not to attend to shape. Thus, variable training seems to have uniquely pushed children to a
more context sensitive shape-bias, something usually not seen until older ages (Jones &
Smith, 1993; Samuelson, Horst, Schutte & Dobbertin, 2008). Although this study does not
reveal the details of the processes by which this occurred, we suggest two complementary
ways in which training at the local level with variable instances may have lead to differences
at the global level of attentional biases and word learning.

One way local variability may have influenced global learning is by moving the focus from
a specific value on a feature dimension to considering a range of acceptable values for
category inclusion. For example, the buckets presented in the tight condition were highly
similar in overall shape; they all were cylindrical with smaller bottoms than tops (see Figure
1). In contrast, the buckets presented in the variable condition varied more in shape: the
trash bucket had a smaller bottom than top, the bottom of the plastic bucket was almost the
same diameter as the top, and the pumpkin was round. This greater variability between
exemplars possibly caused children to focus not on a specific shape, but on an abstract range
of shape—thus highlighting the dimension of shape in general.

A second way variability may have pushed the level of processing to dimensions is by
highlighting what features are not critical for a category. A variable set of category instances
is more likely to differ on non-critical features. Thus, when we labeled a beige paper bucket,
a clear plastic bucket, and an orange cloth pumpkin bucket all “bucket” for children in the
variable condition, we were, effectively, telling them buckets differ in color, material, size,
and whether they have a handle, and thus, that these dimensions are not the ones to attend to
when deciding if something is a bucket. In contrast, the things labeled “bucket” in the tight
condition were all roughly the same size, all had a handle, and they were made of either
plastic or paper. This training eliminated fewer dimensions by presenting fewer contrasts
between stimuli at the level of dimensions.
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These suggestions about how variability pushes attention to dimensions fit with recent data
from Rost and McMurray (2009). They found that speaker variability improved learning of
novel word-object mappings and discrimination between lexical neighbors. They suggested
that slight variability along the relevant dimension (differences in voice onset time) gave
infants better representations of categorical boundaries and helped them attend to a range
along the key dimension rather than a specific instance. Furthermore, variability along
irrelevant dimensions (e.g. pitch and formants) helped draw infants’ attention to the
invariant information. The current data add to these ideas by demonstrating that local
variability has cascading consequences for subsequent development at higher levels of
abstraction.

Clearly, more work is needed to reveal the details of the processes by which variability at
the local level helps children find more global relations. Nevertheless, the current data
suggest that variability adds more than local spice; it can have a direct impact on the
emergence of global cognitive abilities in development.
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Figure 1.
Exemplars used in training and testing for one sample set: the buckets. The Tight training set
for each category contained the three most similar exemplars while the Variable training set
contained the three most dissimilar exemplars. The remaining four exemplars from each
category were used in the Extension and Exclusivity tests, counterbalanced across
participants so that each item appeared in both tests.
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Figure 2.
Example solid and nonsolid stimulus sets used in the Novel Noun Generalization task.
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Figure 3.
Performance for tests of learning, combined generalization (both reported as proportion
correct), and Novel Noun Generalization of nonsolid substances (reported as proportion
material choices). Data are grouped based on the relevant main effect from the regression
models: learning grouped by low and high vocabulary size; combined generalization
grouped by condition and low and high learning performance; and Nonsolid novel noun
generalization grouped by condition and low and high combined generalization performance
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Figure 4.
Changes in noun vocabulary over the course of the study for children in the two training
conditions.
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Table 1

The 12 words and 2 alternate words used in category training for the study.

Words Used in Training

Bead Funnel

Boot Hammer

Bowl Key

Bucket Necklace

Can Toothbrush

Comb Tractor

Ladder
(alternate)

Spoon
(alternate)
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Table 2

Order of training and testing procedures across experimental sessions.

Session Tests

Week 1 NNG, word training

Week 2 Word training, learning, extension

Week 3 NNG, learning, extension, exclusivity

Week 4 Word training

Week 5 Word training, learning, extension

Week 6 NNG, learning, extension, exclusivity

Week 7 Word training

Week 8 Word training, learning, extension

Week 9 NNG, learning, extension, exclusivity

1-month follow-up NNG
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