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Epithelial cells have the ability to regulate paracellular permeability
dynamically in response to extracellular stimuli. With every respira-
tory effort, airway epithelial cells are exposed to both physiologic as
well as pathologic stimuli, and regulation of the epithelial barrier in
response to these stimuli is crucial to respiratory function. We report
that increased membrane septin-2 localization mediates decreases
in paracellular permeability by altering cortical actin arrangement in
human airway epithelial cells. This phenomenon occurs in response
to both physiologic levels of shear stress and a pathologic stimulus,
particularmatter exposure. The resultingchanges in barrier function
in response to septin-2 redistribution have a significant impact on
the ability of the apical ligand, epidermal growth factor, to interact
with its receptor, epidermal growth factor receptor, which is
segregated to the basolateral side in airway epithelial cells. This
suggests that the dynamic regulation of the epithelial barrier
function is essential in regulating signaling responses to extracel-
lular stimuli. These findings indicate that septin-2 plays a funda-
mental role in regulating barrier function by altering cortical actin
expression.
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Airway epithelial cells form an important barrier that protects
the subepithelial tissue from a wide array of noxious substances,
including allergens, viruses, inhaled particles and irritants, and
luminal microbial pathogens. The regulation of this epithelial
barrier depends on a complex of proteins that compose distinct
intercellular junctions, tight junctions, adherens junctions, and
desmosomes, each of which exhibits cell type–specific regula-
tion by various growth factors, agonists, and second messengers
(1). In response to both physiologic and pathologic stimuli in
the lumen, a coordinated epithelial response is necessary to
regulate barrier function appropriately. Common to the regu-
lation of the intercellular junctions is cortical actin. Modulation
of cortical actin alters permeability in multiple cell types, from
intestinal epithelial cell lines (2–4) to pulmonary endothelial
cells (5, 6), and is intimately associated with regulation of the
intercellular junctions (7).

Septin-2 is a member of a highly conserved GTPase family
found in fungi and animals. Septins have been implicated in
diverse cellular processes, including cytokinesis, formation of
diffusion barriers, and vesicle trafficking. In yeast cells, septin-2

is responsible for separating the mother cell contents before
division (8). In humans, 12 septin genes have been found so far,
many of which also undergo alternative splicing to generate
dozens of polypeptides. Septin-2 partially colocalizes with actin
bundles in mammalian interphase, and is required for reorga-
nization of the actin cytoskeleton in migrating or ruffling cells
(9). Just recently, a new role for septin-2 has been identified in
Xenopus oocytes where inhibition of septin-2 with forchlorfe-
nuron (FCF) leads to defective gastrulation, and potential
changes in cell shape (10, 11). It has been identified, in asso-
ciation with the protein, Fritz, to be involved in collective cell
movement and ciliogenesis (10). However, in differentiated mono-
layers that are no longer dividing, the role of septin-2 has not been
elucidated.

We have previously shown that, in response to physiologic
levels of apical shear stress, the paracellular permeability of
airway epithelial cells decreases, reflecting barrier enhance-
ment. This barrier enhancement is associated with reorganiza-
tion of the actin cytoskeleton with increased cortical actin ring
(12). However, the molecular mechanisms mediating this cyto-
skeletal rearrangement are not known. In this study, we show
that, in response to both low levels of shear stress and a path-
ologic stimulus, such as a single dose of particulate matter (PM)
(13), the epithelial barrier is enhanced and septin-2 moves to
the plasma membrane. In response to shear stress, this septin-2
redistribution is associated with increased septin-2–actin in-
teractions and actin rearrangement, which is required to cause
enhancement of the barrier in response to luminal stimuli.

MATERIALS AND METHODS

Materials

Antibody to septin-2 was a gift from Ian Macara (University of Virginia,
Charlottesville, VA). Unless specified, all other reagents were purchased
from Sigma (St. Louis, MO).

Cell Culture

Primary human bronchial epithelial (NHBE) cells (Lonza, Walkersville,
MD) were grown on collagen-coated inserts (Falcon, Franklin Lakes,
NJ) at 378C with 5% CO2 and maintained at an air–liquid interface for
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6–9 weeks before study. The transepithelial resistance was greater than
400 ohms when cells were used. Madin Darby Canine Kidney cells with
and without yellow fluorescent protein septin-2 plasmid (gift of Elias
Spiliotis, Drexel University, Philadelphia, PA) were cultured on inserts
(transepithelial resistance . 240 ohms). Human pulmonary artery
endothelial cells (HPAECs; Lonza) were grown to confluence in gold
microelectrodes containing polycarbonate wells (transendothelial elec-
trical resistance [TER] . 1,000), and TER was measured as previously
described (14).

Cells were harvested and lysed in RIPA buffer (12). In certain
experiments, membrane preparations were performed as previously
described (12). Equal amounts of total protein (10–20 mg) in 1.5%
(wt/vol) SDS were loaded per lane, as previously described (15).

Transfection

Cells were grown in chamber slides to 50–60% confluence and
transiently transfected (1 mg/well) with YFP–septin-2 cDNA using
FuGENE 6 (1.5 ml; Roche, Indianapolis, IN) or a control plasmid,
according to the manufacturer’s recommendations.

Confocal Imaging

Confocal laser microscopy (Leica SP5; Bannockburn, IL) was per-
formed on cells grown on inserts using antibodies against septin-2 or
actin and appropriate secondary antibodies (Alexa 488 or Alexa 555;
Molecular Probes, Carlsbad, CA). Fluorescence resonance energy
transfer (FRET) with acceptor photobleaching (AB) was performed
on fixed samples. The donor fluorescence intensity in a region of
interest before and after AB was compared. Positive FRET occurred if
AB resulted in increased donor fluorescence, as described in the online
supplement.

Immunoprecipitation

The crosslinking and immunoprecipitation (IP) was performed as
previously described (16), where 2 mM Dithiobis[succinimidyl pro-
pionate] in PBS/25 mM Hepes were added to static and shear-exposed
monolayers for 30 minutes at room temperature, after which the
reaction was quenched with 20 mM Tris (pH 7.5) for 15 minutes. Co-
IP of septin-2 and actin was performed, and the samples were analyzed
by immunoblotting.

Lentiviral Transduction

Lentivirus expressing either short hairpin RNA directed against septin-2
or a nontargeting control (Sigma) (107 infectious particles/ml) was used
at the lowest concentration required for protein knockdown. Cells were
incubated with polybrene (8–16 mM) in 1 ml per insert. Apical media
were removed, basal media changed, and cells were used 48–72 hours
later.

Shear Stress

Fluid flow to generate shear levels of 1.5–3.0 dynes/cm2 was applied as
described previously (12). Fluid flow rates of 0.5–1.0 ml/min provide
a shear stress consistent with this magnitude for airway epithelial cells
in vivo.

Permeability Assay

Paracellular permeability of cells was assessed by the passage of 4-kD
FITC-dextran across the monolayer, as previously described (12). The
concentration was measured by fluorometry.

PM

Ambient Baltimore PM was collected using a high-volume cyclone
collector with a cutoff point of 0.3-mm aerodynamic diameter when
operated at a flow rate of 1 m3/min. This has been used to collect
Baltimore PM for studies of air pollution impact on airway hyper-
responsiveness, and the PM has been well characterized, as previously
described (17, 18).

Statistical Analysis

Statistical analysis was performed using STATA 9 (Stata Corporation,
College Station, TX).

RESULTS

Airway Epithelial Barrier Enhancement Is Associated

with Altered Septin-2 Expression

We previously demonstrated that low levels of shear stress lead
to increases in airway epithelial barrier function, using both
in vivo and in vitro models. Although the in vitro models have
used only unidirectional shear stress, we have evidence of
similar findings in vivo using both unidirectional (12) and
bidirectional flow (unpublished data, V.S.). To dissect potential
mechanisms mediating the shear-induced barrier enhancement
that we have described (12), membrane preparations of both
NHBE cells and 16HBE1adenoAQP5 cells under static and
shear conditions were sent to the Johns Hopkins National
Heart, Lung, and Blood Institute Proteomics Center for pro-
cessing. In both of these cell types, we have shown that shear
enhances barrier function. Although both shear and static
conditions altered over 100 proteins, a comparison of the two
conditions revealed only a limited number of proteins that
exhibited consistent changes in membrane fraction abundance,
one of which was septin-2. With enhanced barrier function,
septin-2 increased in the membrane fraction. To confirm that
shear increases in membrane expression of septin-2, immuno-
blotting of membrane fractions (Figure 1A) and immunofluo-
rescence (Figure 1B) of NHBE cells were performed. Both
revealed increased membrane expression of septin-2 in re-
sponse to shear stress. Of note, there was no change in total
septin-2 expression in the cells (Figure 1A), and the increase in
membrane fraction was due to protein redistribution.

Septin-2 Alters Barrier Function in a Confluent Monolayer

To identify a potential role for septin-2 in regulation of barrier
function, we used specific lentiviral shRNA to knock down
endogenous septin-2 expression in MDCK cells (Figure 2A).
Under static conditions, barrier function was not altered by
septin-2 knockdown. In contrast to NHBE cells, shear stress
increased paracellular permeability in MDCK cells (Figure 2B).
To determine if septin-2 affects barrier function in MDCK cells,
we infected MDCK cells with shRNA against septin-2 or con-
trol lentivirus. When septin-2 was knocked down, shear in-
duced an even greater increase in paracellular permeability
(Figure 2B). To test if overexpression of septin-2 enhanced
barrier function, MDCK cells were transiently transfected with
YFP–septin-2 (z40% transfection efficiency). After transient
transfection, the majority of YFP–septin-2 was present on the
membrane (Figure 2C, right). Cells expressing YFP–septin-2
had decreased paracellular permeability compared with cells
transfected with a control plasmid (Figure 2C, left).

To assess if changes in septin-2 expression altered airway
epithelial barrier function, NHBE cells were transduced with
septin-2 shRNA or a nontargeting shRNA (Figure 3A). Under
static conditions, expression of septin-2 shRNA or the non-
targeting shRNA had no effect on barrier function. However,
after exposure to shear stress, NHBE cells with septin-2 knock-
down no longer exhibited shear-induced barrier enhancement;
rather, paracellular permeability was significantly increased
(Figure 3B).

To determine if septin-2 regulation of epithelial barrier
function was epithelial cell specific, we assessed the effect of
septin-2 on pulmonary endothelial barrier function. The role of
cytoskeletal organization in pulmonary endothelial barrier
function has been investigated extensively (14, 19–33). We mea-
sured TER as a reflection of endothelial monolayer permeabil-
ity in control HPAECs compared with HPAECs treated with
FCF (50 mm), which alters septin-2 assembly and organization
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in vitro by stabilizing septin filaments (34). Treatment with FCF
increased paracellular permeability of both MDCK and NHBE
cells under shear stress (Figures 4A and 4B), similar to the ef-
fects of septin-2 knockdown on barrier function. Treatment with
the septin-2 inhibitor, FCF, caused endothelial barrier dysfunc-
tion (Figure 4C).

Septin-2 Directly Binds to Actin and Mediates Cortical

Actin Reorganization

Reduced paracellular permeability can result from cytoskeletal
reorganization, and septin-2 expression is involved in actin
rearrangements (9). We have shown that shear stress leads to
actin rearrangement, contributing to the shear-induced barrier
enhancement seen in NHBE cells (12). To determine if direct
protein binding was responsible for the increased cortical actin
observed in response to shear stress, we assessed for interaction
between actin and septin-2. IP of actin under shear conditions
also pulled down more septin-2 than observed in static condi-
tions (Figure 5A). Similarly, IP of septin-2 pulled down more
actin in shear than in static conditions (Figure 5A). To confirm
protein–protein interaction further, we performed FRET AB in
fixed static and shear samples probed for actin (Alexa488) and
septin-2 (Alexa 555) to determine if the two proteins were
spatially located close to one another under either condition.
Excitation of one fluorophore results in excitation in the other,
as long as the two fluorophores are in nanometer distance of
each other, suggesting protein–protein interaction. In both
static and shear conditions, the immunofluorescence of actin
depicted corresponds specifically to the area that received
photobleaching. Under static conditions after photobleaching,
there was no increase in donor intensity (Figure 5B, left).
However, after shear stress, AB resulted in increased donor
intensity (Figure 5B, right). FRET maps were generated to
visualize the interaction, with orange-red suggesting increased
FRET, and blue with less FRET. After shear stress, there is
a significant increase in the FRET sample. A total of 15 regions

Figure 1. Shear stress leads to increased membrane-associated Septin-2

in primary human bronchial epithelial (NHBE) cells. (A) NHBE cells were
placed under shear stress, as described in MATERIALS AND METHODS, for

2 hours and membrane preparations were compared with control cells

under static condition. Immunoblotting shows that shear stress in-
creases the membrane fraction of septin-2 in NHBE cells (left), whereas

there is no change in septin-2 abundance in the whole-cell lysate (47).

(B) Confirmation of shear-induced increases in membrane septin-2

expression is visualized using confocal immunofluorescence.

Figure 2. Septin-2 modulates barrier function properties in an Madin
Darby Canine Kidney monolayer. (A) Using lentiviral delivery of short

hairpin RNA directed against Septin-2, we have caused greater than 80%

reduction in protein expression, as confirmed by immunoblotting. (B)

After septin-2 knockdown, there is no significant change in barrier
properties under static conditions, but when cells are placed under shear

stress, there is a significant worsening in barrier function compared with

cells transduced with a nontargeting construct. (C ) (Left) Of note, when

overexpressed, the majority of septin-2 is seen at the membrane (the
membrane is shown in red, and yellow fluorescent protein–septin-2 is

shown in green); (right) transient transfection of overexpression of yellow

fluorescent protein–septin-2 in MDCK cells leads to barrier enhancement
(n 5 3; *P , 0.05 with one-way ANOVA).

Figure 3. Septin-2 modulates barrier function properties in NHBE cells.

(A) NHBE cells treated with lentiviral shRNA directed against septin-2

have more than 85% reduction in protein expression, as confirmed by
immunoblotting. (B) After septin-2 knockdown, again there is no

significant change in barrier properties under static conditions. In

NHBE cells, shear leads to barrier enhancement, which is preserved in

cells transduced with the nontargeting lentiviral construct, but expo-
sure to septin-2 shRNA causes significant barrier disruption. (Sept,

septin; sh, shear; st, static; n 5 4; *P , 0.05 with one-way ANOVA).
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of interest was randomly preselected in both fields to quantify
FRET efficiency. After shear stress, there was a significant
increase in FRET efficiency, suggesting actin–septin-2 interac-
tion under shear stress. Both biochemical methods of IP, as well
as the fluorescent method of FRET, indicate that, in response to
shear stress, there is a significant increase in the interaction of
actin and septin-2, and the FRET AB data suggest that this is
a direct interaction between the two proteins, and is unlikely to
be via interaction with a third protein.

To determine if this interaction was necessary for the shear-
induced actin reorganization, we examined the effect of septin-2
knockdown on cortical actin expression. After knockdown of
septin-2, there was a decrease in shear-induced cortical actin
(Figure 5C). Of note, changes in actin arrangement due to
septin-2 knockdown were only associated with altered barrier
function when the cells were exposed to a second stressor, such

as shear, and not under static control conditions. When exposed
to shear, however, the actin rearrangements that were evident
in control cells and are associated with barrier enhancement
were not seen in the cells treated with septin-2 shRNA (Figure
5C). In these cells, shear stress significantly increased para-
cellular permeability, as described previously here.

Altered Epithelial Barrier Function Changes Cell Signaling

Humlicek and colleagues (35) have described polarized epider-
mal growth factor (EGF) signaling in airway epithelial cells that

Figure 4. Treatment with the septin-2 inhibitor, forchlorfenuron (FCF),

decreases barrier function. (A) MDCKs treated with FCF have increased

permeability under shear conditions compared with vehicle-treated

cells (n 5 3). (B) NHBE cells also show evidence of increased per-
meability under shear conditions in FCF-treated cells (n 5 4). (C )

Human pulmonary artery endothelial cells (HPAECs) treated with FCF

have a significant drop in resistance compared with vehicle control.

Arrow indicates the addition of either the drug or vehicle to the cells
(n 5 5). *P , 0.05.

Figure 5. Septin-2 directly binds to actin under shear conditions, and

is required for actin rearrangements in NHBE cells. (A) With immuno-

precipitation (IP) of actin, there is increased pulldown of septin-2 under
shear conditions (46). Similarly, immunoprecipitating septin-2 results

in increased pulldown of actin under shear conditions compared with

static (left). (B) Fluorescence resonance energy transfer (FRET) acceptor

photobleaching (AB) was performed on fixed NHBE monolayers after
exposure to static or shear condition. The areas of actin immunofluo-

rescence depicted specifically correlates to the area that received

photobleaching. Under static condition after AB (red ), there is minimal

change in the donor intensity (47). A FRET map (bottom panel ) sug-
gests minimal FRET efficiency. However, under shear conditions, there

is an increase in donor intensity (47) after AB (red ), and the FRET map

suggests significant FRET efficiency on the cell boundaries. FRET
efficiency was quantified in 15 preselected regions of interest in both

static and shear cells with a significant increase in FRET AB between

actin and septin-2 after exposure to shear stress (P , 0.05, one-way

ANOVA; n 5 3). (C ) NHBE cells under specified conditions were fixed,
permeabilized, and imaged using confocal immunofluorescence. Shear

stress leads to actin rearrangement in NHBE cells. In cells treated with

lentiviral septin-2 shRNA, there is a change in actin arrangement even

under static conditions (third panel from left). In response to shear
stress, cortical actin (first and second panels from left) is less well formed

(fourth panel from left).
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is affected by altered paracellular permeability in the context of
a wound model or neutralizing antibody to E-cadherin. How-
ever, the effect of altering paracellular permeability on com-
partmentalization of signals in the context of a physiologic
stress, or a less overt pathologic insult, is not known. To ex-
amine the functional consequences of altered epithelial para-
cellular permeability on cell signaling, we stimulated NHBE
cells transduced with either septin-2 shRNA or a nontargeting
shRNA with exogenous EGF on either the apical or basolateral
surface. EGF receptor (EGFR) is localized to the basolateral
surface of NHBE cells, and the application of shear stress in
cells treated with a nontargeting shRNA or septin-2 shRNA
does not change this distribution (Figure 6A). Without the
addition of EGF ligand to the apical surface, no extracellular
signal–regulated kinase (ERK) phosphorylation was observed
in NHBE cells. Under static conditions, the addition of EGF to
the basolateral chamber increased ERK phosphorylation both
in cells transduced with septin-2 shRNA and a nontargeting
control (Figure 6B). When control NHBE cells were exposed to
shear, barrier function was enhanced, and the addition of apical
EGF caused very little ERK phosphorylation; again, basolateral
addition of EGF significantly increased ERK phosphorylation.
In contrast, after septin-2 knockdown, epithelial barrier func-
tion decreased, and addition of EGF to either apical or baso-
lateral surfaces produced high levels of ERK phosphorylation,
indicating that the increased permeability resulting from septin-2
knockdown in sheared cells allows for an apically placed EGF
to have increased access to the basolateral EGFR. Changes in
ERK phosphorylation are quantified by densitometry in Figure
6C. To confirm that increased ERK phosphorylation was due
to increased EGFR activation, we looked at the effects of the
addition of EGF in cells under shear stress. After septin-2
knockdown, there was increased EGFR phosphorylation after
apical exposure of EGF compared with cells treated with
a nontargeting control (Figure 6B, right), confirming that the
barrier disruption in sheared cells after septin-2 knockdown
allowed for enhanced interaction between the apically placed
EGF ligand and the basally positioned receptor.

PM Effects on Barrier Are Mediated by Septin-2

PM is known to produce airway inflammation and respiratory
disease, as well as cardiovascular disease (13). PM has been well
characterized, and has been reported to induce airway hyper-
responsiveness and inflammation in mice (36), and induces
a mucosal immune response in airway epithelial cells (37). In
endothelial cells, a single exposure of PM has been reported to
lead to barrier disruption (17, 38). In contrast, a single dose of
PM (150 mg/ml) caused barrier enhancement (decreased para-
cellular permeability) in NHBE cells (Figure 7A). The initial
barrier enhancement of NHBE cells in response to a single dose
of PM is associated with increased membrane localization of
septin-2, and a corresponding increase in cortical actin. A second
exposure of NHBE cells to PM reduced membrane septin-2,
decreased cortical actin, and increased paracellular permeability,
suggesting that regulation of septin-2 could be responsible for
pathologic changes in barrier function in airway epithelial cells
after exposure to PM (Figure 7B). The effect of septin-2 on
cortical actin was at least relatively specific, as B-catenin labeling
in the membrane was not altered, also indicating that the cells
were not overtly disrupted after multiple PM exposures (Figure
7B). To assess the role of septin-2 in PM-mediated barrier en-
hancement, NHBE cells treated with lentiviral septin-2 shRNA
or a control nontargeted virus were exposed to a single dose of
PM. A single dose of PM caused barrier enhancement in control
cells expressing nontargeted virus. In contrast, after knockdown
of septin-2, a single treatment of PM caused barrier disruption
(Figure 7C), again indicating that septin-2 plays a necessary role
in PM-induced barrier enhancement.

DISCUSSION

The airway epithelium senses both physiologic and pathologic
stimuli in the luminal airstream, and dynamic responses to these
exposures are part of the host defense system. The epithelial
barrier is the first line of defense preventing access of inhaled
particles to subepithelial tissues (39–42). In addition, the epi-
thelium segregates the apical and basal compartments (35, 43),

Figure 6. Epithelial barrier modulates cell signaling. (A)
Epidermal growth factor (EGF) receptor (EGFR) is localized

to the basolateral membrane of NHBE cells, and the

application of shear stress or the knockdown of septin-2

does not alter its localization. (B) Under static conditions,
placement of EGF in the basolateral chamber leads

to more phosphorylated–extracellular signal–regulated

kinase (ERK) than when placed on the apical membrane.
Knockdown of septin-2 does not alter this. (Left) Under

shear conditions, placement of EGF in either the apical or

basolateral chamber leads to similar p-ERK after septin-2

knockdown (middle), as well as similar p-EGFR (46).
However, in cells treated with a nontargeting construct,

there is significantly less p-ERK (middle), as well as p-EGFR

(46), in cells treated with apical EGF compared with cells

treated with basolateral EGF. (C) Bar graph of densito-
metric analysis from three separate experiments of ERK

phosphorylation (S2, septin 2 shRNA; NT, nontargeting

shRNA; shaded bars, apically placed ligand; closed bars,
basolaterally placed ligand; n 5 3; *P , 0.05 with one-

way ANOVA).
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so that regulation of epithelial barrier properties can influence
cell signaling (35). As an example, the EGFR, located on the
basolateral membrane and the ligand, on the apical membrane,
are spatially separated by the epithelial barrier. Overt disruption
of the barrier by creation of a wound or treatment with anti-
bodies that inhibit cell–cell contact eliminates the normal sepa-
ration between receptor and ligand, allowing increased binding
and activation of the EGFR (44). We propose that dynamic
regulation of the epithelial barrier in response to luminal stimuli
may be an integral part of normal epithelial function.

Although a potential role for septin-2 regulation of barrier
function has been hypothesized since its discovery in separating
the mother–daughter contents in yeast (8), to our knowledge,
this is the first description of septin-2 regulating monolayer
barrier properties, both in epithelial cells and in endothelial
cells. Septin-2 regulates the actin cytoskeleton and cellular mor-

phology in HeLa cells, where septin-2 depletion significantly
alters stress fiber orientation and leads to disordered clusters
(45). We find that knockdown of septin-2 in the absence of
other exposures does not alter barrier function. However, in
response to shear stress, there is increased interaction between
actin and septin-2 that regulates the rearrangement of cortical
actin, and decreases paracellular permeability of NHBE cells.
Pharmacologic intervention to inhibit septin-2 function similarly
alters regulation of barrier function in HPAECs, suggesting
a more general role for septin-2 in cytoskeletal remodeling and
barrier regulation.

We have previously shown that shear generated by airflow
over the epithelium is a homeostatic mechanism that enhances
the epithelial barrier (12). Constituents of the airstream can also
provoke epithelial responses, including transient and dynamic
change in barrier function. We found that an initial exposure to
PM enhances the barrier function, whereas additional exposure
causes barrier disruption. This potentially is a protective mech-
anism to prevent access of the PM to the vasculature, where it
has known inflammatory effects (17, 38). In our model, this
barrier enhancement was not maintained after additional doses
of PM. This could be a maladaptive response, allowing exposure
of subepithelial tissues to PM, but could also mediate altered cell
signaling, as increased permeability would increase receptor–
ligand access across the epithelium. Although our study focused
on EGF ligand–receptor separation, Humlicek and colleagues
(35) described that the IFN-a, -b, and -g, as well as IL-4 ligands
and receptors are all also spatially separated. Increases in per-
meability resulting from multiple exposures to PM (or other
luminal stimuli) could facilitate generation of inflammatory sig-
nals. Dynamic regulation of the epithelial barrier in response to
luminal stimuli may play a key role in regulating host defenses,
and our data indicate that septin-2 localization is important in this
barrier regulation.

Collectively these studies suggest that septin-2 localization
and its interaction with actin allows for dynamic modulation of
airway epithelial barrier function in response to both physio-
logic and pathologic luminal stimuli.
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