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Abstract
Increasing demand for energy and reduction of CO2 emissions has revived interest in nuclear
energy. Designing materials for radiation environments necessitates fundamental understanding of
how radiation-induced defects alter mechanical properties. Ion beams create radiation damage
efficiently without material activation, but their limited penetration depth requires small-scale
testing. However, strength measurements of nano-scale irradiated specimens have not been
previously performed. Here we show that yield strengths approaching macroscopic values are
measured from irradiated ~400 nm diameter copper specimens. Quantitative in situ nano-
compression testing in a transmission electron microscope reveals that the strength of larger
samples is controlled by dislocation-irradiation defect interactions, yielding size-independent
strengths. Below ~400 nm, size-dependent strength results from dislocation source limitation. This
transition length-scale should be universal, but depend on material and irradiation conditions. We
conclude that for irradiated copper, and presumably related materials, nano-scale in situ testing
can determine bulk-like yield strengths and simultaneously identify deformation mechanisms.

While conventional light water reactors undergo lifetime extension programs1, new and
advanced fusion and fission reactors are also being considered. Among the main limiting
factors for both concepts are the materials available to engineers designing the plants.
Radiation environments pose a challenge for materials scientists in terms of choosing and
developing suitable materials for long term applications2. In order to design better materials,
it is crucial to understand the way radiation-induced defects alter the mechanical properties
on a fundamental level3,4. Therefore, a quantitative study of the deformation mechanisms in
irradiated materials is a key requirement for the realization of new advanced reactor
concepts.

As opposed to neutron irradiation, ion beam irradiation can create radiation damage in a
short time and without the hazards caused by material activation. A significant amount of
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work has been performed to relate ion beam radiation damage to neutron radiation
damage5,6, where it has been shown that the resulting defect structures are comparable6.
Still, a major limitation of ion beam irradiation lies in the limited beam penetration depth.
Therefore, micromechanical testing concepts capable of locally probing small volumes are
essential to assess the properties of ion beam irradiated materials. While nanoindentation has
proven to be very useful over the past decades4,7-10, recently developed miniaturized
uniaxial tests with a defined gauge section ease the evaluation of mechanical data on a
nanometer scale and allow a straightforward determination of the whole flow curve9,11-13.
Moreover, using in situ techniques, the deformation mechanisms can be identified
simultaneously14-18.

In order to understand and predict the property changes in structural materials under
radiation, there have been significant efforts in both computational19-23 and
experimental22,23 studies in recent years. Molecular dynamics (MD) and dislocation
dynamics (DD) modeling provide detailed observations of the atomistic and dislocation
processes. Typically, such approaches apply higher strain rates than what is used
experimentally, and are presently limited in the achievable length and time scales19-21.
However, by considering representative model setups (e.g. sufficiently large specimen in
DD, periodic boundary conditions in MD), bulk-like responses can be derived from such
computational studies and related to experiments.

To obtain experimental observations of radiation damage associated deformation
mechanisms, conventional in situ transmission electron microscopy (TEM) straining
experiments of irradiated or quenched material have been performed and were able to
deliver detailed observations of dislocation mechanisms, confirming and challenging the
computational studies at the same time22,23. Although conventional TEM straining
experiments allow for careful mechanistic analysis, they deliver only qualitative results
correlating the mechanical response to the created defects. While details differ, these studies
show that vacancies remaining from collision cascades condense into stacking-fault
tetrahedra (SFTs) and dislocation loops in fcc metals at ambient temperatures, where the
fraction of SFTs versus dislocation loops depends on the material and stacking fault energy.
A number of studies22-24 suggests that during plastic deformation, these defects can be
partially removed by interaction with a single dislocation or by shearing due to the passage
of multiple dislocations. This can serve as an explanation for the occurrence of defect free
channels in macroscopically deformed irradiated materials. Notably, different mechanisms
have been reported at higher temperatures or for significantly larger SFTs originating from
quenching23.

Through the recent development of improved nano-mechanical testing methods11,25-27, the
possibility now exists to close the gap between computational and experimental studies in a
quantitative manner12. It is, however, well established that such miniaturized tests exhibit
intrinsic size effects on sample strength4,11,12,27,28, complicating the extraction of bulk
properties from such kind of experiments. Besides downscaling of the sample dimensions,
direct in situ observations of the deformation mechanisms are crucial for understanding the
response of irradiated materials on a fundamental level. Here we report the first quantitative
in situ observation of the deformation behavior of proton irradiated material, which allows
for a direct relation to bulk material strengths and predictions from computational models.

A (100) oriented copper single crystal was irradiated to a dose of 0.8 displacements per atom
(dpa) using a 1.1 MeV proton beam at near ambient temperature (see Fig. 1). We
subsequently machined nano-compression samples with a focused ion beam (FIB) and
performed quantitative in situ tests in a TEM in order to understand the influence of
irradiation defects on the material properties. Through this first-of a-kind experiment, we
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have established the transition from a size-affected yield strength to one controlled by the
radiation defects, enabling the determination of bulk-like yield strengths from nano-scale
samples.

Still images extracted from a video recorded during in situ TEM compression testing of an
irradiated (100) copper pillar 118 nm in diameter are shown in Fig. 2 along with the
recorded load – displacement data. The full video is provided as Supporting Video 1. Before
contact with the flat diamond punch, the pillar (Fig. 2a) shows a characteristic high density
of small irradiation defects. It was reported that 90% of the radiation-induced defects in
copper at 20-100°C are 0.5 nm – 2.5 nm SFTs with the maximum frequency at ~2 nm, the
balance being dislocation loops29, consistent with our observations in this study (see later
discussion regarding Figs. 4 and 5). After yield, plasticity and hardening are to a large extent
governed by the bowing and escape of short dislocation segments, an example of which is
shown in Fig. 2b. This resembles a pinning – de-pinning motion of short dislocations
between the radiation-induced obstacles. Note that several defects are still visible within the
pillar, as exemplarily indicated by arrows. In Figs. 2c and 2d dislocations extend across the
sample cross sectional area, resulting in pronounced load drops unseen before in Fig. 2f.
Further deformation is localized to a single slip plane characteristic of a spiral dislocation
source15, leading to the formation of a large slip step (Fig. 2e). Studying the deformation
behavior for sample sizes ranging from 80 nm – 1500 nm, we consistently observed this
localized slip, which was not the case for unirradiated Cu28, where even for the smallest
specimens slip preceded on multiple and adjacent planes, see Supplementary Figure 1.

The increase in load in Fig. 2f between FY, corresponding to a yield stress of σY = 1103
MPa, and the point where the spiral dislocation source starts to operate in Fig. 2c (σ = 1994
MPa), is presumably not due to any kind of classical strain hardening. Rather the physical
significance of the load displacement curve would seem to be that there are a series of
yielding events, starting with a single dislocation source that is shut down because the
emitted dislocations get pinned by obstacles in the sample28, requiring activation of further
slip events with sequentially higher loads28, until the long segment spiral sources begins to
operate in a continuous fashion, producing the observed slip step. Interestingly, the stress in
Figs. 2c and 2d is essentially unchanged. Moreover, one would expect differences in the
average free mean path of moving dislocations in the two different regimes, being shorter in
the first hardening stage and larger during operation of the dislocation spiral source.
However, due to limits in temporal resolution as outlined in the supporting online material
(SOM), quantification of this mean free path was not attempted.

The size-dependent yield strengths determined from the in situ compression tests are shown
in comparison to unirradiated copper28, both fabricated from the identical macroscopic
single crystal, in Fig. 3. Yield in this study is understood as the first group of dislocations
sweeping across the sample, more details are provided in the Methods chapter, the SOM or
Ref. 28. While the non-irradiated material (open circles) exhibits a size-dependent strength
over the entire investigated size range12, the irradiated samples (red circles) follow this trend
only for specimen diameters up to ~400 nm. Above this, the measured yield strengths are in
the range of 220 MPa – 280 MPa, well within the scatter typically observed in these
dimensions11 and seemingly independent of size. The dashed horizontal line in Fig. 3 is
added to guide the eye.

To evaluate what determines this fundamental length scale, we have considered the effect of
the most likely internal structural element in the irradiated samples for the current conditions
– small SFTs29,30. The blue shaded regime in Fig. 3 marks the range of maximum obstacle
strength of 4.7 nm large SFTs in copper for 70 nm-long dislocation segments of multiple
character and orientation as determined by Marian et al. from MD and DD computations19.
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The same authors demonstrated that the SFT size has no actual influence on strength, rather
the SFT area intersected by the dislocation glide plane is the important geometric parameter.

Fig. 4 shows a dark field TEM image of a deformed 130 nm diameter irradiated pillar,
indicated in Fig. 3. There was some initial deformation at the sample top, but most of the
plasticity localized by formation of a large slip step near the specimen middle. It should be
mentioned that the slipped part appears thicker, as it is not imaged in projection, but inclined
to the transmitted beam. More deformed samples of different sizes showing the same strong
localized deformation are shown in the Supplementary Figure 1a-d, compared to the much
wider sheared regions in unirradiated samples in Supplementary Figure 1e-g and Ref. 28. As
SFTs are several atomic planes high, dislocations might leave their slip plane by cross-slip
or obstacle interaction and still encounter the same SFTs, keeping the situation essentially
unaltered. Such cross-slip during operation of spiral sources was observed in Ref. 13 and can
explain the rather wide sheared regions of unirradiated pillars (Supplementary Figure 1e-g
and Ref. 22).

The deformed areas in Fig. 4 contain long dislocation segments and are largely devoid of
irradiation defects, thereby resembling the defect free channels observed macroscopically,
while numerous defects are visible in the undeformed sample parts29,30. Evaluation of the
defect density in the undeformed sample part (boxed area in Fig. 4) by counting all defects
excluding long dislocation lines in the known volume yields an average three-dimensional
spacing of 19.4 nm ±2 nm and an obstacle spacing on the glide plane of 68 nm ±30 nm. For
details please refer to the SOM. The defect density of 1.4·1023 m−3 (including FIB induced
defects) in the deformed specimen is lower compared to typically ~1·1024 m−3 irradiation
defects in proton irradiated bulk material30. This is understandable, as the defect density
determined from Fig. 4 reflects a lower limit, the smallest SFTs present in the sample were
possibly not resolved in TEM. A detailed evaluation on possible influences on the cluster
density is provided in the SOM and will be discussed later in the text.

To identify with certain the nature of the observed defects, a TEM lamella was prepared
from a 788 nm thick sample after deformation using FIB lift-out and subsequent low energy
Ar+ ion milling at 500 eV to remove preparation artifacts. For details refer to the SOM. A
low magnification image of the pillar surrounded by the protective Pt coating is shown in
Fig. 5a. The high resolution image recorded in the marked area well within the pillar
material is depicted in Fig. 5b, showing ~2 – 3 nm large SFTs exhibiting the typical
triangular contrast in (110) projection.

It is well known that the smallest internal structural element can provide a characteristic
length-scale determining the strength of a material31. For miniaturized single crystal samples
a size effect is observed where the yield strength inversely relates to the sample size11,
except when the material is defect free (from grown in defects as well as FIB defects) and
deforms at the theoretical strength4. Moreover, in complex materials there is not a single
length scale. The overall yield/flow stress is governed by the superposition of contributions
from different features, such as dispersed obstacles of various types and strengths,
dislocations and grain boundaries. Therefore, when testing a miniaturized sample containing
densely spaced obstacles, the effect of sample size can become a secondary consideration.
This was recently demonstrated for a Ni-based oxide-dispersion strengthened alloy, where
no sample-size effect was observed for samples ranging from 200 nm to 4 μm32. In the
present case, there is a transition in the relation between yield strength and sample size.
Above ~400 nm the strength of the irradiated samples deviates from the unirradiated
material and becomes size-independent. Notably, the deformation behavior stays essentially
unaltered and differs from the unirradiated material.
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This can be explained by rationalizing that the defects in this study behave similar to the
oxide particles used by B. Girault et al.32, but the SFTs have a more limited strength19,
indicated in Fig. 3. Moreover, during plastic deformation the SFTs are partially removed by
passing dislocations19,22,23. Therefore, a transition from the size-independent yield strength
to a size-affected strength can be expected for two possible reasons: (i) The stresses to
activate fewer and smaller dislocation sources will eventually become higher than the
obstacle strength of the irradiation defects. (ii) With a reduction of the sample volume, it
might not contain enough defects to be considered a representative volume element.
However, given the upper bound observed average obstacle spacing on the glide plane of 68
nm ±30 nm and required slip distances of more than 100 nm even for the smallest samples,
we do not believe this latter explanation can be supported.

Taking the established cluster density of ~1·1024 m−3 for proton irradiated bulk material30

results in an obstacle spacing of 20 nm – 44.7 nm. From the measured stresses in the bulk-
like regime, the dislocation source size of a spiral dislocation source15, can be evaluated
after Rao et al.33, amounting to 50 nm – 70 nm. This source size is closely related to the
shortest distance between the pinning point and the sample surface, as this is the critical
configuration to overcome during operation. Interestingly, this length is in agreement with
the evaluated obstacle spacing per slip plane from our experiments. This is in contrast to the
smaller samples in the size-dependent regime, shown for example in Fig. 2 and Fig. 4, where
the dislocation source size at yield is evaluated to be just ~8 nm and ~11 nm, respectively,
which is well below the obstacle spacing.

Essentially, larger dislocation sources are operated by lower stresses in the absence of
defects. But if presented with smaller spacing’s, the defects control the onset of plasticity.
Smaller sources require high stresses, so they are relatively unaffected by the presence of the
defects. Therefore, in the size-dependent regime the critical step is the activation of a spiral
dislocation source that is much smaller than the obstacle spacing. In the size-independent
regime, the dislocation sources are larger than the obstacle spacing, rendering the passing of
the SFTs by moving dislocations the critical step. The concept that the evaluated dislocation
source size in the size-independent regime fits the low experimental defect density indicates
that the dislocation source sizes evolve during the experiment15, and that large SFTs might
act as pinning points. A detailed assessment of this observation requires data on different
obstacle spacings, which is currently under research. Details on the above quoted values can
be found in the SOM.

The fact that Girault et al.32 did not see a transition from their size-independent bulk
strength to a size-dependent behavior is interesting and seems on the first view contradictory
to the present results. However, the authors stated that the oxide particle spacing was well
below 100 nm, while their smallest sample was still 200 nm in diameter. In that case the
limiting factor for the dislocation source size is still the oxide particle spacing, not the pillar
dimension, in agreement with the present results. From Fig. 3 in Ref. 32 one would expect to
see a transition below ~150 nm.

The notion that the experimentally observed size-independent yield strength lies well within
the simulation results in Fig. 3 is not very surprising, as the range of maximum obstacle
strengths imposed by 4.7 nm large SFTs to a passing dislocation was taken from the
computations19. In an averaged ensemble such as the current experiments, overcoming the
strongest obstacle on the slip plane should be the critical step. The size of the simulated
SFTs was larger than in the experiments, thereby giving higher maximum obstacle strengths
of ~360 MPa, compared to 220 MPa – 280 MPa in our experiments.
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Much more exciting is the question how these values relate to bulk properties. Studies on
‘real’ neutron irradiated polycrystalline bulk copper report a yield strength of 310 MPa34.
Under the assumption that the damage produced by the different irradiation conditions is
similar (as detailed in the SOM), the data should be comparable. Taking into account the
Hall-Petch strengthening of the neutron irradiated polycrystalline material from Ref. 34 (see
SOM), the intrinsic strength of irradiated single crystal copper would be ~273 MPa, which is
in accordance with the present results (Fig. 3) and estimates using the dispersed barrier
hardening model.

While in the current case the results for nanoscale testing relate reasonably well to bulk
properties, it should be pointed out that this is a rather simple model material. As outlined
before, in advanced structural materials several different length scales come into play,
rendering the bridging from nanoscale tests to bulk properties far more complicated.
Moreover, the homogenization occurring in bulk materials does not take place in nanoscale
tests, where scatter occurs due to the inherently stochastic nature of yielding in small
volumes, particularly where the obstacle spacing on the slip plane is on the order of the
specimen dimension.

In summary, we showed that in single crystal (100) oriented copper irradiated to 0.8 dpa the
strength is affected by the interaction between moving dislocations and radiation-induced
defects, and size-independent yield strengths are measured for samples as small as only
~400 nm. For even smaller specimens, the yield strength of the nano-pillars becomes
affected by the sample size, as the stress required to operate ever-smaller dislocation sources
overcomes the obstacle strength posed by the radiation-induced defects. It is worth pointing
out that this transition length scale is not a general feature, but depends on the defect
characteristics and therefore on the material, irradiation dose and temperature. The sample
deformation was observed to be strongly localized over the whole tested size range from 80
nm – 1500 nm due to the requirement of forming a large enough dislocation source in a
volume containing densely spaced irradiation defects. These results bear important
implications for the application of small scale testing in nuclear environments as well as for
the design of MEMS components to be used in an irradiation environment.

Methods
Material irradiation

3 mm × 3 mm wedges were prepared from single crystal copper with a (100) orientation
(MaTecK GmbH, Juelich, Germany), using mechanical and electrochemical polishing. The
subsequent experimental procedure is shown in Fig. 1: A 5 μm thick and 200 μm long
lamella was machined out of the single crystal wedge using an FIB microscope (FEI Strata
235; FEI, Hillsboro, OR, USA) operated with Ga+ ions at 30 keV. The wedge was then
irradiated with a 1.1 MeV proton beam, having a Bragg peak at 7 μm depth35. Therefore,
the proton beam passes through the FIB lamella, as seen from the logarithmic dose profile in
Fig. 1, thereby avoiding hydrogen implantation in the relevant region of the specimen and
having a relatively flat damage profile throughout the entire pillar. The irradiation setup was
described in detail in Ref. 36 and the dose profile shown in Fig. 1 was calculated with the
experimental beam current averaging of 17 μA·cm−2 using the SRIM code35. The irradiation
temperature continuously monitored on the sample holder was 80 °C. The actual sample
temperature might be higher, which would affect the defect annihilation and result in a lower
defect density. Still, as copper is an excellent thermal conductor and the ion stopping region
is not within the lamella, we do not expect a significantly different temperature.
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Sample fabrication
After irradiation of the lamella, nanopillars with diameters ranging from 80 nm – 1500 nm
and heights at least five times the diameter were fabricated by cutting annular trenches with
the FIB. Final milling currents were 10 pA and the samples had an inevitable axial taper of
≤2.5°. The high aspect ratios of 5:1 were chosen to minimize for lateral boundary constraints
and to avoid apparent hardening, especially after the formation of large slip offsets28. From
the dose profile and the pillar positions, the resultant dose for the nano-compression samples
is estimated to be 0.8 ±0.01 dpa for the smaller samples and 0.8 ±0.09 dpa for the largest
pillars. Additional damage emerges from the FIB fabrication process. This generates small
dislocation loops and implantation of Ga in the surface area14. This surface FIB damage has
a distinct influence on the mechanical properties of a defect free material4. However, given
the large number of proton irradiation defects in the whole volume of our material and the
pronounced difference to the unirradiated material, it is considered of minor concern in the
present case.

Sample testing
Sample testing was performed in situ in a TEM (JEOL 3010, Tokyo, Japan) working at 300
keV using a Hysitron Picoindenter (Hysitron, Minneapolis, MN, USA) equipped with a flat
conductive diamond tip and operating in displacement controlled mode with a nominal
displacement rate of ~1 nm·s−1, resulting in strain rates of ~10−3 s−1. Videos were recorded
with a charge-coupled device (CCD) camera (Gatan Orius SC200D; Gatan, Pleasanton, CA,
USA) at 30 frames per second. There is a slight difference in image contrast (seen in the low
intensity Fig. 2c and 2d) between the upper third of the image and the lower part. This
emerges because the CCD image readout uses two channels to increase the frame rate, and
there is a slight difference between the two dark currents.

Data evaluation
The recorded load – displacement data is combined with the in situ video to properly
evaluate yield stresses, calculated from the load right before the first load drop and the
measured contact diameter (assuming a circular pillar cross-section) at this point. Proper
axial alignment was ensured by comparing the loading and unloading slopes for each test, as
misalignment results in a pronounced reduction of the loading slope. Further details on
sample fabrication, experimental conditions and data evaluation are provided in Ref. 28.

Evaluation of the spiral dislocation source size to relate stress, σ, to source size, L, follows
Rao et al.33:

(1)

with k = 0.09 for a mixed type dislocation, shear modulus G = 47 GPa, Burgers vector b =
0.256 nm, and Schmid factor m = 0.408. To calculate critical resolved shear stresses (CRSS)
for single crystal or polycrystalline data, the normal stress has to be divided by 2.45 (the
inverse Schmid factor) and 3.1 (the Taylor factor), respectively. For more details please
refer to the SOM.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic of experimental procedure
A 5 μm thick lamella was FIB cut into a (100) copper single crystal and subsequently
irradiated at 80 °C using 1.1 MeV protons, resulting in the indicated logarithmic dose profile
(red line) for the lamella. Subsequently, pillars with diameters ranging from 80 nm – 1500
nm were FIB machined into the lamella. From their position, the sample dose is estimated to
be 0.8 dpa. These specimens were finally loaded in compression in situ in a TEM operated
at 300 keV using a nanoindenter equipped with a flat conductive diamond tip.
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Figure 2. Dark field still images extracted from an in situ TEM compression test of a (100)
oriented 118 nm diameter copper pillar irradiated to 0.8 dpa (a-e) and the measured load –
displacement data (f)
(a) Before contact to the diamond punch, the pillar contains a high density of defects. (b)
After yield, deformation and hardening are governed by the bowing and exit of short
dislocations, evidenced by gentle load drops in (f). In (c) and (d) dislocations emitted from a
spiral dislocation source extend across a slip plane and lead to significant load drops in (f).
(e) The slip produced by this dislocation source operation leads to the formation of a large
slip step, to which further deformation is confined.
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Figure 3. Size-dependent yield stress for (100) oriented irradiated and unirradiated copper nano-
compression samples
While the unirradiated material (open circles)28 exhibits a size-dependent yield strength over
the whole size range, the irradiated material (red symbols) transitions to a size-independent
yield stress for sample diameters larger ~400 nm. The shaded area depicts the regime of
maximum obstacle strength found for dislocation – SFT interactions in copper using MD
and DD computations19. The specimens shown in Figs. 2, 4 and 5 are indicated.
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Figure 4. Dark field image of a deformed irradiated (100) copper specimen with 130 nm
diameter
Plasticity is limited to some deformation at the top and a large slip step in the sample mid.
Several long dislocation segments are present on this slip plane. Moreover, fewer defects are
visible in the sheared region compared to undeformed areas (an undeformed area is
outlined).
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Figure 5. Post deformation irradiation defect characterization using high resolution TEM
(a) Low magnification TEM image of a deformed 788 nm diameter copper pillar after FIB
lift out and subsequent Ar+ low energy ion milling at 500 eV. (b) Atomic resolution image
taken from the area indicated in (a) showing ~2 – 3 nm large SFTs imaged along the (110)
projection.
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