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Purpose: This work describes a spatially variant mixture model constrained by a Markov random

field to model high angular resolution diffusion imaging (HARDI) data. Mixture models suit

HARDI well because the attenuation by diffusion is inherently a mixture. The goal is to create a

general model that can be used in different applications. This study focuses on image denoising and

segmentation (primarily the former).

Methods: HARDI signal attenuation data are used to train a Gaussian mixture model in which the

mean vectors and covariance matrices are assumed to be independent of spatial locations, whereas

the mixture weights are allowed to vary at different lattice positions. Spatial smoothness of the data

is ensured by imposing a Markov random field prior on the mixture weights. The model is trained

in an unsupervised fashion using the expectation maximization algorithm. The number of mixture

components is determined using the minimum message length criterion from information theory.

Once the model has been trained, it can be fitted to a noisy diffusion MRI volume by maximizing

the posterior probability of the underlying noiseless data in a Bayesian framework, recovering a

denoised version of the image. Moreover, the fitted probability maps of the mixture components

can be used as features for posterior image segmentation.

Results: The model-based denoising algorithm proposed here was compared on real data with three

other approaches that are commonly used in the literature: Gaussian filtering, anisotropic diffusion,

and Rician-adapted nonlocal means. The comparison shows that, at low signal-to-noise ratio, when

these methods falter, our algorithm considerably outperforms them. When tractography is per-

formed on the model-fitted data rather than on the noisy measurements, the quality of the output

improves substantially. Finally, ventricle and caudate nucleus segmentation experiments also show

the potential usefulness of the mixture probability maps for classification tasks.

Conclusions: The presented spatially variant mixture model for diffusion MRI provides excellent

denoising results at low signal-to-noise ratios. This makes it possible to restore data acquired with a

fast (i.e., noisy) pulse sequence to acceptable noise levels. This is the case in diffusion MRI, where

a large number of diffusion-weighted volumes have to be acquired under clinical time constraints.
VC 2011 American Association of Physicists in Medicine. [DOI: 10.1118/1.3599724]
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I. INTRODUCTION

I.A. Background: diffusion MRI

Diffusion weighted magnetic resonance imaging (DW-MRI)

is the only technique that can image axonal fiber tracts in the

brain in a noninvasive manner. DW-MRI produces images

of biological tissue weighted by the local characteristics of

water diffusion. Comparing a baseline T2-MRI scan with the

MRI signal when a diffusion sensitizing gradient is added to

the magnetic field in a certain direction, water diffusivity in

that direction can be estimated. Repeating the procedure

with different gradient directions, it is possible to reconstruct

a diffusion profile at each spatial location. Due to the fact

that water mainly diffuses along rather than across axonal

fibers, the diffusivity information can be used to track the

neural tracks in the brain white matter.

The continuous diffusivity profile, defined on the unit

sphere, can be reconstructed from discrete measurements in

different ways. The simplest approach is diffusion tensor

imaging (DTI),1,2 in which a zero-mean Gaussian probability

distribution function (PDF) is fitted to the data measurements.

At least seven samples are required for each voxel: six for the

unique elements of the covariance matrix and one for the base-

line MRI signal. DTI has shown great utility in imaging the
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fiber bundles in the brain because the architecture of the tissue

can be inferred from the eigenstructure of the tensor: the major

eigenvector gives the mean fiber direction at each location,

whereas the anisotropy is a marker of fiber density. However,

DTI has the limitation that it can only resolve one fiber direc-

tion in a voxel. When fibers cross or bifurcate within the voxel,

which happens very often because voxels are from 100 to

1000 times wider than fibers, the monomodal Gaussian distri-

bution fails to capture the diffusion profile.3,4

In order to resolve more complex fiber geometries, it is

necessary to sample a higher number of directions. This

approach is known as high angular resolution diffusion

imaging (HARDI).4–6 Mathematical entities more complex

than a Gaussian PDF can be fit to the measurements, over-

coming the limitation that DTI uses a monomodal distribu-

tion. Among the most popular are spherical harmonics,7,8

fourth-order tensors,9,10 and mixture models.3,11

From the HARDI data, the PDF of the average spin dis-

placement of water or a variant of this function can be com-

puted. Several approaches have been proposed in the literature:

the PDF of the fiber orientation distribution,12 the diffusion ori-

entation transform,13 the persistent angular structure of the

PDF,14 and the orientation distribution function (ODF), which

is the most popular. The ODF is the radial projection of the

water diffusivity PDF, and is defined on a spherical shell. Much

of the ongoing research in HARDI is focused on the computa-

tion of the ODF, because its maxima correspond to the most

likely orientation of the underlying fibers, whereas the maxima

of the raw attenuation data do not. In a first approach, Tuch15

used a numerical implementation of the Funk–Radon transform

to approximate the ODF from the HARDI measurements.

More recent work from different groups16–18 has converged to

computing the Funk–Radon transform analytically from the

spherical harmonic expansion of the HARDI data.

If the attenuation by diffusion of a scan (which depends

of the pulse sequence and its parameter settings) is small, the

directional information of the data can be enhanced by

spherical deconvolution.12 The ODF is assumed to be the

convolution of a sharp fiber ODF (fODF) and a blurring ker-

nel. Ideally, the fODF is zero for all directions except for

those exactly corresponding to the orientation of fibers. The

kernel can be estimated from highly anisotropic voxels,

which are assumed to contain only one fiber population, and

then inverted to compute the fODF from the ODF. It has

been shown that using the fODF rather than smoother ODF

in fiber tracking can improve the results.19

I.B. Background: denoising of diffusion MRI

Denoising strategies are very attractive in HARDI

because acquiring a high number of gradient images under

time constraints limits the signal to noise ratio (SNR).

Denoising methods from the natural or medical image proc-

essing literature can be extended to HARDI by denoising

each channel (gradient or baseline volumes) separately or by

considering the HARDI data a vector-valued function. How-

ever, these extensions suffer from the same limitations as the

methods they are based on.

Specifically, traditional image denoising algorithms based on

(local or nonlocal) spatial smoothing20–23 improve the SNR but

also cause a loss of fine structures and increase partial volume

error at the interfaces between different types of tissue. Techni-

ques based on wavelets24 preserve edges well but suffer from

pseudo-Gibbs artifacts. This problem is solved by approaches

based on variational calculus25,26 and partial differential equa-

tions, but such methods still have the disadvantage that they

cause loss of texture, leading to the well-known “staircase”

effect. In general, all these methods perform satisfactorily when

the noise level is moderate, but their limitations arise when the

SNR decreases. Therefore, denoising of DW-MRI data remains

an open, relevant problem, and algorithms that overcome the

drawbacks of existing methods are necessary.

I.C. Contribution

In this study, we propose an approach to the DW-MRI

denoising problem based on unsupervised learning. We take

advantage of the relatively low variability in DW-MRI to

learn the typical distribution of the data, which is fairly con-

stant across subjects (except for cases with pathology). We

then use this information to tailor a denoising method to DW-

MRI and outperform the algorithms summarized in Sec. I B.

We propose using a spatially variant Gaussian mixture

model (GMM) to learn a relatively small dictionary of com-

ponents that can accurately represent the diffusion data.

GMMs, which have been successfully applied in many differ-

ent problems in the literature, are very suitable to represent

the signal attenuation of HARDI data, which is a weighted

sum of contributions from different fiber populations. The

number of components, whose predefinition is a limitation of

GMMs in general, is automatically estimated using the mini-

mum message length, a concept from information theory.

The mean and covariance of each component, which are

learned from training data, are constant. This allows us to

use a large number of different voxels to train the compo-

nents. If the mean and covariances were spatially variant, if

would be impossible to estimate them for each single voxel

unless strong assumptions were made (as in DTI, for exam-

ple). Each mixture component will typically correspond to

isotropic profiles or fibers in a certain orientation, with some

flexibility provided by their covariances. The mixing weights

are allowed to vary across space such that different compo-

nents are represented in different regions. Then, a smooth-

ness prior is placed on top on these spatially variant weights

to exploit the fact that neighboring voxels tend to be similar.

This constraint is very flexible because it does not force

neighboring voxels to have similar values, but similar statis-

tical distributions, decreasing the spatial blurring (which can

lead to spurious fiber crossings).

The trained model can be fitted to a (noisy) test case by max-

imizing the posterior probability of the underlying noiseless

data in a Bayesian framework. The output is a denoised version

of the image. A by-product is the set of mixture weights for

each voxel, which can be used in image segmentation.

To summarize, the main contributions of this study are:

(1) unsupervised learning of diffusion MRI attenuation data
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with a spatially variant mixture model for DW-MRI-tailored

denoising; (2) rather than modeling the DW-MRI data in

individual locations (as it is typically done in the DW-MRI

literature), we exploit spatial regularities by modeling the

diffusion data as a field; and (3) application of a spatially

variant GMM to denoising.

It is important to note that this article is an extension of

our own preliminary work35 with the following differences:

(1) we model the signal attenuation instead of the anisotropic

diffusion coefficient, which is more principled; (2) the train-

ing stage has been improved; and (3) new experiments have

been added, including fiber tracking, segmentation, and

extended denoising experiments.

I.D. Further related literature

As explained above, mixture models in general suit DW-

MRI very well because the attenuation by diffusion in a fiber

crossing or bifurcation can be modeled as the sum of two or

more mixture components. Therefore, they have been exten-

sively used in the DW-MRI literature to model the diffusion

signal for a given voxel. For example, Tuch et al.4 propose

extending DTI to a mixture of ellipsoidal profiles. Assaf

et al.31 use a mixture of hindered and restricted models of

water diffusion. Behrens et al.11,32 propose a partial volume

model that mixes one isotropic (the background) and several

anisotropic components (the fibers). A continuous mixture of

diffusion tensors is proposed by Jian et al.33 The ODF is

modeled as the convolution of the fODF and a smoother

response function in a number of other studies.12,17,19,34

However, these estimation methods do not exploit the rela-

tions between neighboring voxels; they model the data for a

single spatial location. Another key difference with our pro-

posed method is that the distribution of the HARDI data is

assumed to follow a specific model (mixture of tensors, con-

volution of fODF and a constant kernel), whereas in our

approach, the distributions are learned from training data

using a generic model (a GMM).

Spatially variant GMMs have been used in natural image

processing by Nikou et al.36 (extended by Sfikas et al.37) and

Rivera et al.38 (the latter with some simplifications). These

methods use the weights of the mixture components to

segment the images. Peng et al.39 also applied a similar

method to segmentation of conventional (i.e., nondiffusion-

weighted) MRI data into three different types of tissue. As

opposed to our proposed method, the data in these three

studies are scalar fields, the number of mixture components

is fixed rather than learned, and no denoising is performed.

Martin-Fernandez et al.40 proposed a Gaussian Markov ran-

dom field for simple denoising of DTI data, but their system

cannot model multimodal distributions (and therefore

HARDI). Finally, King et al.41 also described a system simi-

lar to ours in a general way, though without any mathemati-

cal formulation.

I.E. Outline

The rest of the paper is organized as follows. Section II

describes the dataset utilized in the study. The image model,

as well as the mechanisms to train it and to apply it to image

denoising and segmentation, is described in Sec. III. The

proposed method is evaluated in Sec. IV. Finally, Sec. V

includes the discussion.

II. MATERIALS

HARDI data from 100 different healthy subjects were

acquired at the Center for Magnetic Resonance at the Univer-

sity of Queensland using a 4 Tesla Bruker Medspec scanner. A

single-shot echo planar technique with a twice-refocused spin

echo sequence was utilized. Ninety-four diffusion-sensitized

gradient directions and 11 baseline images with no diffusion-

sensitization were obtained for every subject. Imaging parame-

ters were as follows: b-value¼ 1159 s/mm2, TE/TR¼ 92.3/

8259 ms, voxel size¼ 1.8 mm� 1.8 mm� 2.0 mm, and image

size 128� 128� 55 voxels. The acquisition time was approxi-

mately 15 min. The SNR, using the mean square of the fore-

ground as signal power and the square of the first peak in the

histogram as noise power (estimator for Rice distribution), was

on average 24 dB for the baselines and 15 dB for the diffusion-

attenuated images. The 11 baseline images were merged down

to a single estimate of the reference using a method tailored for

Rician data,42 increasing the SNR by approximately 10 dB up

to 34 dB. The reference image was used to segment the brain

using the BET algorithm.43 The resulting mask was then

applied to all the diffusion images to avoid including nonbrain

matter in the model.

In order to evaluate denoising algorithms, it is necessary

to a have ground truth that can be corrupted, subsequently

restored and finally compared with the original. Hardware or

software phantoms can be used as ground truth, but they are

not a realistic approximation of the brain white matter.

Ideally, one could use very long acquisition sequences (e.g.,

24 or 48 h) to obtain very high SNR data that could be used

as ground truth. However, these acquisition protocols are

usually limited to ex-vivo scenarios due to motion artifacts.

In this study, the original 94D data are too noisy to be

directly used as ground truth [see Fig. 1(a)]. Instead, we

FIG. 1. Axial slice (i.e., parallel to the ground) of the gradient image corre-

sponding to direction ðx; y; zÞ ¼ ð0; 1; 0Þ before (a) and after (b) angular

downsampling. The downsampled images are the cleanest data that could be

generated and were thus used as ground truth (i.e., SNR assumed to be ‘).

Note that there is no spatial smoothing in (b).
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propose to trade some angular resolution for redundancy that

can be used to obtain a cleaner (though angularly coarser)

pseudoground truth as follows.

First, the 94D DW-MRI data at each spatial location are

downsampled to a new set of directions using a Laplace–

Beltrami regularized spherical harmonic expansion of order

six44 (regularization coefficient k ¼ 0:006). The fewer direc-

tions, the better the fit will be. On the other hand, the number

of directions must remain high enough to be considered

HARDI. We found 30 directions to be a good compromise.

The 30 directions were computed with an electrostatic

approach.45 Henceforth, the 94D data are discarded, and the

downsampled, smoothed (in angular domain) 30D data are

assumed to be the noiseless (SNR¼1) ground truth [see

Fig. 1(b)]. A secondary advantage of the angular downsam-

pling is that it lightens the computational load of the algo-

rithms (denoising a volume with the proposed approach

takes 25 min, see Discussion).

To evaluate the usefulness of the mixture weights in

image segmentation, the second author made (under supervi-

sion of an expert radiologist) annotations of two brain struc-

tures (left and right ventricles and caudate nuclei) on the

baseline images, which have higher SNR than the directional

data because they are not attenuated by diffusion. Moreover,

25 of the test images were reannotated by the same author to

estimate the intrauser variability in the annotations. These

annotations can be used to train a supervised pixel classifier

and evaluate its performance.

Finally, the 100 DW-MRI scans were randomly divided

into two groups of 50 for cross validation. The first group

was used to estimate the parameters of the model and to train

the classifier. The images in the second group were artifi-

cially corrupted with noise and subsequently denoised to

assess the performance of the proposed method.

III. METHODS

In this section, we first describe the image model in Sec.

III A. Then, the steps to estimate the parameters of the model

from the data are detailed in Sec. III B. Finally,the process to

denoise diffusion MRI data is described in Sec. III C.

III.A. Image model

A HARDI volume consists of a set of MRI images corre-

sponding to a baseline and a set of different gradient direc-

tions. Since the diffusion is estimated by comparing the

gradient images with the baseline, having a reliable estimate

of the latter is very important. For this reason, it is usual that

multiple (four or five) instances of the baseline volume are

acquired and merged down into a reference with little noise.

If this reference is denoted by S0, the signal intensity Sk at a

voxel location r when a gradient is applied in the direction

ðhk;ukÞ is given by the Stejskal–Tanner equation46

SkðrÞ ¼ S0ðrÞe�bkADCkðrÞ ) xkðrÞ ¼
SkðrÞ
S0ðrÞ

¼ e�bkADCkðrÞ;

where h 2 ½0; p� is the elevation, u 2 ½0; 2p� is the azimuth,

ADCkðrÞ � 0 is the apparent diffusion coefficient, xkðrÞ
2 ½0; 1� is the attenuation by diffusion and bk is the Le

Bihan’s factor, which groups several physical parameters

from the image acquisition. ADC ¼ fADCkg, x ¼ fxkg and

S ¼ fSkg have the property that they are symmetric because

diffusion MRI cannot distinguish the two directions of each

orientation, and hence, Sðh;uÞ ¼ Sðp�h;u6pÞ.
The attenuation by diffusion in a voxel can be modeled

with a multicompartmental model4,32

xkðrÞ � 1�
XNFðrÞ

f¼1

wf

 !
e�bkv0 þ

XNFðrÞ

f¼1

wf e
�bkit

k
��vf ðrÞik ; (1)

where NF is the number of fiber populations that coexist in

the voxel, wf � 0 is the weight of each population, v0 is the

anisotropic diffusion, ��v is the diffusion tensor corresponding

to each fiber population, and ik is the unit vector in direction

ðhk;ukÞ. The attenuation xk (and thus the signal Sk ¼ S0xk) is

hence a mixture of an isotropic component (the first term in

Eq. 1) plus a number of fiber components (the second half of

the equation).

Rather than estimating NF for each voxel and then fitting

the weights and diffusion tensors,4 we propose modeling the

attenuation by diffusion xðrÞ as a generic mixture learned

from training data.

We assume that the baseline S0ðrÞ is a perfect estimate

and only the gradient images SkðrÞ are affected by noise (see

Fig. 2). This is reasonable because, if we estimatebxk ¼ Sk= bS0 ¼ Sk=
P11

i¼1

S0;i (where S0;i are the signal intensities

corresponding to the 11 acquired baseline images), the sensi-

tivities of the estimate bxk with respect to S
k

and S0;i are

@ bxk

@Sk

���� ���� ¼ 1bS0

and

@ bxk

@S0;i

���� ���� ¼ Sk

11 bS0

2
¼ bxk

11 bS0

¼ bxk

11

@ bxk

@Sk
� 1

11

@ bxk

@Sk

���� ����;
since bxk 2 ½0; 1�.

FIG. 2. Axial slice of a baseline volume (a), the corre-

sponding average baseline (b), and one of the corre-

sponding gradient images (c). We assume in this study

that the noise of (b) is negligible compared with the

noise of (c). The SNR of the original images was

degraded 5 dB to better illustrate the difference

between (b) and (c). Note that the intensity scales of

(a–b) and (c) are different: the noise level is actually

the same in (a) and (c).
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Because the typical value of bxk is 1=3 (9 dB attenuation,

see Sec. II), the sensitivity with respect to Sk is typically

�30 larger than with respect to S0;i, and at least 11 times

larger. In other words, the noise in Sk has to be at least 11

times larger than in S0;i to have the same impact on bxk.

Now, under the assumption that S k is the only source of

noise, the data for each voxel are uniquely characterized by

the vector of attenuations xðrÞ ¼ ½x1ðrÞ; x2ðrÞ;…; xDðrÞ�t,
where D is the number of probed directions. This assumption

also simplifies the framework described in Sec. III C.

Next, we assume that the underlying “true” (i.e., not cor-

rupted by noise) attenuation xðrÞ is a realization of a Gaus-

sian mixture model (GMM)

pðxðrÞÞ ¼
XC

c¼1

pcðrÞGðxðrÞjlc;RcÞ (2)

where GðxðrÞjlc;RcÞ is a Gaussian distribution with mean lc

and covariance Rc, and each component plays a similar role

as a fiber population in Eq. (1). While the means flcg and co-

variance matrices fRcg are independent of lattice locations,

the weights of the mixture pðrÞ ¼ ½p1ðrÞ:::pCðrÞ�t are allowed

to be spatially variant, and they are constrained to lie in the

probability simplex
PC

c¼1 pcðrÞ ¼ 1, with pcðrÞ � 0. Most of

the weights will be close to zero for a given voxel, which can

be interpreted as a way of selecting NFðrÞ.
Now, spatial coherence of the data is ensured by placing a

Markov random field (MRF) on top of the mixture weights.

Instead of laying a distribution on top of the data directly,

laying it on top of another distribution (i.e., the GMM, which

already has certain flexibility in the covariance matrices)

gives an additional degree of freedom to the model36

pðpðr1Þ; pðr2Þ;…; pðrNÞÞ /
Y3

d¼1

YC
c¼1

b�N
d;c

� exp � 1

2

PN
i¼1

2pcðriÞ � pcðri þ udÞ � pcðri � udÞð Þ2

b2
d;c

2664
3775;

(3)

where N is the total number of voxels in the volume, b2
d;c is

the variance of the mixture component c in the spatial direc-

tions d ¼ 1; 2; 3f g (corresponding to the x; y; z axes), and ud

represents the unit vector along d. The variances b2
d;c are

allowed to be direction dependent because the voxels are in

general nonisotropic, and larger pixel spacings require larger

variances in the model. The interpretation of the MRF prior

is as follows: when one mixture component at one voxel is

predicted as the average of the values of its neighbors in

direction d, the error follows a zero-mean Gaussian distribu-

tion with variance b2
d;c=2.

Finally, the observed image data are a noise-corrupted

version of xðrÞ. The probability distribution of the noise in

MRI is Rician

pðx	ðrÞjxðrÞÞ ¼
YD
k¼1

S0ðrÞx	kðrÞ
r2

e�
S2
0
ðrÞðx2

k
ðrÞþx	2

k
ðrÞÞ

2r2

� I0

S2
0ðrÞxkðrÞx	kðrÞ

r2

� �
; (4)

where x	ðrÞ represents the noise-corrupted observations, I0 is

the modified Bessel function of the first kind with order zero,

and r2
k is the noise power for gradient image in direction

ðhk;ukÞ, typically constant across k, i.e., r2
k ¼ r2; 8k. The

complete graphical model of the data is depicted in Fig. 3.

III.B. Model training

Given some training data, the parameters of the model are

estimated by maximizing the target function Q, which

depends on lcf g, Rcf g, and pcðrÞf g

Q ¼
X

r

XC

c¼1

zcðrÞflog½pcðrÞ� þ log GðxðrÞjlc;RcÞ½ �g

� 1

2

X
r

XC

c¼1

X3

d¼1

�
logðb2

d;cÞ

þ ½2pcðrÞ � pcðr þ udÞ � pcðr � udÞ�2

b2
d;c

�
; (5)

where zcðrÞ is the posterior probability that the voxel at r
belongs to component c

zcðrÞ ¼
pcðrÞGðxðrÞjlc;RcÞPC

c0¼1

pc0 ðrÞGðxðrÞjlc0 ;Rc0 Þ
: (6)

FIG. 3. Graphical model for HARDI (in 1D, for the sake of simplicity): p
represents the mixture weights, x represents the ADC data, and x	 represents

the noise-corrupted observations.
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The first term (first row) in Eq. (5) corresponds to the condi-

tional likelihood of the GMM given the weights.47 The sec-

ond term accounts for the joint likelihood of the weights

themselves, given by the MRF. The approach that was uti-

lized to maximize Q is an expectation maximization (EM)

algorithm inspired by the work by Nikou et al.,36 with two

major differences: the maximization step of the EM algo-

rithm has been substantially improved and the number of

components is not fixed but determined by the MML

criterion.48

III.B.1. Initialization: choice of C with minimum
message length criterion (MML)

To initialize the algorithm, the problem can first be solved

without the MRF term from Eq. (3) in the target function Q
from Eq. (5). This amounts to the well-known problem of

estimating the parameters of a GMM, which can be solved:

with the EM algorithm. In turn, the EM can be initialized

with the K-means algorithm, which is further initialized with

random samples from the training data. The EM algorithm is

prone to getting stuck in local maxima, and it is therefore bene-

ficial to train the GMM with different initializations for K-

means and then keep the instance with the highest final

likelihood.

It is well known that one of the main limitations of mix-

ture models is that the number of components C must be

defined in advance. A possible way of tackling this problem

is to select the value of C that minimizes the minimum

message length (MML), a criterion from information

theory. MML combines two terms: the inverse of the likeli-

hood of the training data and a term that penalizes the com-

plexity of the model. Higher values of C decrease the first

term but also increase the second, so a compromise must be

reached

MMLðCÞ ¼ �
X

r

XC

c¼1

zcðrÞflogðpcÞ þ log½GðxðrÞjlc;
X

c

Þ�g
" #

þ D

2

XC

c¼1

log
Npc

12
þ C

2
log

N

12
þ CðDþ 1Þ

2

" #
; (7)

where the weights pc are location-independent at this point

(the MRF prior is not considered yet).

Training the GMM for a wide range of values of C to

find which one provides the minimal MML is computation-

ally impractical. The following greedy algorithm was used

instead: the parameters are estimated just once for a sole,

high value of C, and then, components are merged down as

long as the MML decreases.49 At each step, all possible

pairwise merges are considered. The merge that leads to a

model with the lowest MLL is selected and proposed for

acceptance. If this value of MML represents an improve-

ment with respect to the MML of the current model, the

merge is accepted and the process is repeated. If it does

not, the algorithm terminates. The procedure is fast

because, when a merge is considered, the terms correspond-

ing to the C-2 components not being merged do not need to

be reevaluated.

III.B.2. Optimization with EM algorithm

Once the number of components C is defined, the cost

function from Eq. (5) can be maximized. This can be

achieved through an EM algorithm. In the E step, the poste-

rior probabilities zcðrÞ are calculated using Eq. (6). In the M

step, the estimates of the parameters ðlcÞ; f
P

cg; fb
2
d;cg and

the mixture weights at each pixel pcðrÞ must be updated to

maximize Q. The update equations for the mixture model pa-

rameters are well-known50

lc  

P
r

zcðrÞxðrÞP
r

zcðrÞ
;
P

c 

P
r

zcðrÞ xðrÞ�lcð Þ½ � xðrÞ�lc½ �2P
r

zcðrÞ
: (8)

Updating the mixture weights in order to be able to

update their variances fb2
d;cg is more complicated. Simulta-

neous optimization with respect to all the weights is very

difficult and impractical. An alternative is to utilize coordi-

nate ascent, in which voxels are visited in a random

order and their weights are optimized under the assumption

that the weights at all other locations are fixed. The algo-

rithm typically converges after five or six passes over the

volume.

In order to optimize the weights for a given spatial loca-

tion r, Nikou et al.36 compute the derivatives of the target

function Q with respect to fpcðrÞg, set them to zero, and

solve the resulting second degree equations. Because the

weights are optimized in an unconstrained fashion, they

must be projected back onto the probability simplex after

each step. The problem with this approach is that the solu-

tion to the equations can yield a point arbitrarily far from

the simplex, and the projected point is not guaranteed to

increase Q (in practice, this often happens). Instead, we

solve the problem exactly with the help of a Lagrange

multiplier. If the terms in the target function that are inde-

pendent from fpcðrÞg are disregarded, some algebraic

manipulation of Eq. (5) yields the following optimization

problem:
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max
fpcðrÞg

XC

c¼1

wc log pcðrÞ �
1

2
ðpcðrÞ � acÞ2

� �

subject to
XC

c¼1

pcðrÞ ¼ 1; pcðrÞ > 0; (9)

where

wc ¼
zc

Q3
d¼1

b2
d;c

4
P3
d¼1

Q3
d0 ¼ 1

d0 6¼ d

b2
d0;c

acðrÞ ¼

P3
d¼1

Q3
d0 ¼ 1

d0 6¼ d

b2
d0;cðpcðr þ udÞ þ pcðr � udÞÞ

2
P3
d¼1

Q3
d0 ¼ 1

d0 6¼ d

b2
d0;c

;

The corresponding Lagrangian is

LðfpcðrÞg; kÞ ¼
XC

c¼1

wc log pcðrÞ �
1

2
ðpcðrÞ � acðrÞÞ2

� �

þ k 1�
XC

c¼1

pcðrÞ
" #

;

where the constraint pcðrÞ > 0 has been left implicit (it

must be observed so that log pcðrÞ 2 ðRÞ) and k is the mul-

tiplier corresponding to the explicit constraint. Now, setting

the derivatives with respect to the weights equal to zero

gives

wj

pjðrÞ
� pjðrÞ þ ajðrÞ � k ¼ 0)

pjðrÞ ¼
ajðrÞ � kþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðajðrÞ � kÞ2 þ 4wj

q
2

; (10)

where the solution corresponding to the minus sign is dis-

carded because it would yield pjðrÞ � 0, since wj > 0.

Finally, the value of the multiplier can be calculated by solv-

ing
PC

j¼1 pjðrÞ � 1 ¼ f ðr; kÞ ¼ 0. If f ðr; kÞ is expanded,

f ðk; rÞ ¼
XC

j¼1

ajðrÞ
2
� C

2
k

þ 1

2

XC

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðajðrÞ � kÞ2 þ 4wj

q
� 1 ¼ 0:

There is no simple expression for the roots of this func-

tion. However, it is easy to check that df=dk < 0 8k. Since

f is continuous and differentiable everywhere, this means

that there is only one zero, which can be easily found with

numerical methods; a bisection strategy was used in this

study. Once the value of the multiplier k has been deter-

mined, substitution in Eq. (10) provides the optimal mix-

ture weights.

Finally, the EM iteration ends with calculating the new

class variances from the updated mixture weights

b2
d;c  

1

N

X
r

½2pcðrÞ � pcðr þ udÞ � pcðr � udÞ�2: (11)

The EM algorithm is summarized in Table I.

III.C. Application to image denoising

The model can be used for image denoising by fitting it to

an image. In a Bayesian framework, the goal is to maximize

the posterior probability of the underlying noise-free image

given the noisy version. As it happened in the EM algorithm

from the training stage (Sec. III B.2), direct optimization

with respect to all variables is computationally very difficult.

Once more, coordinate descent can be used. In this context,

the algorithm is known as iterative conditional modes

(ICM).51 In ICM, voxels are visited in random order, and

their values are optimized by maximizing the conditional

probability pðxðrÞjx	ðrÞ;bxðS n rÞÞ, where x	ðrÞ is the

observed (noisy) attenuation at the given voxel and bxðS n rÞ
is the current restored value at all other locations. The algo-

rithm typically converges (i.e., negligible change in x) after

a few passes over the whole volume.

The joint conditional distribution of the mixture

weights pðrÞ and the “real” attenuation xðrÞ at each voxel

are given by Bayes’s rule [(Eq. (13)]. Maximizing the

joint probability pðxðrÞ; pðrÞÞ is much faster than maxi-

mizing the marginal pðxðrÞÞ and yields good results (see

Sec. V). Under the assumptions in this study (namely the

graphical model in Fig. 3), the following independence

relationships hold:

• pðx	ðrÞjxðrÞ; pðrÞ; pðS n rÞ; xðS n rÞÞ ¼ pðx	ðrÞjxðrÞÞ;
• pðxðrÞjpðrÞ; pðS n rÞ; xðS n rÞÞ ¼ pðxðrÞjpðrÞÞ;
• pðpðrÞjpðS n rÞ; xðS n rÞÞ ¼ pðpðrÞjpð@rÞÞ:

where @r represents the neighborhood of r. Substitution in

Eq. (13) yields the final expression for the posterior likeli-

hood of the “real,” underlying data

TABLE I. EM algorithm to estimate the model parameters.

1. Initialize the mixture model components lc;Rcf g with the

results from Sec. III B 1.

2. Initialize the mixture weights for every voxel with the weights

of the MRF-free GMM from the same section.

3. While the function Q from Equation 5 keeps increasing:

a) Calculate the posterior probabilities zcðrÞ with Equation (6).

b) Update the mixture model components with Equation (8).

c) Visit all voxels in random order, updating their mixture

weights pcðrÞ with the solution of the problem

from Equation (9).

d) Repeat step c) until convergence (typically 5–6 times).

e) Update the class variances b2
d;c with Equation (11).
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POST:L: / pðxðrÞ; pðrÞjx	ðrÞ; pðS n rÞ; xðS n rÞÞ ¼ pðx	ðrÞjxðrÞÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
NOISE MODEL


 pðxðrÞjpðrÞÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
GMM


 pðpðrÞjpð@rÞÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
MRF

¼ F; (12)

pðxðrÞ; pðrÞjx	ðrÞ; pðS n rÞ; xðS n rÞÞ / pðx	ðrÞjxðrÞ; pðrÞ; pðS n rÞ; xðS n rÞÞ 
 pðxðrÞ; pðrÞjpðS n rÞ; xðS n rÞÞ
¼…… ¼ pðx	ðrÞjxðrÞ; pðrÞ; pðS n rÞ; xðS n rÞÞ 
 pðxðrÞjpðrÞ; pðS n rÞ; xðS n rÞÞ 
 pðpðrÞjpðS n rÞ; xðS n rÞÞ ¼ F; (13)

pðpðrÞjpð@rÞÞ ¼
YC
c¼1

Y3

d¼1

G 2pcðrÞjpcðr þ udÞ þ pcðr � udÞ; b2
d;c

	 

¼…

… ¼
YC
c¼1

G 2pcðrÞj

P3
d¼1

ðpcðr þ udÞ þ pcðr � udÞÞ
Q3

p ¼ 1

p 6¼ d

b2
p;c

P3
d¼1

Q3
p ¼ 1

p 6¼ d

b2
p;c

;

Q3
d¼1

b2
d;cP3

d¼1

Q3
p ¼ 1

p 6¼ d

b2
p;c

266666666664

377777777775
; (14)

@logðFÞ
@pcðrÞ

¼ GðxðrÞjlc;RcÞPC
c0¼1

pc0 ðrÞGðxðrÞjlc0 ;Rc0 Þ
� 2

P3
d¼1

ð2pcðrÞ � pcðr þ udÞ � pcðr � udÞÞ
Q3

d0 ¼ 1

d0 6¼ d

b2
d0;c

Q3
d¼1

b2
d;c

; (15)

@logðFÞ
@xkðrÞ

¼ S2
0ðrÞ
r2

k

I1

S2
0ðrÞxkðrÞx	kðrÞ

r2

� �
I0

S2
0ðrÞxkðrÞx	kðrÞ

r2

� � x	kðrÞ � xkðrÞ

26664
37775þ

PC
c¼1

pcðrÞGðxðrÞjlc;RcÞ Rcðlc � xðrÞÞ½ �k
� �

PC
c¼1

pcðrÞGðxðrÞjlc;RcÞ
: (16)

The first term in Eq. (12) corresponds to the Rician noise

model from Eq. (4). The second term in F is just the GMM

from Eq. (2). The third term is a product of univariate

Gaussians corresponding to the different mixture com-

ponents and directions in the MRF. Each Gaussian term is

the result of multiplying the conditional probabilities

given by the neighbors in each of the three spatial direc-

tions [Eq. (14)].

Maximizing the posterior F [(Eq. (12)] is equivalent to

maximizing its logarithm, which has a simpler expression.

The derivatives of log F with respect to the mixture weights

and attenuation values can be computed analytically [see

Eqs. (15) and (16), where ½
�k denotes the kth element of a

vector, and I1 is the modified Bessel function of the first

kind with order one]. This makes it possibly to optimize

log F efficiently using gradient ascent, i.e., taking small

steps along the direction of the gradient at each point. After

each step, it is necessary to project the mixture weights

onto its constraint (i.e., the probability simplex). Unlike in

Sec. III B. 2, this now works well because the user-defined

step is fixed and small. A simple and fast algorithm for pro-

jecting onto the probability simplex52 was utilized. It is

also necessary to project xðrÞ onto its own constraint

(xðrÞ 2 ½0; 1�) after each step. This is accomplished by set-

ting to zero any component below zero and setting to one

any component over one.

IV. EXPERIMENTS AND RESULTS

IV.A. Training the model

The proposed model was trained with the 50 images

from the training dataset. Rather than using all the avail-

able voxels, a random patch of size 25� 25� 20 voxels

was extracted from each of them to lighten the computa-

tional load of the algorithm (in total N � 500; 000 vox-

els). The patches were constrained to have at least two
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thirds of their voxels in the mask provided by the BET

algorithm. A preliminary experiment evaluating the MML

in Eq. (7) at C ¼ 5n; n ¼ 1;…; 10, revealed that the mini-

mum was achieved around C ¼ 25 � 30.

Because the algorithm that selects C can only decrease

from an initial value Cini by merging components, the initial

GMM without the MRF term was first trained with Cini ¼ 35

components. The training was repeated five times using EM

with different seeds for the K-means algorithm, whose out-

put initializes the EM. The model with the highest log-likeli-

hood log Q was kept. The evolution of the metric log Q with

the number of iterations for the best seed is displayed in

Fig. 4(a).

Once the GMM was trained with Cini ¼ 35, components

were iteratively merged until the MML did not decrease

anymore, which happened at C = 27, as shown in Fig. 4(b).

The resulting GMM was used as initialization to train the

GMM-MRF model [Fig. 4(c)]. The averages over all train-

ing pixels of the mixture weights (henceforth hpci), which

are useful in order to initialize the denoising algorithm

(Sec. IV B), were saved along with the model. The model

components, along with their weights and first mode of var-

iation, are displayed in Fig. 5. The first mode depicts in

most cases the scale of the diffusion. The second mode, dis-

played in Fig. 6, shows more variability in the orientations.

From Figs. 5 and 6, we see that components such as

f1; 4; 7; 11; 26g represent the isotropic part of the data,

whereas the rest of the components display anisotropy in

different directions.

IV.B. Denoising

Rician noise was added to the 50 images in the test

dataset, and the proposed method (as well as other three

algorithms) was then utilized to restore them. Since the

system was trained on the 50 other subjects in the training

dataset, no bias was introduced in the evaluation. The

RMS error in the attenuation data was used as evaluation

metric

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
r

k xdenoisedðrÞ � xðrÞk2

s
;

where xdenoisedðrÞ represents the denoised attenuation data

and xðrÞ is the ground truth.

In the denoising scheme proposed in this study, the

restored data xdenoisedðrÞ was initialized with the noisy ver-

sion x	ðrÞ, whereas the mixture weights pðrÞ were initialized

with the average weights from the training data (Sec. IV A):

pcðrÞ ¼ hpci 8r. The noise parameters frkg are assumed to

be known and constant across the gradient directions:

rk ¼ r; 8k. This is a fair assumption in MRI because there is

a large amount of background pixels in the data, so rk can be

accurately estimated from them, for example, by studying

their statistical moments53 or histogram.54

The proposed denoising algorithm was compared at dif-

ferent noise levels with the following strategies: a Gaussian

smoothing filter, the classical anisotropic diffusion (AD) fil-

ter,55 and a Rician-adapted, nonlocal means (NLM) filter.21

Rician bias correction was added to the first two in order to

take advantage of the fact that the noise parameter r is

known; otherwise, the experiment would be biased against

these two algorithms (the NLM filter already makes use of

this information).

Figure 7 shows the performance of the different algo-

rithms at different noise levels. The width of the Gaussian

kernel and the conductance parameter of the AD filter were

optimized to minimize the error at each noise level using the

training data. Gaussian blurring is clearly worse than the

other methods for every SNR. Regarding the other

approaches, none of them is significantly better than the

others at low noise levels. However, the performance of our

method decreases slower with noise power than the others.

The improvement with respect to AD and NLM is statisti-

cally significant (p < 0:01) approximately when SNR<11

dB. The proposed method would for example allow for a

very fast, noisy acquisition at SNR �8 dB that could be

denoised to provide the same quality as an acquisition at

FIG. 4. Evolution of metrics in training: (a) GMM (best

of 5), (b) MML, and (c) GMM-MRF.
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SNR �22 dB restored with a Gaussian filter. At higher SNR,

it would be more efficient to use AD or NLM due to their

lower computational cost, unless image segmentation or

analysis is to be carried out after the denoising. In that case,

the features (probability maps) produced by our method can

be worth the longer execution time (see Sec. IV C)

In Fig. 8, a slice of a diffusion-weighted image of a sam-

ple brain is displayed for the uncorrupted, corrupted

(SNR¼ 10 dB), and denoised versions. The fODF field is

also plotted for a region of interest (ROI) focused on the

crossing between the corona radiata and the radiation of the

corpus callosum. The ODF was estimated at 642 directions

using a method by Descoteaux et al.16 with a spherical har-

monic expansion of order six. The fODF was computed

from the ODF in a nonparametric fashion using Tikhonov

regularization.56 The Gaussian filter requires a very wide

kernel to eliminate the noise, which leads to oversmoothing.

The anisotropic diffusion filter does preserve some edges

slightly better (e.g., the callosal bundle on the right of the

fODF field looks thinner) but also introduces too much blur-

ring (e.g., the in the central region of the ROI, where the

fiber crossing is smudged). The NLM filter respects the

edges in some extent but does not eliminate as much noise

as the other filters. Finally, the proposed method takes

advantage of the learned diffusion distribution to remove

most of the noise with less blurring and therefore less spuri-

ous crossings (these are especially noticeable in the output

of the Gaussian filter).

The ultimate goal of DW-MRI is fiber tracking. Figure 9

shows 3D reconstructions of the tractography output for a

test subject given by a classic streamline tractography

method very similar to Descotaux et al.19 From a number of

points (1000) in a seed region, a step (0.5 mm) is taken in

the direction of the global maximum of the fODF. Then, sub-

sequent steps follow the orientation of the local maximum of

the fODF that is closest to the direction of the previous step.

The tracking ends if a point of low fractional anisotropy

(< 0:1) is reached or if the angle between two consecutive

steps is above a threshold (60
�
).

In Fig. 9(a), one seed was placed on the corticospinal

tract and another in the body of the corpus callosum to

observe the behavior at the intersection of the corpus

FIG. 5. Mixture components after training. For each component, the first mode of variation (l62
ffiffiffiffiffi
k1

p
e1, where fl; k1; e1g are the mean, first eigenvalue, and

first eigenvector of the covariance matrix) and the average weights over the training data hpci are shown. The components were fitted to a (Laplace–Beltrami

regularized) spherical harmonic expansion of order six and min-max normalized for display. The components are color-coded as follows: red indicates left/

right direction, green is anterior/posterior, and blue is inferior/superior. Note that the components represent attenuation, so a toroidal shape implies a single

fiber population along the axis.

FIG. 6. Mixture components after training: second mode of variation, l62
ffiffiffiffiffi
k2

p
e2 (see caption of Fig. 5).
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callosum and its radiation with the corona radiata. In Fig.

9(b), the seeds are in corticospinal tract and in the middle

cerebellar peduncle. The corticospinal tract crosses the

peduncle on its way to the spinal cord. In Fig. 9(c), there are

three seeds: one to track the superior frontal gyrus fibers,

one to track the capsule fibers, and one in the genu or the

corpus callosum. The genu of the corpus callosum and the

capsule fibers converge in the anterior/posterior direction,

whereas the superior frontal gyrus fibers bend toward the

superior part of the brain. In all three cases, the corrupted

version produces many false positives that lead to spurious

tracts away from the bundles of interest. The Gaussian filter

can partially recover the tracts, but the smoothing makes the

bundles look thicker than they really are, especially at cross-

ings. The anisotropic diffusion filter does a better job restor-

ing the main tracts, but falters at the fiber intersections. The

nonlocal means filter recovers the bundles to some extent

but still displays some false positives. When the noisy data

are fitted to our proposed model, the algorithm is able to

track the bundles across the intersections as in the uncor-

rupted volumes.

IV.C. Segmentation

Nikou et al.36 and Rivera et al.38 use a spatially variant

mixture model for image segmentation: when the model is

fitted to the data, the most likely mixture weights for each

voxel pðrÞ are provided by the optimization algorithm, and

these probability maps can be used as features in a segmenta-

tion algorithm. In our case, some of the probability maps

correlate almost directly with anatomy (see the example in

Fig. 10). It is interesting to test whether these probabilities

can be used as features with classification purposes. The fol-

lowing experiment was set up: a support vector machine

(SVM) was trained to classify the voxels as ventricle, cau-

date nucleus, or rest of the brain using the probability

images; if the results are good, the mixing weights are good

features.

The SVM was trained on the 50 training images and eval-

uated on the 50 test images. In the training stage, the model

was first fitted to the training images. Then, all the positive

voxels (i.e., annotated as ventricle or caudate) and an equal

amount of randomly selected negative voxels (i.e., marked

as background) were used to train the SVM. In the evalua-

tion stage, the voxels in the test images were classified as

ventricle, caudate, or background. This provides a mask for

the ventricle and a mask for the caudate. These masks were

morphologically closed with a spherical kernel (radius 3

mm), and then holes and islands were removed.

Rather than using the C¼ 27 weights as features for each

voxel, a feature selection algorithm was used (“plus 3-take

away 1”57). Feature subsets were evaluated by cross-valida-

tion (ten folds with five images each) on the training data.

The evolution of the error rate with the number of features is

shown in Fig. 11. By visual inspection, the cut-off was set at

13 features for the ventricles and 8 for the caudate nucleus.

Once the classifier was trained, its performance was eval-

uated with the 50 test images. The similarity indices (SI) of

the gold standard and the automated segmentations are dis-

played in Table II. The SI is defined as

SI ¼ 2nðLa \ LbÞ
nðLaÞ þ nðLbÞ

2 ½0; 1�;

where La;b are the compared labels and nð
Þ is the number of

voxels.

These SI values are not far from the intrauser variability

(also in Table II), which was determined using the 25 images

that were reannotated. This variability defines the precision

of the ground truth, and it is an intrinsic limit of the perform-

ance that an automated system can achieve. In absolute

terms, the SI values are relatively low because of the low re-

solution of DW-MRI and the fact that the caudate is difficult

to delineate in T2-weighted MRI, which is the modality of

the baseline. For instance, a recent study using a multiatlas

approach58 reported SI values between 0.66 and 0.83 for the

caudate.

V. DISCUSSION

A spatially variant mixture model for diffusion MRI has

been presented in this article. The signal attenuation, which

is inherently a mixture due to the coexistence of fiber popu-

lations, is modeled as a Gaussian mixture in which the mean

vectors and covariance matrices are assumed to be independ-

ent of spatial locations, whereas the mixture weights are

allowed to vary at different lattice locations. Spatial smooth-

ness of the data is ensured by imposing a Markov random

field prior on the mixture weights. The model is trained on

clean pseudoground truth data using the expectation maximi-

zation algorithm. The number of mixture components is

determined using the minimum message length criterion

from information theory. The system has the advantage of

not having any parameters to tune.

The main application of the model is image denoising:

given the noisy data, the denoised image can be computed as

the most likely explanation in a Bayesian framework. This

poses an optimization problem that can be solved within a

reasonable time with coordinate descent. The proposed

approach was compared with some of the most popular

FIG. 7. Average RMS error from uncorrupted image to restored version at

different noise levels. The 95% confidence interval, calculated at image

level (rather than pixel level), is also displayed.
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denoising algorithms in the domain. Even though the pre-

sented methodology does not clearly outperform these

approaches at typical SNR ratios, it is substantially superior

at low SNR thanks to its prior knowledge on the data. This

makes it possible to acquire the images using a fast (i.e.,

noisy) sequence and denoise them to acceptable noise levels.

The denoised data were shown to be able to recover the trac-

tography results from the uncorrupted version.

FIG. 8. Color-coded coronal slice of a diffusion weighted scan (left column), corresponding fractional anisotropy (middle) and zoom-in of fODF field around

the crossing between the corona radiata and the radiation of the corpus callosum (right). The corrupted version has SNR¼ 10 dB. The white square on the

uncorrupted, color-coded slice marks the ROI for which the fODF field is displayed. AD stands for anisotropic diffusion and NLM for nonlocal means.
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A possible improvement of the methodology would be to

denoise the image by maximizing pðxðrÞÞ rather than

pðxðrÞ; pðrÞÞ (Sec. III C). The problem is that the marginali-

zation integral pðxðrÞÞ ¼
Ð

RC pðxðrÞ; pðrÞÞdpðrÞ cannot be

calculated analytically, so it would require statistical sam-

pling, which is computationally taxing. Moreover, optimiz-

ing the joint probability has the advantage that it also

provides the optimal mixture weights for each voxel, which

can be used as features for subsequent image analysis.

Another possible improvement would be use a robust

metric to penalize the differences between neighboring mix-

ture weights. The proposed MRF uses a quadratic penalty

corresponding to a Gaussian distribution. This might not be

the most suitable approach when there exist discontinuities

(e.g., edges) in the data. A possibility would be to use a Lap-

lace distribution or generalization thereof, which penalizes

the absolute difference rather than the squared difference.37

This could help reduce the (on the other hand minimal) blur-

ring introduced by the method, which can potentially intro-

duce spurious crossings. However, this would greatly

complicate the analysis and the optimization process.

One potential limitation of the model is the lack of a

proper ground truth, which is required in the training stage.

This is a recurrent problem in DW-MRI. Phantoms consist-

ing of separate fibers embedded in a homogeneous back-

ground are commonly used in the literature, but this is not a

realistic approximation of the brain white matter. Elaborat-

ing more sophisticated phantom remains an open problem

(see Refs. 59 and 60 for some recent efforts). Long image ac-

quisition MRI sequences (24–48 h) can be used to obtain

FIG. 11. Feature selection: error rate in cross-validation vs. number of

selected features: (a) ventricles and (b) caudate nucleus.

FIG. 9. 3D reconstruction of the fiber tracking output for the uncorrupted, corrupted (SNR¼ 10 dB) and denoised volumes of a sample test brain. The relative

orientation of the reconstruction is displayed in the leftmost column: x represents posterior to anterior, y is right to left, and z is inferior to superior. The yellow

spheres mark the seed regions. a) Corticospinal tract and corpus callosum b) Corticospinal tract and middle cerebellar peduncle. c) Corpus callosum, capsule

fibers, and superior frontal gyrus fibers.

FIG. 10. Probability maps for different mixture components (for which the

second mode of variation, often more informative than the first, is dis-

played). (a) Sample saggital slice that shows high probability for a left/right

component around the corpus callosum. (b) Coronal slice for a probability

volume that displays high probability for a vertical component around the

corticospinal tract. (c) Axial slice of the probability volume of an isotropic

component that shows high probability around the ventricles.
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very high SNR data, but they typically require ex-vivo data

from deceased subjects to avoid motion artifacts. In this

study, the lack of ground truth is circumvented by downsam-

pling the images in the directional domain to obtain rela-

tively clean data.

The proposed algorithm makes two important assump-

tions about noise. First, that the noise in the baseline T2 data

is negligible compared to the noise in the gradient images.

And second, that the noise power is known exactly. Both

assumptions are however reasonable: due to multiple acquis-

itions and the lack of attenuation by diffusion, the baseline

images have indeed much higher SNR than the gradient

images. The noise parameter r can be accurately estimated

as the mode of the background of the image, thanks to the

large amount of background voxels that are typically present

in a 3D scan.

Regarding the ability to generalize to other datasets,

retraining should not be necessary as long as the new data

are acquired in the set of directions in the dataset presented

here and at the same spatial resolution. If the resolution was

different, the class variances could be modified to account

for the difference in voxels size. If the gradient directions

were different, the data could be resampled to the set of

directions used here. Correction for different Le Bihan’s

constant is immediate. Evaluating the performance of the

algorithm on a different dataset and exploring the impact of

these adjustments when necessary remains as future work.

Another interesting aspect is the application of the algo-

rithm to cases displaying pathology. In that case, the learned

statistical distributions might not hold anymore. If a certain

pathology is expected to be present in the test set, it should

be possible to ensure that subjects with that particular dis-

ease are present in the training dataset. However, if there is

no knowledge on potential conditions present in the test

data, a very comprehensive training dataset might be neces-

sary to obtain good results. Evaluating the method in these

situations also remains as future work.

Finally, it is important to discuss the execution speed of

the algorithm. All the described algorithms were imple-

mented in JAVA and run in an Intel Core i7 desktop. The

training stage takes 3 h, which is not a problem because it

must be executed only once. Denoising an image takes

approximately 25 min. This is longer than the execution

time of the other approaches discussed here (Gaussian filter-

ing, NLM, and AD). However, given that the code was not

optimized for speed and that JAVA is an interpreted language,

it should be possible to reduce the execution time to the

order of � 10 min, which is completely acceptable given the

dimensionality of the data (i.e., 128� 128� 128 voxels� 94

directions/voxel).
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