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The Illusion of Distribution-Free Small-Sample Classification in Genomics 
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Abstract: Classification has emerged as a major area of investigation in bioinformatics owing to the desire to discriminate 
phenotypes, in particular, disease conditions, using high-throughput genomic data. While many classification rules have 
been posed, there is a paucity of error estimation rules and an even greater paucity of theory concerning error estimation 
accuracy. This is problematic because the worth of a classifier depends mainly on its error rate. It is common place in bio-
informatics papers to have a classification rule applied to a small labeled data set and the error of the resulting classifier be 
estimated on the same data set, most often via cross-validation, without any assumptions being made on the underlying 
feature-label distribution. Concomitant with a lack of distributional assumptions is the absence of any statement regarding 
the accuracy of the error estimate. Without such a measure of accuracy, the most common one being the root-mean-square 
(RMS), the error estimate is essentially meaningless and the worth of the entire paper is questionable. The concomitance 
of an absence of distributional assumptions and of a measure of error estimation accuracy is assured in small-sample set-
tings because even when distribution-free bounds exist (and that is rare), the sample sizes required under the bounds are 
so large as to make them useless for small samples. Thus, distributional bounds are necessary and the distributional as-
sumptions need to be stated. Owing to the epistemological dependence of classifiers on the accuracy of their estimated er-
rors, scientifically meaningful distribution-free classification in high-throughput, small-sample biology is an illusion. 
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INTRODUCTION 

 The advent of high-throughput genomic data has brought 
a host of proposed classification rules to discriminate types 
of pathology, stages of a disease, duration of survivability, 
and other phenotypic discriminations. Using gene expression 
as archetypical, these generally follow a common methodol-
ogy: (1) identify each expression profile (feature vector) 
within the data set with a class, meaning that a label is asso-
ciated with each profile, (2) use a classification rule, includ-
ing feature selection, to design a classifier, and (3) use an 
error estimation rule to estimate the error of the designed 
classifier. A critical issue, and one not explicitly stated, is 
that the entire procedure is done without any assumptions on 
the feature-label distribution (population). This issue is criti-
cal because the performances of both the classification and 
error estimation rules depend heavily on the population, spe-
cifically, the class-conditional distributions governing the 
profiles and the labels. It may be argued that one can apply 
any classification rule, without concern for the feature-label 
distribution, because ultimately it is the error of the designed 
classifier that matters and, if one uses an inappropriate clas-
sification rule, then the price will be paid in poor perform-
ance. While ignoring the properties of a classification rule  
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may not be the most prudent way to go about designing clas-
sifiers, there is no epistemological difficulty in doing so. On 
the other hand, since the worth of a classifier rests with its 
error, error estimation performance is crucial.  

 When an error estimate is reported, it implicitly carries 
with it the properties of the error estimator; otherwise, the 
estimate carries no knowledge. If no distribution assump-
tions are made, then very little, or perhaps nothing, can be 
said about the precision of the estimate. In the rare instances 
in which performance bounds are known in the absence of 
any assumptions on the feature-label distribution, those 
bounds are so loose as to be virtually worthless for small 
samples. Consequently, if the authors are claiming that the 
error estimate carries any knowledge, then they are implicitly 
making distributional assumptions. The implicit nature of the 
assumptions invalidates the entire enterprise. It is precisely 
the explicitness of assumptions that renders the conclusion 
meaningful. 

Classifier Models 

 For two-class classification, the population is character-
ized by a feature-label distribution F for a random pair (X,
Y), where X is the vector of features (gene expression vector 
in the case of microarrays) and Y is the binary label, 0 or 1, 
of the class containing X. A classifier is a function �(X)
which assigns a binary label to each feature vector. The er-
ror, �[�], of a classifier � is the probability that � produces 
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an erroneous label. A classifier with minimum error among 
all classifiers is known as a Bayes classifier for the feature-
label distribution and this minimum error is known as the 
Bayes error. From an epistemological perspective, the error 
is the key issue since it quantifies the predictive capacity of 
the classifier and scientific validity is characterized by pre-
diction [1]. One can apply the same classifier to any number 
of feature-label distributions and the error for a particular 
distribution characterizes classifier prediction on that distri-
bution.  

 Abstractly, any pair M = (�, ��) composed of a function 
�: �d � {0, 1} and a real number �� � [0, 1] constitutes a 
classifier model, with �� not specifying an actual error prob-
ability corresponding to �. M becomes a scientific model 
when it is applied to a feature-label distribution. At this point 
model validity comes into question. Irrespective of where �
comes from, the model is valid for the feature-label distribu-
tion F to the extent that �� approximates the classifier error, 
�[�], on F. The degree of approximation must be measured 
by some distance-type function, 	(��, �[�]), between �� and 
�[�], such as the absolute difference |�f[�] � ��|.  
 In practice the feature-label distribution is unknown and 
a classification rule 
n is used to design a classifier �n from 
a random sample Sn = {(X1, Y1), (X2, Y2),…, (Xn, Yn)} of 
pairs drawn from the feature-label distribution. Note that a 
classification rule is really a sequence of classification rules 
depending on the sample size n. If feature selection is in-
volved, then it is part of the classification rule. A designed 
classifier produces a classifier model, namely, (�n, �[�n]). 
Since the true classifier error �[�n] depends on the feature-
label distribution, which we do no know, �[�n] is unknown. 
In practice, the true error is estimated by an estimation rule,
�n. Thus, the random sample Sn yields a classifier �n = 

n(Sn) and an error estimate �̂ [�n] = �n(Sn), which together 
constitute a classifier model (�n, �̂ [�n]). In sum, practical 
classifier design involves a rule model (
n, �n) used to de-
termine a sample-dependent classifier model (�n, �̂ [�n]). 
Since the classifier depends on a random sample, both (�n,
�[�n]) and (�n, �̂ [�n]) are random.  

Validity 

 Given a specific sample, �[�n] and �̂ [�n] are fixed val-
ues but we do not know �[�n]; however, given a feature-
label distribution, we can compute an expected distance be-
tween the estimated and true errors. Thus, model validity is 
characterized in terms of the performance of the rule model, 
that is, the precision of the error estimator �̂ [�n] = �n(Sn) as 
an estimator of �[�n]. That is, model validity is defined via 
the properties of the error estimation rule relative to the clas-
sification rule and the feature-label distribution. For 
notational ease we denote �[�n] and �̂ [�n] by � and �̂ , re-
spectively. An obvious choice for measuring model validity 
is the expected absolute difference, namely, E[| �̂ � �|]; how-
ever, it is more common to use the root-mean-square (RMS)

error, defined by 

RMSn( �̂ ) = ]|ˆ[| 2���E            (1) 

 The RMS can be decomposed into the bias, Bias[ �̂ ] = 
E[ �̂ � �], of the error estimator relative to the true error, and 
the deviation variance, Vardev[ �̂ ] = Var[ �̂ � �], according to  

RMSn( �̂ ) = 2]ˆ[]ˆ[ �+� BiasVardev          (2) 

 Since E[| �̂ � �|] � RMSn( �̂ ), a small RMS guarantees a 
small expected absolute difference. If we use the RMS to 
characterize model validity, then the model with smaller 
RMS is more valid. Our goal is to have the RMS as small as 
possible. 

 Rather than consider the expectation of the squared abso-
lute difference, one can require that the absolute difference is 
not too large with high probability. Letting the probability 
0.95 (or some other value) represent strong confidence, we 
can measure validity by the value r > 0 that results in P(| �̂ �

�| > r) = 0.05. Whereas computation of the RMS requires 
only the first and second moments of the true and estimated 
errors, computation of this tail probability involves the joint 
distribution of the true and estimated errors. In this paper we 
confine ourselves to RMS but the epistemological concepts 
are immediately extendable to validity measured by the tail 
probability. 

Epistemology 

 Epistemologically, when a classifier is designed and an 
error estimate computed, model validity, and, hence, the de-
gree to which the model has meaning, rests with the proper-
ties of the error estimator, in particular, the RMS or some 
other specified measure of validity [1]. Absent some quanti-
tative measure of validity, a classifier model is epistemologi-
cally vacuous, that is, absent of meaning. In and of itself, an 
estimation rule is nothing more than a computation. Any 
number of computations can be proposed and, unless these 
are judged by some criterion, all are equally vacuous The 
criterion is a choice among researchers, there may be many 
criteria, and one classifier model may be more valid than 
another relative to one criterion and less valid relative to 
another. But a criterion must be posited for a classifier model 
to have any scientific meaning. 

 Suppose a sample is collected, a classification rule 
n
applied, and the classifier error estimated by an error-
estimation rule �n to arrive at the classifier model (�n,
�̂ [�n]). If no assumptions are posited regarding the feature-
label distribution, then it must be assumed that no such as-
sumptions are being made and the entire procedure is com-
pletely distribution-free with respect to the feature-label dis-
tribution. There are three possibilities. First, if no validity 
criterion is specified, then the classifier model is ipso facto
epistemologically meaningless. Simply put, there is no way 
to evaluate the classifier model. Second, suppose a validity 
criterion is specified, say RMS, and no distribution-free re-
sults are known about the RMS for 
n and �n. Again, the 
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model is meaningless because nothing can be said about the 
performance of the error-estimation rule. Third, again assum-
ing RMS as the measure of validity, suppose there exist dis-
tribution-free bounds concerning �n and �n. Then these 
bounds can be used to quantify the performance of the error 
estimator and thereby quantify model validity. 

 Regarding the latter case, consider the leave-one-out er-
ror estimator, loo�̂ , and the k-nearest-neighbor classification 
rule with random tie-breaking. There exists a distribution-
free bound: 

RMSn( loo�̂ ) �
n

k �+ 2241            (3) 

[2]. If k = 3 and the sample size is n = 100, then the bound is 
approximately 0.353, so that there is very little model valid-
ity and knowledge of the true error is highly uncertain.

 For leave-one-out error estimation, the histogram rule, 
and multinomial discrimination with b cells, there exists the 
following distribution-free bound:  

RMSn( loo�̂ ) �
)1(

661 1

��
+

+ �

nn
e           (4) 

[3]. If the sample size is n = 100, then the bound is approxi-
mately 0.601, so that there is very little model validity and 
knowledge of the true error is essentially nil. With such an 
RMS, even a very small estimate is of no value. If n = 
10,000, then the RMS is approximately 0.184, which is still 
poor. Thus, distribution-free bounds such as those in Eqs. 3 
and 4 have virtually no practical use.  

 Even if a feature-label distribution is assumed, estimation 
can still be very bad. Consider an arbitrary feature-label dis-
tribution and nearest-neighbor classification. For the resub-
stitution error estimator, res�̂  = 0, irrespective of the data. If 
�bay denotes the Bayes error, then � � �bay and  

RMSn( res�̂ ) = ]|ˆ[| 2���resE  = ][ 2�E � ][ 2
bayE �  = �bay   (5) 

While this situation is pathological, it reveals the importance 
of the Bayes error relative to RMS. If the Bayes error is 0, 
then it simply says that the RMS exceeds 0, so that it is pos-
sible the RMS is small and the resubstitution error is accu-
rate. At the other extreme, if the Bayes error is 0.5, then the 
RMS exceeds 0.5. In general, the relationship between the 
RMS and the Bayes error is important for determining error 
estimation performance, not just in the case of resubstitution. 

  To examine the relationship between the RMS and 
Bayes error, we consider a feature-label distribution having 
two equally probable Gaussian class-conditional densities 
sharing a known covariance matrix and the linear discrimi-
nant analysis (LDA) classification rule. For this model the 
Bayes error is a one-to-one decreasing function of the dis-
tance, m, between the means. Moreover, for this model we 
possess analytic representations of the joint distributions of 
the true error with both the resubstitution and leave-one-out 

error estimators, exact in the univariate case and approximate 
in the multivariate case [4]. Whereas one could utilize these 
approximate representations to find approximate moments 
via integration, more accurate approximations, including the 
second-order mixed moment and the RMS, can be achieved 
for this Gaussian model via asymptotically exact analytic 
expressions using a double asymptotic approach, where both 
sample size and dimensionality approach infinity at a fixed 
rate between the two [5]. Finite-sample approximations from 
the double asymptotic method have long been known to 
show good accuracy [6, 7]. Figs. (1 and 2), computed based 
on the results in [5], show the RMS to be a one-to-one in-
creasing function of the Bayes error for resubstitution and 
leave-one-out, respectively, for dimensions p = 5, 10, 25 and 
sample sizes n = 20, 40, 60, the RMS and Bayes errors being 
on the y and x axes, respectively. This monotonic behavior 
for the RMS as a function of the Bayes error is not uncom-
mon (but not always the case). 

  Assuming a parameterized model in which the RMS is 
an increasing function of the Bayes error, we can pose the 
following question: Given sample size n and � > 0, what is 
the maximum value, maxBayes(�), of the Bayes error such 
that RMSn( �̂ ) � �? If RMS is the measure of validity and �
represents the largest acceptable RMS for the classifier 
model to be considered meaningful, then the epistemological 
requirement is characterized by maxBayes(�).Given the rela-
tionship between model parameters and the Bayes error, the 
inequality �bay � maxBayes(�) can be solved in terms of the 
parameters to arrive at a necessary modeling assumption.  

 In the preceding Gaussian example, since �bay is a de-
creasing function of m, we obtain an inequality of the form m
� m(�). Figs. (3 and 4) show the maxBayes(�) curves corre-
sponding to the RMS curves in Figs. (1 and 2), respectively. 
These curves show that, even if one assumes Gaussian class-
conditional densities and a known common covariance ma-
trix, further assumptions must be made on the Bayes error, 
or, equivalently, on model parameters, to insure that the 
RMS is sufficiently small to make the classifier model mean-
ingful. Absent a Gaussian or some other assumption of a 
distributional family, one could not even proceed to obtain a 
Bayes-error requirement.  

 We now consider the discrete histogram classification 
rule for multinomial discrimination with b bins under the 
assumption that the class-conditional probabilities are deter-
mined by a Zipf model with parameter � [8]. As � 	 0, the 
distributions tend to uniformity, which represents maximum 
discriminatory difficulty. As � 	 �, the distributions be-
come concentrated in single (distinct) bins, corresponding to 
maximum discrimination between the classes. The Bayes 
error is a decreasing function of �. We assume � is un-
known; otherwise, we would know the feature-label distribu-
tion. The joint distributions of the true error with the leave-
one-out and resubstitution estimators are known [9, 10] and 
closed-form expressions for the second moments are given in 
[11]. The RMS can be computed exactly based upon the 
formulas in the latter. Figs. (5 and 6), based on these, show
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Fig. (1). RMS versus Bayes error for resubstitution in a Gaussian model: (+) is n = 20; (�) is n = 40; (o) is n = 60. 

Fig. (2). RMS versus Bayes error for leave-one-out in a Gaussian model: (+) is n = 20; (�) is n = 40; (o) is n = 60. 

Fig. (3). Maximum Bayes error versus RMS = � for resubstitution in a Gaussian model: (+) is n = 20; (�) is n = 40; (o) is n = 60. 

Fig. (4). Maximum Bayes error versus RMS = � for leave-one-out in a Gaussian model: (+) is n = 20; (�) is n = 40; (o) is n = 60.
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the RMS for leave-one-out and resubstitution, respectively, 
as a function of the Bayes error for b = 4, 8, 16, and sample 
sizes n = 20, 40, 60. The RMS is greater for leave-one-out 
for b = 4, the RMS is greater for resubstitution for b = 16, 
and there is little RMS difference for b = 8. Figs. (7 and 8)
show the maxBayes(�) curves corresponding to Figs. (5 and 
6), respectively. Assuming a Zipf model gives a one-to-one 
correspondence between � and the Bayes error, so that the 
inequality �bay � maxBayes(�) is equivalent to an inequality 
of the form � � �(�). We could skip the Zipf assumption but 
then the inequality �bay � maxBayes(�) would be equivalent 

to a region in the (b � 1)-dimensional space of the bin prob-
abilities p1, p2,…, pb�1.

 To illustrate the advantage of knowing the RMS based on 
distributional assumptions, consider the following RMS 
bound for the discrete histogram rule for resubstitution, 
where b is the number of cells and n the sample size:  

RMSn( res�̂ ) �
n
b6            (6) 

[3]. Based on this bound, if b = 4, then the sample size must 
exceed 1667 to insure RMSn( res�̂ ) � 0.12. If, on the other 

Fig. (5). RMS versus Bayes error for resubstitution for discrete classification: (+) is n = 20; (�) is n = 40; (o) is n = 60. 

Fig. (6). RMS versus Bayes error for leave-one-out for discrete classification: (+) is n = 20; (�) is n = 40; (o) is n = 60. 

Fig. (7). Maximum Bayes error versus RMS = � for resubstitution for discrete classification: (+) is n = 20; (�) is n = 40; (o) is n = 60. 
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hand, we assume a Zipf discrete model and use the RMS 
resubstitution results in [11], then we find that a sample size 
of only 40 insures RMSn( res�̂ ) � 0.12.  

 Because we have the Bayes errors and closed-form ex-
pressions for the RMS in the preceding examples, everything 
is done analytically and characterized relative to the Bayes 
error, which is a universal measure of classification diffi-
culty. If the Bayes error is unknown, then the analysis can be 
performed using distribution parameters. In addition, we 
have been able to impose distributional assumptions so that 
there is a single parameter, say �, such that �bay � max-
Bayes(�) if and only if � � �(�), or � � �(�). This condition 
simplifies matters, but is not necessary.  

Contra Intuition  

 Absent knowledge of its properties, an error estimator is 
a meaningless computation. From a scientific perspective, 
the situation is no better if one justifies application of an 
error estimator on intuitive nonmathematical, or mathemati-
cally spurious, grounds. As an illustration, consider the ar-
gument that leave-one-out is unbiased. This argument is spu-
rious because it omits the fact that bias is only one factor in 
error estimation performance – in particular, only one term 
in Eq. 2 for the RMS. There is also the deviation variance in 
Eq. 2. Not only does the unbiasedness of leave-one-out not 
guarantee good performance, but it does not even guarantee 
better performance than resubstitution (Fig. 3). Arguments 
such as the approximate unbiasedness of leave-one-out dem-
onstrate a disregard for sound epistemology. To emphasize 
this point, we will first consider some Monte-Carlo results 
from the 1970s and some error bounds, and then we will turn 
to more contemporary analytic results characterizing exact 
performance.  

 In a classic 1978 paper, Ned Glick considers LDA classi-
fication for one-dimensional Gaussian class-conditional dis-
tributions possessing unit variance, with means �0 and �1,
and a sample size of n = 20 with an equal number of sample 
points from each distribution [12]. Fig. (9) is based on 
Glick’s paper; however, we have increased the Monte Carlo 
repetitions from 400 to 20,000 for increased accuracy. In 
both parts, the x-axis is labeled with m = |�0 � �1|, which is 

the Mahalanobis distance in this setting, with the parentheses 
containing the corresponding Bayes error. �bay(m), 
E[�LDA(m)], E[ res�̂ (m)], and E[ loo�̂ (m)] denote the Bayes 
error, the expected true error of the LDA classifier, the ex-
pected resubstitution error of the LDA classifier, and the 
expected leave-one-out error of the LDA classifier, respec-
tively. Three curves are plotted in Fig. (9a): (1) E[�LDA(m)] �
�bay(m) (solid), (2) E[ res�̂ (m)] � �bay(m) (dots), and (3) 
E[ loo�̂ (m)] � �bay(m) (dashes). Since the designed classifier 
cannot be better than the Bayes classifier,  

E[�LDA(m)] � �bay(m) > 0.            (7) 

Resubstitution is sufficiently optimistically biased as an es-
timator of �LDA that 

E[ res�̂ (m)] � �bay(m) < 0.            (8) 

Leave-one-out is slightly pessimistically biased, so that  

E[ loo�̂ (m)] � �bayt(m) � E[�LDA(m)] � �bay(m).         (9) 

 The salient point of Glick’s paper appears in Fig. (9b), 
which plots the standard deviations corresponding to 
�LDA(m), res�̂ (m), and loo�̂ (m) using the same line coding. 
When the optimal error is small, the standard deviations of 
the leave-one-out error and the resubstitution error are close, 
but when the error is large, the leave-one-out error has a 
much greater standard deviation. Glick was sufficiently con-
cerned that, with regard to the leave-one-out estimator, he 
wrote, “I shall try to convince you that one should not use 
this modification of the counting estimator (for the usual 
linear discriminant)” – not even for LDA in the Gaussian 
model. Glick’s concerns have been confirmed and extended 
beyond the Gaussian model in studies involving Monte Carlo 
simulations [13, 14] and in analytic results [4, 10], where it 
has been shown that for small samples the leave-one-out 
error estimator can be negatively correlated with the true 
error.  

 Let us close this section by illustrating how different er-
ror estimator comparison can be for small and large samples. 
In Eq. 4, (n � 1)�1/4 is the dominant term, whereas n�1/2 is 
dominant in Eq. 6. Thus, relative to the loose bounds in these 
equations, leave-one-out may have larger asymptotic RMS 

Fig. (8). Maximum Bayes error versus RMS = � for leave-one-out for discrete classification: (+) is n = 20; (�) is n = 40; (o) is n = 60. 
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than resubstitution as n � � for the discrete histogram rule. 
The curves in Fig. (10), based on the results in [11], show 
the RMS as a function of sample size for the Zipf model, 
with Bayes error 0.2. For b = 4, RMSn( res�̂ ) < RMSn( loo�̂ ). 
For b = 8, RMSn( res�̂ ) > RMSn( loo�̂ ) for n < 35 but 
RMSn( res�̂ ) < RMSn( loo�̂ ) for n � 35, which is in accord with 
the relations contained in Eqs. 4 and 6. For b = 16, 
RMSn( res�̂ ) > RMSn( loo�̂ ) for the sample sizes shown, but the 
inequality will eventually flip. We observe that, for low 
complexity, resubstitution can outperform leave-one-out 
cross-validation for small samples. As complexity increases, 
leave-one-out tends to outperform resubstitution; however, 
asymptotically, as n � �, resubstitution will again outper-
form leave-one-out, a point made in [3]. Simple, supposedly 
intuitive, arguments are not going to obtain these results.  

CONCLUSION 

 Very rarely is there analytic knowledge of the joint dis-
tribution of the true and estimated errors, or the RMS, two 
instances being the Gaussian model with known common 
covariance matrix using linear discriminant analysis [4] and 

multinomial discrimination [9, 10]. While there have been 
some attempts to estimate the variance of an error estimator 
from the training data, these are generally ad hoc and have 
been demonstrated to be very inaccurate, and therefore of 
negligible value for quantifying error estimation accuracy 
[15]. Moreover, if one is to apply an RMS bound, this re-
quires a distributional assumption, which in turn means that 
if one wishes to claim the benefit of a classification rule for a 
specific biological application, then either the application 
must be sufficiently understood so that the relevant variables 
can be assumed to obey, at least approximately, a known 
probabilistic law or some statistical test must be applied to 
provide reasonable assurance that the variables do not devi-
ate significantly from the distributional assumptions under 
which the RMS bound is being computed. 
 What happens when one is confronted with a small sam-
ple and the features are not Gaussian or multinomial, or if 
one wishes to use error estimators for which nothing is 
known about the RMS? In the absence of analytic results, 
one could use Monte-Carlo techniques based on distribu-
tional assumptions to obtain bounds on the RMS. This ap-
proach would be heavily computational and would provide 
only a sampling of RMS values; nonetheless, it could pro-

Fig. (9). Error estimator performance for LDA in one-dimensional Gaussian model based on Glick’s paper; (a) E[�LDA(m)] � �bay(m) (solid), 
E[ res�̂ (m)] � �bay(m) (dots), and E[ loo�̂ (m)] � �bay(m) (dashes); (b) standard deviations for �LDA(m) (solid), res�̂ (m) (dots), and loo�̂ (m)
(dashes). 

Fig. (10). RMS versus sample size for discrete classification: (x) resubstitution; (o) leave-one-out. 
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vide useful information on the accuracy of error estimation if 
sufficient computational power were employed. Ultimately, 
of course, the problem is a lack of attention to small-sample 
theory. Prior to 1980, there was some interest in the accuracy 
of error estimation, mainly with regard to the first or second 
moments of resubstitution (see [4] for a compendium). 
While these revealed the optimistic bias of resubstitution in 
the models considered, they did not address the joint second 
moments between the true and estimated errors, which are 
needed for a deeper understanding of error estimation accu-
racy. Making matters worse, between 1980 and 2005 there 
was hardly any theoretical interest in error estimation accu-
racy. This lack of interest is surprising in that various en-
hancements of cross-validation, including bootstrap, were 
proposed, but apparently with little concern for their small-
sample performance, which is especially surprising given 
that with large samples the data can be split into training and 
testing data, thereby precluding the need for error estimation 
on the training data.  
 Interestingly, the requirement of RMS bounds based on 
distributional assumptions follows from a recent statement 
made in an editorial in Bioinformatics written by several 
associate editors of the journal, when they write: “While 
simulation may still be worthwhile, and a useful tool for ex-
ploring robustness and parameter space of a new method, it 
is insufficient evidence for superiority of a new method 
without substantial support from significant improvement in 
results from analysis of real data” [16]. Significant im-
provement can only be demonstrated if there are bounds 
quantifying error estimation accuracy. This is an epistemo-
logical requirement and it lies at the heart of the classifica-
tion-related epistemological problems in bioinformatics ar-
ticulated in a number of papers [1, 17-24]. 
 Small-sample classification is no place to rely on intui-
tion, analogy, distribution-free asymptotic theory, or non-
rigorous quasi-mathematical “propositions.” Heuristic or 
incomplete mathematical arguments regarding error estima-
tion should be shunned and any claimed results should be 
evaluated on the basis of verified properties of error estima-
tors. One should be particularly wary of distribution-free 
classifier models since it is extremely unlikely that the pur-
ported results possess any solid foundation and there is a 
good possibility that they are epistemologically meaningless 
or, at least, any meaning they do possess is unknown to even 
the claimants. In the case of leave-one-out, and other cross-
validation techniques, it is perplexing that, given Glick’s 
stark warning, and recent reconfirmations, it has continued to 
be used up until the present day in small-sample settings in 
the absence of distributional assumptions.  
 While omitting distributional assumptions might lead one 
to believe that the results are more far reaching; in fact, this 
is typically an illusion because in small-sample settings the 
absence of distributional assumptions usually renders the 
entire study vacuous. Simply put, scientifically sound model-
free classification is impossible in small-sample settings. 
Should one doubt this, consider the comment by R. A. Fisher 
in 1925 on the limitations of large-sample methods:  

“Little experience is sufficient to show that the 
traditional machinery of statistical processes is 
wholly unsuited to the needs of practical re-

search. Not only does it take a cannon to shoot 
a sparrow, but it misses the sparrow! The 
elaborate mechanism built on the theory of in-
finitely large samples is not accurate enough 
for simple laboratory data. Only by systemati-
cally tackling small sample problems on their 
merits does it seem possible to apply accurate 
tests to practical data [25]”. 
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