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Multiple-Timescale Dynamics Underlying Spontaneous Oscillations
of Saccular Hair Bundles
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Department of Physics and Astronomy and California Nanosystems Institute, University of California, Los Angeles, California
ABSTRACT Spontaneous oscillations displayed by hair bundles of the bullfrog sacculus have complex temporal profiles, not
fully captured by single limit-cycle descriptions. Quiescent intervals are typically interspersed with oscillations, leading to
a bursting-type behavior. Temporal characteristics of the oscillation are strongly affected by imposing a mechanical load or
by the application of a steady-state deflection to the resting position of the bundle. Separate spectral components of the spon-
taneous motility are differently affected by increases in the external calcium concentration. We use numerical modeling to
explore the effects of internal parameters on the oscillatory profiles, and to reproduce the experimental modulation induced
by mechanical or ionic manipulation.
INTRODUCTION
The sensory epithelium of the inner ear is a remarkably
responsive system, capable of detecting displacements due
to an incoming soundwave as small as a few Å (1–3). It simul-
taneously displays a vast dynamic range, covering as much as
six orders of magnitude in applied pressure. The detection of
mechanical signals by the auditory system is performed by
hair cells, named in reference to their ciliated appearance.

Hair cells exhibit highly nonlinear response to external
stimuli. The amplification gain is frequency-selective, with
each cell maximally responsive at a characteristic fre-
quency, and compressive, with highest gain at low-intensity
input. The acuity of auditory detection has been shown to be
crucially dependent upon its nonlinearity. In a number of
species (4–6), the phenomenon has also been shown to
underlie spontaneous limit-cycle oscillations, displayed by
individual hair bundles under in vitro conditions.

Theoretical models have proposed that the dynamics of
hair bundle response can be described by differential equa-
tions that support a Hopf bifurcation (7–10). The equations
predict a regime with a stable fixed point, and upon crossing
of the bifurcation, the system sustains a stable limit-cycle
oscillation. A control parameter determines the dynamic
state of the system, with a critical value corresponding to
the bifurcation point.

Hair bundles of the bullfrog sacculus oscillate at ampli-
tudes up to ~100 nm, at 5–50 Hz. We showed previously
that these oscillations are mutually uncorrelated, with
frequencies uniformly and randomly distributed across the
epithelium (11). This study required recording spontaneous
motility from hundreds of unloaded bundles to obtain
sufficient statistics to characterize their spatial distribution
(11,12). We observed that the majority of active hair bundles
exhibit multimode oscillations, with long quiescent periods
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interrupting oscillatory behavior. Reminiscent of bursting
behavior seen in neuronal firing patterns (13), this temporal
characteristic indicates the existence of an additional mani-
fold with slower dynamics. Prior numerical simulations in
the field have described the more regular limit-cycle oscilla-
tions (single-mode) observed in hair bundles loaded with an
elastic probe (6,14,15). Our data indicate that freely oscil-
lating bundles may access a different dynamics regime,
hence, we propose modifications to the models in the refer-
enced literature to describe the observed complex temporal
patterns by introducing a variable gating spring element that
includes slow calcium-binding dynamics.

Our experiments explore the impact of mechanical and
ionic manipulation on the oscillation patterns in hair bundles
that exhibit this bursting-type behavior. We show that
varying external calcium concentration and imposing
a mechanical load affects both the fast component of the
oscillations as well as the occurrence of quiescent intervals.
We explore these same effects numerically and show that
this additional element in the model captures a rich array
of experimental observations.
METHODS

Experimental techniques

Biological preparation

Experiments were performed on sacculi from North American bullfrog

(Rana catesbeiana), proven to be particularly robust to dissection and

yielding in vitro preparations that maintain the exquisite mechanical trans-

duction system while allowing sufficient access to measure the responses of

individual hair cells (16). Sacculi were excised from the inner ear under

cooled and oxygenated saline solutions, then mounted in a two-compart-

ment chamber, with artificial endolymph (117.5 mM Kþ, 2 mM Naþ,
0.25 mM Ca2þ, 118 mM Cl�, 3 mM D-glucose, and 5 mM HEPES) and

perilymph (110 mM Naþ, 2 mM Kþ, 1.5 mM Ca2þ, 118 mM Cl�, 3 mM

D-glucose, 1 mM sodium pyruvate, 1 mM creatine, and 5 mM HEPES)

bathing the apical and basal surfaces, respectively. The otolithic membrane

was removed with an eyelash tool after the preparation was digested in
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50 mg/mL collagenase 1A (Sigma-Aldrich, St. Louis, MO) in artificial

endolymph with 4 mM Ca2þ. For one set of experiments, the concentration

of calcium in the endolymph solution was incrementally increased before

each recording.

Tracking bundle motility

Hair bundles were imaged on an upright B51X optical microscope

(Olympus America, San Diego, CA) under bright-field illumination.

Recordings were obtained at 1000 fps with a complementary metal oxide

semiconductor (CMOS) camera (FASTCAM SA1.1; Photron, San Diego,

CA). Images were analyzed in MATLAB (The MathWorks, Natick, MA),

with Gaussian fits to the intensity profiles used to extract the center position

of a hair bundle in each frame. A quantity of 5–11 adjacent vertical rows

were tracked and averaged for each bundle to enhance the signal/noise ratio

of the record. Beads positioned on the epithelium and stationary features

within the tissue were tracked to estimate a noise floor of ~3–5 nm.

Mechanical loading

Mechanical loading was applied to the hair bundles via specially fabricated

glass probes. Borosilicate fibers were pulled with a commercial micropi-

pette puller (Model P-97; Sutter Instruments, Novato, CA). A modified

microforge was then used to extend an additional thin glass rod from the

tip of the fiber, at ~90� with respect to the axis of taper. The probes were

sputter-coated with gold palladium to enhance optical contrast. We

recorded their position in water at 10,000 fps and used the power spectra

of their random fluctuations for stiffness calibrations. The tips of the glass

probes were treated with Concanavalin A—a charged polymer shown to

improve adhesion to cells. The fibers were mounted onto a piezo-electric

actuator (PiezoJena, Jena, Germany), and positioned with a micromanipu-

lator. Bringing a coated fiber into contact with a hair bundle causes it to

adhere: we attached to the kinociliary bulb or the row of tallest stereocilia.

The glass probes were used to impose passive loading on selected cells, or

to apply steady-state offsets on the resting position of the hair bundles.

Numerical model

We base our numerical model upon previous theoretical simulations of hair

bundle mechanics (6,14,15,17–20), and modify it to account for the

bursting-type behavior observed in the majority of freely oscillating cells.

The limit-cycle instability mainly arises from the interplay between

transduction and adaptation, hence its oscillation profile is influenced by

the relative dynamics of these two processes. In addition, calcium modu-

lates both of the components, at different timescales.

Hair bundle mechanics

The hair bundle is modeled as a rigid structure with elastic components. The

inertial force is neglected, as the system oscillates in a liquid environment

(endolymph) at low Reynolds number. The drag force is proportional to the

velocity, with drag coefficient x. The main contribution to the stiffness of

the bundle arises from the pivots of the stereocilia and the tip links, which

connect neighboring stereocilia and attach on one of the ends to the trans-

duction channels. These mechanically gated, nonselective ion channels

open and close in response to bundle deflection. A schematic diagram of

a hair bundle is shown in Fig. S1 in the Supporting Material. We only

consider bundle displacement (X) along the axis of sensitivity, correspond-

ing to the direction of increasing height of the stereocilia comprising the

bundle. The displacement of the myosin-motor complex along the axis

parallel to the stereocilium is denoted by Xa; following convention, the

downward direction is defined to be positive. Newton’s second law yields

the equation of motion for the hair bundle:

x
dX

dt
¼ �NgKgsðgX � Xa þ Xc � podÞ

� Ksp

�
X � Xsp

�þ Kf ðD� XÞ þ h:
(1)
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The first term on the right represents the tension in the gating spring, whereN

is the number of transduction channels, g is the geometrical gain for the hair

bundle, Kgs is the gating spring stiffness, Xc is the resting extension of the

gating spring with all channels closed, po is the open probability of the trans-

duction channel, and d is the gating swing distance of the transduction

channel. The extension of the gating spring is assumed to be along the

stereociliary axis (Xa direction). The second term represents the passive stiff-

ness element of the bundle,withKsp denoting the combined stiffness of all the

connections between adjacent stereocilia, as well as their innate stiffness,

determined at their pivots. The offsetXsp is the resting position of an unloaded

bundle in the absence of gating springs. The next term accounts for the force

exerted by an attached glass fiber, where D is the displacement of the fiber

base and Kf is the stiffness of the fiber. The noise due to stochastic forces

acting on the bundle is denoted by h (see Fluctuations in the System, below).

The transduction channel is described as a two-state system, with its

opening probability following the Boltzmann distribution. The energy

difference between the open state and the closed state has two contribu-

tions: the intrinsic energy difference due to the conformational change

(DE0), and the extension of the gating spring (d). The channel gating is

assumed to be instantaneous, and therefore, the open probability is always

in equilibrium with the bundle displacement. At temperature T, the open

probability of the transduction channel is

po ¼ 1

1þ exp

�
DE0 � KgsdðgX � Xa þ Xc � d=2Þ

kBT

�: (2)

The energy difference DE0 is determined from Eq. 2 at the resting value of

open probability (po,0).

Calcium influx

During channel opening, a fraction of the cation inflow is carried by

calcium ions, which enter the stereocilia and diffuse to the myosin motors

to which they bind. The calcium influx through a transduction channel is

well approximated by the Goldman-Hodgkin-Katz current equation (21)

ICa ¼ po
PCaz

2eFVM½Ca2þ�ext
kBT

�
1� exp

�
zeVM

kBT

��; (3)

in which PCa is the calcium permeability, z is the valence of the calcium ion,

e is the electron charge, F is the Faraday constant, [Ca2þ]ext is the calcium
concentration in endolymph, and VM is the membrane potential. We assume

the resting calcium concentration inside the stereocilia to be negligible, and

thus omit it in our equations. In this model, we assume the membrane poten-

tial to be a constant.

The calcium ions diffuse rapidly to the binding sites at myosin motors;

therefore, the calcium concentration at the motors is assumed to equilibrate

instantly to

�
Ca2þ

�
motor

¼ �ICa
2pzFDCarm

; (4)

where DCa is the diffusion coefficient of a calcium ion, and rm is the

distance from the transduction channel to the myosin motors. Following

convention, inward current is defined to be negative.

Adaptation

Calcium binding to the myosin motors affects the stability of their actin

binding, and allows them to slip along the actin core in response to the force

exerted by the gating spring (22,23). The slipping reduces the tension stored

in the gating spring and allows the reclosure of the transduction channels.

After the calcium ions are instantaneously extruded from the stereocilia
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during the closed-channel state, the myosin motors restore tension in the

gating spring by climbing along the actin filaments.

In the absence of calcium, myosin motors climb along the actin filaments

at a constant rate. The slipping rate depends on the tension exerted on the

myosin-motor complex by the gating spring, and on the binding of calcium

(binding probability pm). The velocity of the myosin-motor array along the

length of a stereocilium is given by

dXa

dt
¼ �Cþ SKgs½ðgX � Xa þ Xc � podÞ

� KesðXa � XesÞ� þ hag

la
;

(5)

where C is the rate of climbing, S is the rate of slipping, and Kes is the stiff-

ness of the extension spring connecting the myosin motors to the actin core.

The resting extension of this spring is given by Xes, and ha denotes noise

similar to h (see Fluctuations in the System, below). For simplicity, the

rate of slipping (S) is assumed to linearly depend on pm. Hence,

S ¼ ðSmax � SminÞpm þ Smin: (6)

With the assumption that the dynamics of binding are instantaneous, the

binding probability to the motors is given by

pm ¼ 1

1þ km;off
km;on½Ca2þ�motor

; (7)

with km,on and km,off denoting the rates of calcium binding and unbinding to

the myosin motors. Its resting value (pm,0) is calculated from Eqs. 3, 4, and 7

at po,0. The climbing rate is constant over time but dependent on pm,0:

C ¼ (1 – pm,0)(Cmax – Cmin) þ Cmin.

Slow dynamics

We posit a variable gating spring element, intracellularly in series with the

tip link, which consists of a constant spring stiffness in parallel with one of

variable stiffness (see Fig. S1 C). Calcium binding to the variable element

decreases its stiffness thus rendering the overall gating spring more elastic.

For simplicity, we assume the gating stiffness Kgs to linearly decrease with

the probability of calcium binding (pgs),

Kgs ¼ Kgs0 � Kgs1pgs; (8)

where Kgs0 is the gating stiffness in the absence of calcium, and Kgs1 is the

slope of stiffness change with bound calcium.

This variable gating spring introduced here is analogous to a relaxation

element previously proposed to capture fast channel reclosure (9,24). In

contrast, the dynamics of calcium binding and unbinding from the variable

gating spring are assumed to be slow with respect to those at the myosin

motors, and thus introduce a slow timescale into our system. This binding

probability follows the standard rate equation

dpgs
dt

¼ kgs;on
�
Ca2þ

�
gs

�
1� pgs

�� kgs;off pgs; (9)

with kgs,on and kgs,off denoting the rates of binding and unbinding of calcium

to the variable gating spring. [Ca2þ]gs denotes the calcium concentration at

this site. The location of this variable gating spring is assumed to be in close

proximity to the myosin motors, and therefore [Ca2þ]motor z [Ca2þ]gs.

Fluctuations in the system

We incorporate noise terms into our model that were previously shown to

play a role in simulated spontaneous oscillations (15). The noise h in the
bundle’s equation of motion (Eq. 1) accounts for channel clatter and hydro-

dynamic friction. The noise ha for myosin displacement (Eq. 5) arises from

the force due to the stochastic binding and unbinding of the motors to actin

filaments. All the noise terms are assumed to be Gaussian with zero mean,

with the fluctuation-dissipation theorem characterizing the autocorrelation

function hh(t)h(0)i ¼ 2 kBT ld(t) and hha(t)ha(0)i ¼ 2 kBT lad(t), where l

and la are the friction coefficients of the hair bundle and the myosin motors,

respectively, following notations in Nadrowski et al. (15). We neglect any

effects of calcium fluctuations.

Simulation protocol

The numerical simulations of Eqs. 1–9 were performed in MATLAB (The

MathWorks), using the fourth-order Runge-Kutta method with a time step

of 0.1 ms. Table S1 lists all of the parameter values used in the simulations

presented. The following criteria were used to distinguish regular from

complex oscillations: For a noiseless simulation, regular limit-cycle

oscillations (referred to as single-mode oscillation in the figures) have

only one channel-opening and closure per cycle, whereas bursting-type

ones (referred to as multimode oscillation in the figures) have multiple

open and closed states per cycle. The channels are defined as open if the

probability po exceeds 0.5 and closed otherwise.
RESULTS

Complex temporal profile

The phenomenon of spontaneous motility observed in hair
bundles of the amphibian sacculus has been characterized
by a limit-cycle oscillation (14). Prior theoretical work has
examined the effects of noise on these oscillations,
including thermal fluctuations in the ambient water bath,
channel clatter, and stochastic binding and unbinding of
myosin motors to and from the actin core (15). Incorpo-
rating these noise terms into the system of differential
equations describing hair-bundle motion captures many
of the features experimentally observed in spontaneous
oscillations.

Recording with a CMOS camera allows us to track 10–20
hair bundles per field of view, and hence observe sponta-
neous oscillations in many cells from each preparation.
We can then readily record bundle motion without an
attached fiber, thus probing its intrinsic oscillation pattern.
The top trace of Fig. 1 (Experiment) shows an example of
a single limit-cycle oscillation. We observed, however,
that the majority of cells display complex temporal profiles,
with long pauses occurring intermittently with oscillatory
behavior as seen in the bottom trace of Fig. 1 (Experiment).
The intervals of quiescence can last hundreds of millisec-
onds and typically show a slow negative movement of the
bundle, indicative of the climbing phase of the myosin.

To capture the intermittent pauses, or multimode oscilla-
tory behavior, we include a variable gating spring—an
elastic element of tunable stiffness, hypothesized to be in
series with the tip link. We assume the calcium dependence
of the variable gating stiffness to be linear. Further, to
account for the slow modulation of the oscillatory behavior,
we assume the kinetics of calcium binding and dissociation
to and from this element to be slow with respect to that of
the myosin motor complex (see Methods). Fig. 1, B and C
Biophysical Journal 101(3) 603–610
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FIGURE 3 Simulations of the effects of noise on the oscillation profiles.

(Top traces) Simulation of a noiseless spontaneous oscillation. (Bottom

traces) Simulations obtained with the same set of parameter values, but

with noise terms added. (A) The oscillation becomes multimode in presence

of noise, although the noise only causes the irregular occurrence of the

quiescent intervals in panel B.
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FIGURE 1 Spontaneous oscillations of hair bundles. Experiment: Time-

dependent displacement measured in two different hair bundles. (Top

traces) Example of a single-mode oscillation with a single dominant period.

(Bottom traces) Multimode oscillation, with oscillatory behavior inter-

spersed with quiescent intervals. (A) Numerical simulation of spontaneous

oscillations, with the gating spring stiffness set to be constant. (B and C)

Examples of two numerical simulations, which display quiescent intervals

interspersed with oscillatory behavior as observed in experimental data.

Numerical simulation shown in panel A used the same set of parameters

as in panel B, with constant gating stiffness equal to the time-averaged value

from panel B.
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show examples of simulations for two sets of parameters
(representing two simulated ‘‘cells’’) which yield complex
oscillatory behavior qualitatively similar to experimental
observations. Without the inclusion of the variable gating
spring, the multimode oscillation is not observed: Fig. 1 A
shows a simulation performed with the same set of parame-
ters as in Fig. 1 B but with a constant gating stiffness, set
equal to the time-averaged gating stiffness of the simulation
in Fig. 1 B.

In general, a multimode oscillation does not arise in
a two-dimensional system as it would show trajectory cross-
ings in a two-dimensional phase portrait. Hence, we intro-
duce a third dimension into the system by including
a variable gating spring in the model. An example of
a three-dimensional phase portrait of a noiseless multimode
oscillation is shown in Fig. 2. The system moves along the
trajectory in a clockwise direction from a top-down view:
the higher peak of the velocity corresponds to the first
opening of the channels after a quiescent interval; the
bundle subsequently deflects in the positive direction as
myosin motors slip, then, upon channels closing, the bundle
position drifts in the negative direction before the channels
reopen, corresponding to the lower peak in the velocity.
Note that the openings and closings of the channels occur
at different positions of the adaptation motors.

In Fig. 3, we show traces from a simulation demonstrating
the effects of noise on the active bundle motility predicted
by the model. The top traces in Fig. 3, panels A and B,
show spontaneous oscillations for two simulated cells,
without the inclusion of noise terms. Effects of thermal jitter
and stochastic attachment and detachment of myosin motors
to and from the actin filaments are introduced into the simu-
Biophysical Journal 101(3) 603–610
lations shown in the bottom traces. As can be seen from the
records, noise can strongly affect the oscillation profiles.
Fig. 3 A illustrates a case where the addition of noise
changed the behavior of a simulated cell from that of regular
oscillation to one with sporadic quiescence. For other
choices of parameters (example shown in Fig. 3 B), the pres-
ence of noise only introduces variation in the timing of the
quiescent intervals. This indicates that the bursting-type
behavior is sensitive to the choice of model parameters,
and is affected by the inclusion of noise terms.
Parameter dependence of multiple oscillatory
behavior

With the inclusion of slow calcium dynamics, our numerical
simulations capture the bursting-type behavior observed
experimentally; the effect was, however, sensitively depen-
dent upon the choice of parameters. We therefore systemi-
cally varied key parameters in the simulations without the
inclusion of noise terms, to determine the range of values
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for which the oscillations were single-mode, multimode, or
entirely suppressed.

The impact of calcium binding upon the variable gating
stiffness and on the myosin motor activity was seen to
play an important role in determining the motile behavior.
Fig. 4 shows a summary plot, where maximal slipping rate
of myosin motors (Smax) and slope of the gating stiffness
change with calcium binding (Kgs1) were incrementally
varied. As shown in the figure, qualitatively different oscil-
lation profiles were observed in different regimes of the
parameter space. Varying these parameters simultaneously
is analogous to the experiment in which the calcium concen-
tration in the endolymph is changed, as Smax and Kgs1

describe the calcium sensitivity of the myosin motor
complex and the variable gating spring, respectively.

In Fig. 5, we plot the results of a numerical study where
the stiffness of the stereociliary pivots (Ksp) and the offset
position of the bundle due to the stereociliary pivots (Xsp)
were systematically varied in the model. The steady-state
terms were found to have a profound effect upon the oscil-
lation profiles, as illustrated in the diagram. These numer-
ical results are consistent with our experimental
observations (L. Fredrickson-Hemsing, S. Ji, R. Bruinsma,
and D. Bozovic, unpublished), where imposed offsets
were shown to modulate and even suppress spontaneous
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FIGURE 4 Oscillatory profiles of hair cells over the parameter space of

the maximal slipping rate (Smax) and the slope of the stiffness change

(Kgs1). The diagram shows various states of the hair bundle: stable

(i.e., nonoscillating), oscillating with regular patterns (i.e., single-mode

oscillation), or showing complex bursting-type behavior (i.e., multimode

oscillation). Examples of the oscillations with different parameter values

are shown in the insets located in regions that correspond to their parame-

ters values. The horizontal scale bar indicates 0.2-s time interval for all of

the oscillations shown. The displacement of each oscillation is indepen-

dently scaled. Note that the two nonoscillating regions are due to different

stabilities: in the low-Smax region, most of the channels stay open, and in the

high-Smax region, most of the channels remain closed. Regimes that show

single-mode oscillation likewise show different patterns, though no sharp

transition exists at high Kgs1. The region with Smax higher than that of the

multimode oscillation region shows spikelike profiles with periodicity

determined by the quiescent interval and the region with lower Smax shows

only fast component of the oscillations.
oscillations in hair bundles (example shown later in
Fig. 8). This parameter space also corresponds to the exper-
iment where the overall stiffness of the bundle is manipu-
lated by imposing a mechanical load on the bundle
(examples shown later in Fig. 9).

In Fig. 6, we plot the time evolution of key parameters
(X, pm, and pgs) during a simulated multimode oscillation.
We find that the transduction channel’s opening probability
varies through most of its full range during the fast compo-
nent of the oscillation. Probability of calcium binding to the
myosin motors (Fig. 6 B) likewise shows the full range of
modulation. Binding probability to the variable gating
spring, on the contrary, shows only partial modulation
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FIGURE 6 Plots of the parameter variation from the simulation of

a noiseless oscillation shown in Fig. 2 B. (A) The position of the hair bundle

(X). (B) The probability of calcium binding to the myosin motors (pm). (C)

The probability of calcium binding to the variable gating spring (pgs).

Notice that the decay of pgs during channel-closed state is significantly

slower than that of pm, illustrating the slow dynamics of calcium binding

at the variable gating spring.
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during the fast cycles (as seen in Fig. 6 C). Consistent with
the imposed slow dynamics, modulation reaches its full
extent only over the slower timescales that include the
quiescent intervals.
Effects of external calcium concentration

Previous experiments have shown calcium to have a strong
effect on the active motility of hair bundles: increasing its
concentration in endolymph causes a reduction in the
amplitude and an increase in the frequency of spontaneous
oscillation (6,26). We measured the effects of this ionic
manipulation on motile hair bundles that displayed
multimode oscillatory pattern. The faster component of
the oscillation showed an increase in the characteristic
frequency. Notably, the duration of the open channel state
was more strongly affected than that of the closed state, re-
sulting in a spikelike profile. The duration of the quiescent
intervals were, on the contrary, only slightly shortened by
the increase in calcium. Fig. 7 A shows an example of
measurements in which the concentration of calcium in
endolymph solution was incrementally raised; Fig. 7 B
shows numerical simulations under the same conditions.
As can be seen from the traces, the model captures the
impact of the ionic manipulation on both the fast and slow
components of the oscillation profile.
Steady-state offsets imposed on the bundle
position

Mechanical offsets imposed on the resting position of the
bundle were seen to strongly affect its oscillatory behavior.
In a recent study (L. Fredrickson-Hemsing, S. Ji, R. Bruin-
sma, and D. Bozovic, unpublished), we showed that a slow
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FIGURE 7 Effects of calcium concentration in the endolymph upon

characteristics of the oscillation. (A) Experimental records of spontaneous

motility obtained from the same hair bundle under four different calcium

concentrations: 250, 350, 550, and 750 mM. (B) Numerical simulations

under the same calcium concentrations as in the experiment. Both display

similar effects: at higher concentration, the fast component of the oscilla-

tion becomes faster and smaller in amplitude, whereas the slow component

does not show a significant change.
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ramp in the offset position can serve as a dynamic parameter
that tunes the frequency of spontaneous oscillation and
induces a bifurcation crossing from oscillatory to the quies-
cent state. Fig. 8 A shows the results of an experiment in
which steady-state offsets was imposed on a bundle with
a flexible glass fiber, and Fig. 8 B shows the accompanying
numerical simulation. Consistent with the experimental
observations, deflections in the negative direction reduce
the number of oscillations during each burst and extend
the duration of the quiescent intervals. Deflections in the
positive direction, on the contrary, eliminate the quiescent
intervals and result in single-mode oscillations. This
behavior is also illustrated in Fig. 5 which examines numer-
ically effects analogous to the imposed offsets. Positive
steady-state deflections shift the system from the multimode
oscillation to single-mode oscillation regime. Moderate
negative offsets maintain bursting-type behavior while
increasing the duration of the quiescent interval. Further
offsets eliminate the short-period component of the oscilla-
tions, leading to a single-mode oscillation with a spikelike
pattern.
Stiffness of the mechanical load

Multimode oscillations are more often observed in unen-
cumbered bundles than those under an external load. In
Fig. 9 A, we illustrate three measurements of spontaneous
bundle motility before and after the attachment of a glass
probe. With light loading, the occurrence of quiescent inter-
vals was reduced, whereas the higher-frequency compo-
nents remained unchanged (Fig. 9 A, left). Stronger
loading led to a reduction in the amplitude and an increase
in the characteristic frequency of oscillation, and eliminated
the occurrence of quiescent intervals (Fig. 9 A, middle).
Further increase in the stiffness of the load (Fig. 9 A, right)
led to a near-suppression of innate oscillations. Fig. 9 B
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displays the numerical simulations corresponding to these
experiments. The stiffness of the attached load (Kf in
Eq. 1) was incrementally increased in the calculation to
capture the full range of effects. The numerical simulations
reproduce all the main features of the experimental data:
quiescent pauses are suppressed, the oscillation frequency
increases, and the amplitude decreases. This is analogous
to an increase in the parameter Ksp, leading to a crossing
from multi- to single-mode oscillatory regimes, shown in
Fig. 5.
DISCUSSION

Direct gating of transduction channels in the stereocilia has
been established as the fundamental mechanism behind me-
chanosensation in hair cells. Tip links connecting neigh-
boring stereocilia were proposed to comprise the gating
spring and introduced into numerical models to explain
the nonlinear mechanical response (27,28). Recent molec-
ular dynamic simulations indicated, however, that the tip
link itself is far too stiff to constitute the putative gating
spring (29). Because the structural integrity of the tip link
and its connection to the transduction channel is crucial
for the proper detection of sound (1), it must constitute
one of the elements of the full mechanoelectrical transduc-
tion complex. An elastic element in series with the tip link
would be consistent with both sets of results.

The numerical model presented here incorporates a vari-
able gating spring, composed of a spring of constant
stiffness in parallel with one of calcium-dependent compli-
ance. Because there are 30–50 stereocilia in a hair bundle,
each with a gating spring, and potentially multiple
calcium-binding sites on each element, the linear term
constitutes the simplest mean-field approximation for the
calcium-dependent stiffness of the gating spring. Possible
cooperativity of calcium binding to multiple sites on the
variable gating spring is not considered in this model.
Also note that the variable gating spring might be inter-
preted as any spring element within a bundle that regulates
the degree of nonlinearity of the system.

The dynamics of calcium association and dissociation
from the proposed variable gating spring are assumed to
be slow with respect to other timescales in the system,
most notably that of the myosin motor activity. Introduction
of a slow dynamic into our model allowed us to reproduce
the complex temporal patterns, observed in hundreds of
spontaneous oscillations recorded in the course of these
experiments.

To characterize the factors determining the temporal
profiles of spontaneous motility, we explored the space of
key parameters in the model and classified the resultant
oscillations. We found a strong dependence on calcium
sensitivity of the variable gating stiffness and on the rate
of myosin-based adaptation. Hence, any cellular mechanism
that would fine-tune the internal calcium concentration
would affect the steady-state gating spring stiffness and
thus have a strong impact on the oscillation dynamics. Ion
channels found in the hair cell soma were shown to form
an electronic circuit that can exhibit resonance, tuning,
and spontaneous voltage oscillations (30,31). In a previous
publication (32), we showed that inhibiting or modulating
the activity of the somatic system qualitatively changed
the temporal profiles of the spontaneous mechanical oscilla-
tions of the bundle. Somatic ion channels comprise
a possible control system via the membrane potential that
could modulate internal calcium levels and thus affect the
variable gating stiffness (20).

Offsets imposed on the resting position of the bundle or of
the adaptation motors were seen to profoundly influence
oscillation characteristics in the simulations. This is consis-
tent with our experimental findings that steady-state deflec-
tions can regularize, modulate, or entirely suppress
spontaneous oscillations (L. Fredrickson-Hemsing, S. Ji,
R. Bruinsma, and D. Bozovic, unpublished). The effects
of calcium and steady-state mechanics may be interlinked
in the hair cell, with offsets in the bundle position intro-
duced by stiffening or softening of internal gating elements,
modulated in turn by calcium binding.
CONCLUSION

We propose what we believe to be a new element in the
numerical model of hair cell mechanics to account for the
occurrence of bursting-type behavior in spontaneously
oscillating bundles. The gating spring is stipulated to
contain a variable-stiffness element, dependent upon
calcium binding. Importantly, the dynamics of calcium
association and dissociation to and from the variable
Biophysical Journal 101(3) 603–610
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element are assumed to be slow with respect to those modu-
lating the slipping rate of the myosin motor complex. The
model reproduces the complex temporal patterns observed
in spontaneously oscillating hair bundles, including the
occurrence of multimode oscillations.

Calcium concentration in the endolymph solution bathing
the apical side of the preparation was seen to strongly affect
the frequency and amplitude of the fast component of the
oscillation, but only weakly modulate the duration of the
quiescent intervals. Steady-state offsets on the bundle posi-
tion induced a crossing from multi- to single-mode oscilla-
tions with positive and negative deflections affecting the
bundle asymmetrically. Finally, an imposed mechanical
load was seen to reduce the occurrence of quiescent inter-
vals, leading to a more regular oscillation pattern, eventually
fully suppressing the oscillation. The full set of experi-
mental findings were reproduced by the numerical model
with the single addition of a slowly-varying, calcium-depen-
dent variable gating spring.
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