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Site-Specific Solid-State NMR Detection of Hydrogen-Deuterium Exchange
Reveals Conformational Changes in a 7-Helical Transmembrane Protein

Shenlin Wang,*2 Lichi Shi,t2 lzuru Kawamura,* Leonid S. Brown,t* and Vladimir Ladizhanskyt*

TDepartment of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada; and *Faculty of Engineering,
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ABSTRACT Solid-state NMR spectroscopy is an efficient tool for following conformational dynamics of membrane proteins at
atomic resolution. We used this technique for the site-specific detection of light-induced hydrogen-deuterium exchange in the
lipid-embedded heptahelical transmembrane photosensor Anabaena sensory rhodopsin to pinpoint the location of its conforma-
tional changes upon activation. We show that the light-induced conformational changes result in a dramatic, but localized,
increase in the exchange in the transmembrane regions. Most notably, the cytoplasmic half of helix G and the cytoplasmic
ends of helices B and C exchange more extensively, probably as a result of their relative displacement in the activated state,
allowing water to penetrate into the core of the protein. These light-induced rearrangements must provide the structural basis
for the photosensory function of Anabaena sensory rhodopsin.
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Solid-state NMR (SSNMR) is rapidly evolving into a power-
ful tool for studies of structure and dynamics of membrane
proteins in their native lipid environment (1-7). Multidi-
mensional SSNMR methods are sufficiently sensitive to
determine chemical shifts of individual atoms and provide
detailed structural information (8—11). They can be com-
bined with hydrogen-deuterium (H/D) exchange (12-14)
to study, in a site-specific manner, how membrane proteins
interact with water. In this letter we use magic angle
spinning (MAS) SSNMR detection of H/D exchange of
individual amino acids to study conformational changes in
Anabaena sensory rhodopsin (ASR) upon light activation.
ASR is a unique cyanobacterial photosensor, believed to
be responsible for chromatic adaptation (15). It differs from
other microbial rhodopsins structurally (it has a water-filled
cavity on the cytoplasmic side (16)), photochemically (it
undergoes photochromic transitions between the two stable
states instead of a conventional photocycle (16,17)), and
functionally (it interacts with the unique soluble cyto-
plasmic transducer (15,18)). Recently, we obtained spectro-
scopic assignments for the majority of ASR resonances and
found that many residues on both cytoplasmic and extracel-
lular surfaces interact with the solvent, as follows from the
fast exchange of their amide protons (11). In this study, we
show that significant localized light-induced conformational
changes occur in the transmembrane core of ASR, most
probably correlated to its photosensory function.

To probe the changes of the water-accessible surface that
occur upon illumination, we compared 1), dark-adapted
ASR in H,0O; 2), dark-adapted ASR incubated for 24 h in

D,0; 3), ASR incubated in D,O for 1.5 h under illumina-
tion; and 4), ASR incubated in D,O for an additional 3 h
under illumination. Equal amounts of sample were packed
in a 3.2-mm rotor, and 2D NCA and 3D NCACX chemical
shift correlation experiments were recorded. Short H/N
cross-polarization (CP) (19) times of 300 us ensured that
nitrogen spins are excited primarily from their directly
bonded protons, as is evident, for example, from the disap-
pearance of most proline NCA correlations in the 2D NCA
correlation spectra (Fig. S2 in the Supporting Material).
Proline nitrogen atoms do not carry protons and are not
affected by H/D exchange, so the reduction or absence of
their correlations can serve as a control. From proline cross-
peak intensities, we estimate that although CP excitation
from remote protons (e.g., HY) is still possible, its contribu-
tion is small and does not exceed 25% of the original signal.
Thus, site-specific signal attenuation provides an average
measure of the light-modulated degree of accessibility of
amide nitrogen atoms to the solvent.

The results of detailed site-specific analysis of the 3D
NCACX correlation spectra are shown in Fig. 1 (see also
Fig. S3 for representative 2D NC planes and Fig. S1 for
the identities of the exchangeable residues). When H/D
exchange is performed in the dark, most of the affected resi-
dues are confined to the solvent-exposed cytoplasmic and
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FIGURE 1 (A) Comparison of crosspeak intensities (in units of
RMS of noise) in the nonexchanged sample (gray), the sample
exchanged in the dark for 24 h (blue), and the sample exchanged
under illumination for 90 min (red). (B) Same as in A, but with the
illuminated sample exchanged for an additional 180 min (red).
The secondary structure of ASR derived from x-ray and SSNMR
data (11) is shown on top.

extracellular sides, e.g., the B-C loop (D57-Y70). Under
continuous illumination, ASR shuttles between two stable
states and undergoes conformational transitions through
a series of intermediates with different lifetimes and water
accessibilities of the hydrophobic core (16,17). The H/D
exchange provides an integral picture of these changes,
which mostly saturate in the first 90 min of the illumination.
The most significant light-induced exchange occurs in the
cytoplasmic ends of helices B (V39-142) and C (L83-A91),
and in the whole cytoplasmic half of helix G (K210-G220),
with further enhancement in the exchange of helix F (Figs. 1
and 2). Some residual signals in these parts are likely due to
long-range CP effects, which are expected even in fully
exchanged fragments. On the extracellular side, we observe
a 3.5- to 4-fold reduction of peak intensities in the imme-
diate vicinity of the B-C loop in helix C, and in helix E
(Figs. 1 and 2, and Fig. S1).

Several residues, especially conspicuous in helices A, C,
and E, show a 1.5- to 2.5-fold reduction in the signal inten-
sity. It was surprising to find that longer exposure to D,O
under illumination (270 min vs. 90 min) does not cause
further signal decrease, which cannot be explained in the
framework of a simple open/closed two-state model.

In the 3D structural model of ASR, helices B, C, F, and G
form polar semichannels inside the protein core on both
sides of the Schiff base (11,16). The x-ray structure (16)
reveals a hydrogen-bonded network in the cytoplasmic
half, mainly involving helices B, C, and G, as well as
a few water molecules. Our data suggest that light-induced
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FIGURE 2 (A) Side view of ASR (structural model derived from
SSNMR and x-ray data (11)), with helices A, G, and F facing the
viewer; the cytoplasmic side is on top. Residues colored in red
show strong enhancement of H/D exchange by light. Residues
colored in blue are exchangeable in the dark. (B) Top view of
the same model from the cytoplasmic side, with loops removed.
Transmembrane helices are marked by letters.

conformational changes open a cleft between these helices
on the cytoplasmic side (Fig. 2), which allows water to
penetrate into the protein core. Significant light-induced
conformational changes (outward tilt) of the cytoplasmic
half of helix F occur in other microbial rhodopsins (20).
Although the observed H/D exchange pattern supports the
possibility that a similar tilt of helix F occurs in ASR,
we believe that the conformational changes involve other
helices as well. The large light-induced increase in the
exchange extent of the cytoplasmic half of helix G (along
with the ends of helices B and C) can in fact be caused by
its own displacement, which may occur without the move-
ment of helix F. This unique conformational change must
be related to the unique function of ASR, which interacts
with the cytoplasmic soluble transducer.

The proposed movement of helix G is consistent with
earlier FTIR measurements (21,22), which point at possible
light-induced disruption of the hydrogen-bonded network
formed by several polar residues from helices B, C, and G
in the cytoplasmic half of ASR (16). Furthermore, the
presence of a unique Pro-206 in helix G can give this
helix an additional flexibility, further enhanced by the disap-
pearance of several important interhelical hydrogen bonds
maintained by the homologous superconserved Asp in
other microbial rhodopsins. The proposed separation of
helix G from B and C, which may occur in the M interme-
diate upon the transition from the all-trans- to the 13-cis-
retinal form, would affect the cytoplasmic side and may
change the binding affinity between ASR and its soluble
transducer.

In conclusion, we have shown that SSNMR can be used
for site-specific detection of H/D exchange in a seven-helix
transmembrane protein to reveal and locate conformational
changes occurring upon its activation. With SSNMR assign-
ments of many proteins in hand (8-11), our methodology
can be easily extended to study their solvent-accessible
surfaces, or to indirectly probe invisible or metastable
states.



Biophysical Letters

SUPPORTING MATERIAL

Additional text, three figures, and references are available at http://www.
biophysj.org/biophysj/supplemental/S0006-3495(11)00764-8.

ACKNOWLEDGMENTS

We thank Dr. K.-H. Jung for providing the plasmid for ASR expression and
Dr. George Harauz for carefully reading the manuscript.

This research was supported by the Natural Science Engineering Research
Council of Canada, the Canada Foundation for Innovation, the Ontario
Ministry of Research and Innovation, Bruker Canada Ltd, and MEXT of
Japan (22770101). V.L. holds the Canada Research Chair in Biophysics.
S.W. is supported by the Canadian Institutes of Health Research (CIHR)
fellowship. L.S. is a recipient of the MITACS Accelerate Award.

REFERENCES and FOOTNOTES

1. McDermott, A. 2009. Structure and dynamics of membrane proteins
by magic angle spinning solid-state NMR. Annu. Rev. Biophys. 38:
385-403.

2. Ramamoorthy, A. 2009. Beyond NMR spectra of antimicrobial
peptides: dynamical images at atomic resolution and functional
insights. Solid State Nucl. Magn. Reson. 35:201-207.

3. Renault, M., A. Cukkemane, and M. Baldus. 2010. Solid-state NMR
spectroscopy on complex biomolecules. Angew. Chem. Int. Ed. Engl.
49:8346-8357.

4. Goncalves, J. A., S. Ahuja, ..., S. O. Smith. 2010. Structure and func-
tion of G protein-coupled receptors using NMR spectroscopy. Prog.
Nucl. Magn. Reson. Spectrosc. 57:159-180.

5. Hu, F,, W. Luo, and M. Hong. 2010. Mechanisms of proton conduction

and gating in influenza M2 proton channels from solid-state NMR.
Science. 330:505-508.

6. Sharma, M., M. Yi, ..., T. A. Cross. 2010. Insight into the mechanism
of the influenza A proton channel from a structure in a lipid bilayer.
Science. 330:509-512.

7. Bajaj, V. S., M. L. Mak-Jurkauskas, ..., R. G. Griffin. 2009. Functional
and shunt states of bacteriorhodopsin resolved by 250 GHz dynamic
nuclear polarization-enhanced solid-state NMR. Proc. Natl. Acad.
Sci. USA. 106:9244-9249.

8. Li, Y., D. A. Berthold, ..., C. M. Rienstra. 2008. Chemical shift assign-
ment of the transmembrane helices of DsbB, a 20-kDa integral

10.

11.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

L25

membrane enzyme, by 3D magic-angle spinning NMR spectroscopy.
Protein Sci. 17:199-204.

. Etzkorn, M., K. Seidel, ..., M. Baldus. 2010. Complex formation and

light activation in membrane-embedded sensory rhodopsin II as seen
by solid-state NMR spectroscopy. Structure. 18:293-300.

Shi, L., M. A. M. Ahmed, ..., V. Ladizhansky. 2009. Three-dimen-
sional solid-state NMR study of a seven-helical integral membrane
proton pump—structural insights. J. Mol. Biol. 386:1078-1093.

Shi, L., I. Kawamura, ..., V. Ladizhansky. 2011. Conformation of
a seven-helical transmembrane photosensor in the lipid environment.
Angew. Chem. Int. Ed. Engl. 50:1302-1305.

. Wagner, G., and K. Wiithrich. 1982. Amide protein exchange and

surface conformation of the basic pancreatic trypsin inhibitor in solu-
tion. Studies with two-dimensional nuclear magnetic resonance. J.
Mol. Biol. 160:343-361.

Cotten, M., R. Fu, and T. A. Cross. 1999. Solid-state NMR and
hydrogen-deuterium exchange in a bilayer-solubilized peptide: struc-
tural and mechanistic implications. Biophys. J. 76:1179-1189.

del Amo, J. M., U. Fink, and B. Reif. 2010. Quantification of protein
backbone hydrogen-deuterium exchange rates by solid state NMR
spectroscopy. J. Biomol. NMR. 48:203-212.

Jung, K. H., V. D. Trivedi, and J. L. Spudich. 2003. Demonstration of
a sensory rhodopsin in eubacteria. Mol. Microbiol. 47:1513-1522.
Vogeley, L., O. A. Sineshchekov, ..., H. Luecke. 2004. Anabaena
sensory rhodopsin: a photochromic color sensor at 2.0 A. Science.
306:1390-1393.

Kawanabe, A., Y. Furutani, ..., H. Kandori. 2007. Photochromism of
Anabaena sensory rhodopsin. J. Am. Chem. Soc. 129:8644—-8649.
Vogeley, L., V. D. Trivedi, ..., H. Luecke. 2007. Crystal structure of the
Anabaena sensory rhodopsin transducer. J. Mol. Biol. 367:741-751.
Pines, A., M. G. Gibby, and J. S. Waugh. 1973. Proton-enhanced NMR
of dilute spins in solids. J. Chem. Phys. 59:569-590.

Klare, J. P, E. Bordignon, ..., H. J. Steinhoff. 2004. Sensory rhodopsin
II and bacteriorhodopsin: light activated helix F movement. Photo-
chem. Photobiol. Sci. 3:543-547.

Shi, L., S. R. Yoon, ..., L. S. Brown. 2006. Cytoplasmic shuttling of
protons in Anabaena sensory rhodopsin: implications for signaling
mechanism. J. Mol. Biol. 358:686-700.

Kawanabe, A., Y. Furutani, ..., H. Kandori. 2008. FTIR study of the L
intermediate of Anabaena sensory rhodopsin: structural changes in the
cytoplasmic region. Biochemistry. 47:10033-10040.

Biophysical Journal 101(3) L23-L25


http://www.biophysj.org/biophysj/supplemental/S0006-3495(11)00764-8
http://www.biophysj.org/biophysj/supplemental/S0006-3495(11)00764-8

	Site-Specific Solid-State NMR Detection of Hydrogen-Deuterium Exchange Reveals Conformational Changes in a 7-Helical Transm ...
	Supporting Material
	Acknowledgments
	References and Footnotes


