
A NEW MULTIVARIATE MEASUREMENT ERROR MODEL WITH
ZERO-INFLATED DIETARY DATA, AND ITS APPLICATION TO
DIETARY ASSESSMENT

Saijuan Zhang*,
Department of Statistics Texas A&M University 3143 TAMU College Station, Texas 77843-3143
U.S.A.

Douglas Midthune,
Biometry Research Group Division of Cancer Prevention National Cancer Institute 6130
Executive Boulevard EPN-3131 Bethesda, Maryland 20892-7354 U.S.A.

Patricia M. Guenther,
Center for Nutrition Policy and Promotion U.S. Department of Agriculture 3101 Park Center Drive,
Ste. 1034 Alexandria, Virginia 22302 U.S.A. Patricia.Guenther@cnpp.usda.gov

Susan M. Krebs-Smith,
Applied Research Program Division of Cancer Control and Population Sciences National Cancer
Institute 6130 Executive Boulevard, EPN-4005 Bethesda, Maryland 20892, U.S.A.
krebssms@mail.nih.gov

Victor Kipnis,
Biometry Research Group Division of Cancer Prevention National Cancer Institute 6130
Executive Boulevard EPN-3131 Bethesda, Maryland 20892-7354 U.S.A.

Kevin W. Dodd,
Biometry Research Group Division of Cancer Prevention National Cancer Institute 6130
Executive Boulevard EPN-3131 Bethesda, Maryland 20892-7354 U.S.A.

Dennis W. Buckman,
Information Management Services, Inc. 12501 Prosperity Drive Silver Spring, Maryland 20904,
U.S.A. BuckmanD@imsweb.com

Janet A. Tooze,
Department of Biostatistical Sciences Wake Forest University, School of Medicine Medical Center
Boulevard Winston-Salem, North Carolina 27157, U.S.A. jtooze@wfubmc.edu

Laurence Freedman, and
Gertner Institute for Epidemiology and Health Policy Research Sheba Medical Center Tel
Hashomer 52161, Israel lsf@actcom.co.il

Raymond J. Carroll*,†
Department of Statistics Texas A&M University 3143 TAMU College Station, Texas 77843-3143
U.S.A.

†Corresponding Author.. sjzhang@stat.tamu.edu carroll@stat.tamu.edu midthund@mail.nih.gov kipnisv@mail.nih.gov
doddk@mail.nih.gov.
Texas A&M University, National Cancer Institute, U.S. Department of Agriculture, National Cancer Institute, National Cancer
Institute, National Cancer Institute, Information Management Services, Inc., Wake Forest University, Sheba Medical Center and
Texas A&M University
*This paper forms part of Zhang's Ph.D. dissertation at Texas A&M University. Zhang and Carroll's research was supported by a grant
from the National Cancer Institute (CA57030). This work was also supported by National Science Foundation Instrumentation grant
number 0922866.

NIH Public Access
Author Manuscript
Ann Appl Stat. Author manuscript; available in PMC 2011 July 28.

Published in final edited form as:
Ann Appl Stat. 2011 June 1; 5(2B): 1456–1487. doi:10.1214/10-AOAS446.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Abstract
In the United States the preferred method of obtaining dietary intake data is the 24-hour dietary
recall, yet the measure of most interest is usual or long-term average daily intake, which is
impossible to measure. Thus, usual dietary intake is assessed with considerable measurement
error. Also, diet represents numerous foods, nutrients and other components, each of which have
distinctive attributes. Sometimes, it is useful to examine intake of these components separately,
but increasingly nutritionists are interested in exploring them collectively to capture overall dietary
patterns. Consumption of these components varies widely: some are consumed daily by almost
everyone on every day, while others are episodically consumed so that 24-hour recall data are
zero-inflated. In addition, they are often correlated with each other. Finally, it is often preferable to
analyze the amount of a dietary component relative to the amount of energy (calories) in a diet
because dietary recommendations often vary with energy level. The quest to understand overall
dietary patterns of usual intake has to this point reached a standstill. There are no statistical
methods or models available to model such complex multivariate data with its measurement error
and zero inflation. This paper proposes the first such model, and it proposes the first workable
solution to fit such a model. After describing the model, we use survey-weighted MCMC
computations to fit the model, with uncertainty estimation coming from balanced repeated
replication.

The methodology is illustrated through an application to estimating the population distribution of
the Healthy Eating Index-2005 (HEI-2005), a multi-component dietary quality index involving
ratios of interrelated dietary components to energy, among children aged 2-8 in the United States.
We pose a number of interesting questions about the HEI-2005 and provide answers that were not
previously within the realm of possibility, and we indicate ways that our approach can be used to
answer other questions of importance to nutritional science and public health.

Keywords
Bayesian methods; Dietary assessment; Latent variables; Measurement error; Mixed models;
Nutritional epidemiology; Nutritional surveillance; Zero-Inflated Data

1. INTRODUCTION
This paper presents statistical models and methodology to overcome a major stumbling
block in the field of dietary assessment. More nutritional background is provided in Section
2: a summary of the key conceptual issues follows.

• Nutritional surveys conducted in the United States typically use 24-hour (24hr)
dietary recalls to obtain intake data, i.e., an assessment of what was consumed in
the past 24 hours.

• Because dietary recommendations are intended to be met over time, nutritionists
are interested in “usual” or long-term average daily intake.

• Dietary intake is thus assessed with considerable measurement error.

• Consumption patterns of dietary components vary widely; some are consumed
daily by almost everyone, while others are episodically consumed so that 24-hour
recall data are zero-inflated. Further, these components are correlated with one
another.

• Nutritionists are interested in dietary components collectively to capture patterns of
usual dietary intake, and thus need multivariate models for usual intake.
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• These multivariate models for usual intakes, taking into account episodically
consumed foods, do not exist, nor do methods exist for fitting them.

One way to capture dietary patterns is by scores, although our work is not limited to scores.
The Healthy Eating Index-2005 (HEI-2005), described in detail in Section 2, is a scoring
system based on a priori knowledge of dietary recommendations, and is on a scale of 0 to
100. Ideally, it consists of the usual intake of 6 episodically consumed and thus 24hr-zero
inflated foods, 6 daily-consumed dietary components, adjusts these for energy (caloric)
intake, and gives a score to each component. The total score is the sum of the individual
component scores. Higher scores indicate greater compliance with dietary guidelines and,
therefore, a healthier diet. Here are a few questions that nutritionists have not been able to
answer, and that our approach can address.

• What is the distribution of the HEI-2005 total score, and what % of Americans are
eating a healthier diet defined for example, by a total score exceeding 80?

• What is the correlation between the individual score on each dietary component and
the scores of all other dietary components?

• Among those whose total HEI-2005 score is > 50 or ≤ 50, what is the distribution
of usual intake of whole grains, whole fruits, dark green and orange vegetables and
legumes (DOL) and calories from solid fats, alcoholic beverages and added sugars
(SoFAAS)?

• What % of Americans exceed the median score on all 12 HEI-2005 components?

In this paper, to answer public health questions such as these that can have policy
implications, we build a novel multivariate measurement error model for estimating the
distributions of usual intakes, one that accounts for measurement error and zero-inflation,
and has a special structure associated with the zero-inflation. Previous attempts to fit even
simple versions of this model, using nonlinear mixed effects software, failed because of the
complexity and dimensionality of the model. We use survey-weighted Monte Carlo
computations to fit the model with uncertainty estimation coming from balanced repeated
replication. The methodology is illustrated using the HEI-2005 to assess the diets of children
aged 2-8 in the United States. This work represents the first analysis of joint distributions of
usual intakes for multiple food groups and nutrients.

The paper is outlined as follows. In Section 2 we give the background for the data we
observe. In particular, we provide more information about the HEI-2005. Section 3 describes
our model which is a highly nonlinear, zero-inflated, repeated measures model with multiple
latent variables. The model also has a patterned covariance matrix with structural zeros and
ones. We derive a parameterization that allows estimated covariance matrices to be actual
covariance matrices. We also define technically what we mean by usual intake, and illustrate
the use of simulation methods used to answer the questions posed above, as well as many
others.

Section 4 describes our estimation procedure. Previous attempts using nonlinear mixed
effects models to estimate the distribution of episodically consumed food groups (Tooze, et
al., 2006; Kipnis, et al., 2009) do not work here because of the high dimensionality of the
problem. We instead develop a Monte Carlo strategy based on the idea of Gibbs sampling;
although because of sampling weights, we treat the method as a frequentist (non-Bayesian)
one. This section describes some of the basics of the methodology; the full technical details
of implementation are given in an appendix.

Section 5 describes the analysis of the HEI-2005 components using the 2001-2004 National
Health and Nutrition Examination Survey (NHANES) for children ages 2-8. Important
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contextual points arise because of the nature of the data. For example, if whole grains are
consumed, then necessarily total grains are consumed with probability one, a restriction that
a naive use of our model cannot handle. We develop a simple novel device to uncouple
consumption variables that are tightly linked in this way. Finally in this section, we provide
the first answers to the four questions we have posed. In Section 6, we discuss various
additional aspects of the problem and the data analysis. Concluding remarks and a policy
application are given in Section 7.

There are a number of general reviews of the measurement error field (Fuller, 1987;
Gustafson, 2003; Carroll, et al., 2006; Buonaccorsi, 2010). Recent papers that focus on
estimating the density function of a univariate continuous random variable subject to
measurement error include Delaigle (2008), Delaigle and Hall (2008, 2010), Delaigle and
Meister (2008), Delaigle, et al. (2008), Staudenmayer, et al. (2008) and Wand (1998). The
field of measurement error in regression continues to expand rapidly, with some recent
contributions including Küchenhoff, et al (2006), Guolo (2008), Liang, et al. (2008), Messer
and Natarajan (2008) and Natarajan (2009). There is also a large statistical literature on
measurement error as it relates to public health nutrition: some recent papers relevant to our
work include Carriquiry (1999, 2003), Ferrari, et al. (2009), Fraser and Shavlik (2004), Kott,
et al. (2009), Nusser, et al. (1996, 1997), Prentice (1996, 2003), and Tooze, et al. (2003,
2006).

2. Data and the HEI-2005 Scores
Here we give more detail about the nutrition context that motivates this work.

In surveys conducted in the United States, the preferred method of obtaining intake data is
the 24-hour dietary recall because it limits respondent burden and facilitates accurate
reporting; yet the measure of greatest interest is “usual” or long-term average daily intake.
Thus dietary intake is assessed with considerable measurement error. Also, diets are
comprised of numerous foods, nutrients, and other components, each of which may have
distinctive attributes and effects on nutritional health. Sometimes, it is useful to examine
intake of these components separately, but increasingly nutritionists are interested in
exploring them collectively to capture patterns of dietary intake. Consumption patterns of
these components vary widely; some are consumed daily by almost everyone while others
are episodically consumed so that 24-hour recall data are zero-inflated. In addition, these
various components are often correlated with one other. Finally, it is often preferable to
analyze the amount of a dietary component relative to the amount of energy (calories) in a
diet because dietary recommendations often vary with energy level, and this approach
provides a way of standardizing dietary assessments.

One of the US Department of Agriculture's (USDA's) strategic objectives is “to promote
healthy diets” and it has developed an associated performance measure, the Healthy Eating
Index-2005 (HEI-2005, http://www.cnpp.usda.gov/HealthyEatingIndex.htm). The HEI-2005
is based on the key recommendations of the 2005 Dietary Guidelines for Americans
(http://www.health.gov/dietaryguidelines/dga2005/document/default.htm). The index
includes ratios of interrelated dietary components to energy. The HEI-2005 comprises 12
distinct component scores and a total summary score. See Table 1 for a list of these
components and the standards for scoring, and see Guenther et al. (2008) for details. Intakes
of each food or nutrient, represented by one of the 12 components, are expressed as a ratio to
energy intake, assessed, and ascribed a score.

The HEI-2005 is used to evaluate the diets of Americans to assess compliance with the 2005
Dietary Guidelines, yet use of the HEI-2005 is limited by the challenges described above.
Until recently, there have been no solutions to these challenges, so published evaluations
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have been limited to analyses of mean scores for the population and various subgroups.
Freedman, et al. (2010) have described a method of estimating the population distribution of
a single component of HEI-2005, and the prevalence of high or low scores on that
component; but there has been to date no satisfactory way to determine the prevalence of
high or low total HEI-2005 scores, considering all of its interrelated components
simultaneously. In addition, answers to the complex questions posed in the Introduction
remain unavailable. This paper aims to provide a means to do these crucial evaluations.

The 12 HEI-2005 components represent 6 episodically consumed food groups (total fruit,
whole fruit, total vegetables, dark green and orange vegetables and legumes or DOL, whole
grains and milk), 3 daily-consumed food groups (total grains, meat and beans and oils), and
3 other daily-consumed dietary components (saturated fat; sodium; and calories from solid
fats, alcoholic beverages and added sugars, or SoFAAS). The classification of food groups
as “episodically” and “daily” consumed is based on the number of individuals who report
them on 24hr recalls. If there are only a few zeros for a component, we treat that as a daily-
consumed food, and replace all zeros with 1/2 the minimum value of the non-zeros for that
food. However, the crucial statistical aspect of the data is that six of the food groups are
zero-inflated. The percentages of reported non-consumption of total fruit, whole fruit, whole
grains, total vegetables, DOL, and milk on any single day are 17%, 40%, 42%, 3%, 50% and
12%, respectively.

We are interested in the usual intake of foods for children aged 2-8. The data available to us,
described in more detail in Section 5, came from the National Health and Nutrition
Examination Survey, 2001-2004 (NHANES). The data used here consisted of n = 2, 638
children, each of whom had a survey weight wi for i = 1, ..., n. In addition, one or two 24hr
dietary recalls were available for each individual. Along with the dietary variables, there are
covariates such as age, gender, ethnicity, family income and dummy variables that indicate a
weekday or a weekend day, and whether the recall was the first or second reported for that
individual.

Using the 24hr recall data reported, for each of the episodically consumed food groups, two
variables are defined: (a) whether a food from that group was consumed; and (b) the amount
of the food that was reported on the 24hr recall. For the 6 daily-consumed food groups and
nutrients, only one variable indicating the consumption amount is defined. In addition, the
amount of energy that is calculated from the 24hr recall is of interest. The number of dietary
variables for each 24hr recall is thus 12+6+1 = 19. The observed data are Yijk for the ith
person, the jth variable and the kth replicate, j = 1, . . . , 19 and k = 1, . . . , mi. In the data set,
at most two 24hr recalls were observed, so that mi ≤ 2. Set Ỹik = (Yi1k, ..., Yi,19,k)T, where

•  = Indicator of whether dietary component  is consumed, with
.

•  = Amount of food  consumed. This equals zero, of course, if none of
food  is consumed, with .

•  = Amount of non-episodically consumed food or nutrient , with
.

• Yi,19,k = Amount of energy consumed as reported by the 24hr recall.

3. Model and Methods
3.1. Basic Model Description

Our model is a generalization of work by Tooze et al. (2006) and Kipnis, et al. (2009) for a
single food and Kipnis, et al. (2010) and Zhang, et al. (2010) for a single food and nutrient.
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Observed data will be denoted as Y, and covariates in the model will be denoted as X. As is
usual in measurement error problems, there will also be latent variables, which will be
denoted by W.

We use a probit threshold model. Each of the 6 episodically consumed foods will have 2 sets
of latent variables, one for consumption and one for amount, while the 6 daily-consumed
foods and nutrients as well as energy will have 1 set of latent variables, for a total of 19. The
latent random variables are εijk and Uij, where (Ui1, . . . , Ui,19) = Normal(0, Σu) and
(εi1k, . . . , εi,19,k) = Normal(0, Σε) are mutually independent. In this model, food 
being consumed on day k is equivalent to observing the binary , where

(3.1)

If the food is consumed we model the amount reported  as

(3.2)

where , g(y, λ) is the usual Box-Cox transformation with
transformation parameter λ, and {μ(λ), σ(λ)} are the sample mean and standard deviation of
g(y, λ), computed from the non-zero food data. This standardization is simply a convenient
device to improve the numerical performance of our algorithm without affecting the
conclusions of our analysis.

The reported consumption of daily consumed foods or nutrients  are modeled as

(3.3)

Finally, energy is modeled as

(3.4)

As seen in (3.3)-(3.4), different transformations (λ1, ..., λ13) are allowed to be used for the
different types of dietary components, see Section A.12.

In summary, there are latent variables , latent random effects Ũi =
(Ui1, ..., Ui,19)T, fixed effects (β1, ..., β19), and design matrices (Xi1k, ..., Xi,19,k). Define

. The latent variable model is

(3.5)

where Ũi = Normal(0, Σu) and  are mutually independent.

3.2. Restriction on the Covariance Matrix
Two necessary restrictions are set on Σε. First, following Kipnis, et al. (2009, 2010), 
and  are set to be independent. Second, in order to technically identify
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 and the distribution of , we require that , because
otherwise the marginal probability of consumption of dietary component  would be

, and thus components of β and Σu would be
identified only up to the scale .

So that we can handle any number of episodically consumed dietary components and any
number of daily consumed components, suppose that there are J episodically consumed
dietary components, and K daily consumed dietary components, and in addition there is
energy. Then the restrictions defined above lead to the covariance matrix

(3.6)

The diffculty with parameterizations of (3.2) is that the cells that are not constrained to be 0
or 1 cannot be left unconstrained, otherwise (3.2) need not be a covariance matrix, i.e.,
positive semidefinite.

We have developed an unconstrained parameterization that results in the structure (3.2).
Consider an unconstrained lower triangular matrix V and define Σε = VVT. This is positive
semidefinite and therefore qualifies Σε as a proper covariance matrix. The form of V is

To achieve the desired pattern (3.2), we derive the following four restrictions:

The third restriction can be ensured by the further parameterization
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where q = 2, 3, . . . , J – 1; |rt| ≤ 1, t = 1, . . . , J – 1, and |θs| ≤ π, s = 1, . . . , (J – 1)2.

Similarly, the fourth restriction can be further expressed by setting

where q = 3, 5, . . . , 2J – 1. Note that

.

3.3. The Use of Sampling Weights
As described in the Appendix, we used the survey sample weights from NHANES both in
the model fitting procedure and, after having fit the model, in estimating the distributions of
usual intake.

While not displayed here, we redid the model fitting calculations without weighting, because
the covariates we use are major players in determining the sampling weights, hence it is
reasonable to believe that the model in Section 3 holds both in the sample and in the
population. When we did this, the parameter estimates were essentially unchanged.

Thus, we use the sampling weights only for estimation of the population distributions. We
actually did this for the purpose of handling the clustering in the sample design. For such a
complex statistical procedure as ours, we knew we could not do theoretical standard errors,
so we thought about the bootstrap, and realized that putting together a bootstrap for the
complex survey would be nearly impossible. However, we already had developed a set of
Balanced Repeated Replication (BRR) weights (Wolter, 1995), see Section 5.7 for details.
These BRR weights have the property that, in the frequentist survey sampling sense, they
appropriately reflect the clustering in the standard error calculations.

Of course, the use of sampling weights in the modeling provide unbiased estimates of the
(super) population parameters of interest. In addition, the use of sampling weights in the
distribution estimation provides an estimated distribution that is representative of the US
population, not just the sample.

3.4. Distribution of Usual Intake and the HEI-2005 Scores
We assume here that estimates of Σu, Σε and βj for j = 1, ..., 19 have been constructed, see
Section 4. Here we discuss what we mean by usual intake for an individual, how to estimate
the distribution of usual intakes, how to convert usual intakes into HEI-2005 scores, and
how to assess uncertainty.

Zhang et al. Page 8

Ann Appl Stat. Author manuscript; available in PMC 2011 July 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Consider the first episodically consumed dietary component, a food group, with reporting
being done on a weekend. Set Xi1,wkend and Xi2,wkend to be the versions of Xi1k and Xi2k
where the dummy variable has the indicator of the weekend and that the recall is the first
one. Following Kipnis, et al. (2009), we define the usual intake for an individual on the
weekend to be the expectation of the reported intake conditional on the person's random
effects Ũi. Let the (q, p) element of Σε be denoted as Σε,q,p. As in Kipnis, et al. define

(3.7)

Detailed formulas for this are given in Appendix A.11. Then, following the convention of
Kipnis, et al. (2009), the person's usual intake of the first episodically consumed dietary
component on the weekend is defined as

Similarly, let Xi1,wkday and Xi2,wkday be as above but the dummy variable is appropriate for a
weekday. Then the person's usual intake of the first episodically consumed food group on
weekdays is defined as

Finally, the usual intake of the first episodically consumed food for the individual is

since Fridays, Saturdays and Sundays are considered to be weekend days. Usual intake for
the other episodically consumed food groups is defined similarly.

A person's usual intake of a daily-consumed food group/nutrient and energy on the original
scale is defined similarly. Consider, for example, energy, which is the 13th dietary
component and the 19th set of terms in the model. Let Xi,19,wkend and Xi,19,wkday be the
versions of Xi,19,k where the dummy variable has the indicator of the weekend or weekday,
respectively, and that the recall is the first one. Then

Similar formulae are used for the other daily-consumed foods and nutrients.

Finally, the energy-adjusted usual intakes and the HEI-2005 scores are then obtained as in
Table 1, using the estimated usual intakes of the dietary components.

To find the joint distribution of usual intakes of the HEI-2005 scores, it is convenient to use
Monte-Carlo methods. Recall that wi is the sampling weight for individual i. Let B be a large
number: we set B = 5, 000. Generate b = 1, ..., B observations Ũbi = Normal(0, Σu) and then

obtain  by replacing Uij in their formulae by Ubij. With appropriate sample
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weighting, the T ̃bi can be used to estimate joint and marginal distributions. Thus, for
example, consider the total HEI-2005 score, which is a deterministic function of the usual
intakes, say G(T ̃i). Its cumulative distribution function is estimated as

(3.8)

Frequentist standard errors of derived quantities such a mean, median and quantiles can be
estimated using the Balanced Repeated Replication (BRR) method (Wolter, 1995), see
Section 5.7 for details.

4. Comments on the Approach to Estimation
Our model (3.3)-(3.4) is a highly nonlinear, mixed effects model with many latent variables
and nonlinear restrictions on the covariance matrix Σε. As seen in Section 3.4, we can
estimate relevant distributions of usual intake in the population if we can estimate Σu, Σε and
βj for j = 1, ..., 19. We have found that working within a pseudo-likelihood Bayesian
paradigm is a convenient way to do this computation. We emphasize, however, that we are
doing this only to get frequentist parameter estimates based on the well-known asymptotic
equivalence of frequentist likelihood estimators and Bayesian posterior means, and
especially the consistency of both (Lehmann and Casella, 1998). We are specifically not
doing Bayesian posterior inference, since valid Bayesian inference in a complex survey such
as NHANES is an immensely challenging task, and because frequentist estimation and
inference are the standard in the nutrition community.

Kipnis, et al. (2009) were able to get estimates of parameters separately for each food group
using the nonlinear mixed effects program NLMIXED in SAS with sampling weights. While
this gives estimates of βj for j = 1, ..., 19, it only gives us parts of the covariance matrices Σu
and Σε, and not all the entries. Using the 2001-2004 NHANES data, we have verified that
our estimates and the subset of the parameters that can be estimated by one food group at a
time using NLMIXED are in close agreement, and that estimates of the distributions of usual
intake and HEI-2005 component scores are also in close agreement. We expect this because
of the rather large sample size in our data set. Zhang, et al. (2010) have shown that even
considering a single food group plus energy is a challenge for the NLMIXED procedure,
both in time and in convergence, and using this method for the entire HEI-2005 constellation
of dietary components is impossible.

Full technical details of the model fitting procedure are given in Appendices A.1-A.10.

Of course, our model has assumptions, e.g., additivity and homoscedasticity on a
transformed scale for observed and latent variables, normality of person-specific random
effects and normality of day-to-day variability on the transformed scale. These assumptions
are clearly not exactly correct, although our marginal model-checking suggests to us that
they are mostly not disastrously wrong. Some reasons for this conclusion include the facts
that we reproduce the marginal distributions of the components, that comparison with 24hr
recalls shows differences that decrease when moving from one 24hr recall to two 24hr
recalls, that q-q plots of the data are fairly satisfactory, etc. Thinking, as we do, of our work
as a first step, and not a last step, it would be extremely interesting to make the model more
general, e.g., skew-normal, skew-t or Dirichlet process distributions after transformation,
and possibly directly modeling heteroscedasticity. Such generalizations will require effort to
implement, but will speak to the robustness of the results and would be a useful future step.
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5. Empirical Work
5.1. Basic Analysis

We analyzed data from the 2001-2004 National Health and Nutrition Examination Survey
(NHANES) for children age 2-8. The study sample consisted of 2, 638 children, among
whom 1, 103 children have two 24hr recalls and the rest have only one. We used the dietary
intake data to calculate the 12 HEI-2005 components plus energy. In addition, besides age,
gender, race and interaction terms, two covariates were employed, along with an intercept.
The first was a dummy variable indicating whether or not the recall was for a weekend day
(Friday, Saturday, or Sunday) because food intakes are known to differ systematically on
weekends and weekdays. The second was a dummy variable indicating whether the 24hr
recall was the first or second such recall, the idea being that there may be systematic
differences attributable to the repeated administration of the instrument.

5.2. Contextual Information
When we ran our program based on the variables in Table 1, the results were disastrous.
Mixing of the MCMC sampler was very poor, with long sojourns in different regions.

The reason for this failure to converge depends on the context of the dietary variables. For
example, whole grains are a subset of total grains. Thus, if someone consumes any whole
grains, then necessarily, with probability 1.0, that person also consumes total grains. Such a
restriction cannot be handled by our model, because it would force one of the random effects
U to equal infinity. A similar thing happens for energy. Calories coming from saturated fat
are a subset of total calories as are calories from SoFAAS, so there is a restriction that total
calories must be greater than calories from saturated fat and also greater than calories from
SoFAAS. Since the latter sum makes up a significant portion of calories, this restriction is
not something that our model can handle well.

Luckily, there is an easy and natural context-based solution. Instead of using total grains in
the model, we used grains that are not whole grains, i.e., refined grains, thus decoupling
whole grains and total grains, and removing the restriction mentioned above. Similarly,
instead of using total fruit, we use fruit that is not whole fruits, i.e., fruit juices. Additionally,
instead of using total vegetables, we use total vegetables excluding dark green and orange
vegetables and legumes. Finally, instead of total energy, we use total energy minus the sum
of energy from saturated fat (11% of mean energy) and from SoFAAS (35% of mean
energy). We recognize that there is overlap of energy from saturated fat and energy from
solid fat, but this has no impact on our analysis since total energy has sources other than
these two. An alternative of course, would have been to simply use total energy minus
energy from SoFAAS,

This is sufficient to estimate the distributions of interest. If, for example, in the new data set
Ti1 represents usual intake of non-whole fruits, and Ti2 is usual intake of whole fruits, then
the usual intake of total fruits is Ti1 + Ti2. Similar remarks apply for total grains and total
vegetables.

With these new variables, our model mixed well and gave reasonable looking answers that,
as mentioned in Section 4, give similar results to other methods employed with smaller parts
of the data set.

5.3. Estimation of the HEI-2005 Scores
In the introduction, we posed 4 questions to which answers had not been possible
previously. The first open question concerned the distribution of the HEI total score. Along
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the way towards this, Table 2 presents the energy-adjusted distributions of the dietary
components used in the HEI-2005. Table 3 presents the distributions of the HEI-2005
individual component scores and the total score, with a graphical view given in Figure 1.

Table 3 presents the first estimates of the distribution of HEI-2005 scores for a vulnerable
subgroup of the population, namely children aged 2-8 years. A previous analysis of 2003-04
NHANES data, looking separately at 2-5 year olds and 6-11 year olds, was limited to
estimates of mean usual HEI-2005 scores (59.6 and 54.7, respectively, see Fungwe, et al.,
2009). The mean scores noted here are comparable to those and reinforce the notion that
children's diets, on average, are far from ideal. However, this analysis provides a more
complete picture of the state of US children's diets. By including the scores at various
percentiles, we estimate that only 5% of children have a score of 69 or greater and another
10% have scores of 41 or lower. While not in the Table, we also estimate that the 99th

percentile is 74. This analysis suggests that virtually all children in the US have suboptimal
diets and that a sizeable fraction (10%) have alarmingly low scores (41 or lower.)

We have also considered whether our multivariate model fitting procedure gives reasonable
marginal answers. To check this, we note that it is possible to use the SAS procedure
NLMIXED separately for each component to fit a model with one episodically consumed
food group or daily consumed dietary component together with energy. The marginal
distributions of each such component done separately are quite close to what we have
reported in Table 3, as is our mean, which is 53.50 compared to the mean of 53.25 based on
analyzing one HEI-2005 component at a time with the NLMIXED procedure. The only case
where there is a mild discrepancy is in the estimated variability of the energy-adjusted usual
intake of oils, likely caused by the NLMIXED procedure itself, which has an estimated
variance 9 times greater than our estimated variance.

Of course, it is the distribution of the HEI-2005 total score that cannot be estimated by
analysis of one component at a time.

There are other things that have not been computed previously that are simple by-products
of our analysis. For example, the correlations among energy-adjusted usual intakes
involving episodically consumed foods have not been estimated previously, but this is easy
for us, see Table 4. The estimated correlation of –0.64 between energy-adjusted total fruit
and energy-adjusted SoFAAS, and the –0.47 correlation between DOL and SoFAAS are
surprisingly high.

5.4. Component Scores and Other Scores
As described in the introduction, an open problem has been to estimate the correlation
between the individual score on each dietary component and the scores of all other dietary
components. In their Table 3, Guenther, et al. (2008b) consider this problem, but of course
they did not have a model for usual energy adjusted intakes, and instead they used a single
24hr recall. In Table 5, we show the resulting correlations using (a) a single 24hr recall; (b)
the mean of two 24hr recalls for those who have two 24hr recalls; and (c) our model for
usual intake. The numbers for the former differ from that of Guenther, et al. (2008b) because
we are considering here a different population than do they. A striking and not unexpected
aspect of this table is that for those components with non-trivial correlations, the correlations
all increase as one moves from a single 24hr recall to the mean of two 24hr recalls and then
finally to estimated usual intake. Thus, for example, the correlation between the HEI-2005
score for total fruit and its difference with the total score is 0.38 for a single 24hr recall, 0.44
for the mean of two 24hr recalls and then finally 0.62 for usual intake.
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5.5. Distributions of Intakes for Subsets of HEI Total Scores
A third open question is: among those whose total HEI-2005 score is > 50 or ≤ 50, what is
the distribution of energy-adjusted usual intake of whole grains, whole fruits, dark green and
orange vegetables and legumes (DOL) and calories from solid fats, alcoholic beverages and
added sugars (SoFAAS)? This follows naturally from our method. Following (3.8), let
G1(T ̃bi) be energy adjusted usual intake and let G2(T ̃bi) be the HEI total score. Then the
distributions in question for when the total HEI-2005 score is > 50 can be estimated as

.

The results are provided in Table 6, with a graphical view in Figure 2. The results show that
those who have poorer diets with usual HEI-2005 total score ≤ 50 are consistently eating
poorer diets, i.e., less whole fruits, less whole grains and less DOL, but higher SoFAAS.

5.6. Dietary Consistency
We stated in the introduction that it is interesting to understand the percentage of children
whose usual intake HEI score exceeds the median HEI score on all 12 HEI components.
Those median scores, say (κ1, ..., κ12), are estimated in Table 3. If Gj(T ̃bi) is the HEI
component score for episodically consumed food j, then following (3.8) the quantity in

question can be estimated as . We
estimate that the percentage is 6%, woefully small. The percentage of children whose usual
intake HEI score exceeds the median HEI score on all 12 HEI components is 0.24%. Figure
3 gives the estimated probabilities of exceeding the κ percentile on all 12 HEI components
simultaneously, for κ = 1, 2, ..., 99.

5.7. Uncertainty Quantification
The BRR standard errors of HEI-2005 components’ adjusted usual intakes and scores are
shown in Tables 2 and 3. The BRR weights are only used in variance calculations. Once we
have estimated some quantity, say , from the sample using sample weight, we will need to
compute the same quantity using, in succession, the 32 BRR weights. This will give us 32
estimates . The BRR estimate for the variance of  is

. The 32 in the denominator is for the 32 different estimates
from the 32 different sets of weights, and the 0.49 is the square of the perturbation factor
used to construct the BRR weight sets (Wolter, 1995).

6. Further Discussion of the Analysis
6.1. Never Consumers

An aspect of the modeling that we have not discussed is the possibility that some people
never, ever consume an episodically consumed dietary component. Our model does not
allow for this, for general reasons and for reasons that are specific to our data analysis.

It is in principle possible to add an additional modeling step for non-consumers, via fixed
effects probit regression, but we do not think this is a practical issue in our case, for two
reasons.

• The first is that the HEI-2005 is based on 6 episodically consumed dietary
components, namely total fruit, whole fruit, whole grains, total vegetables, DOL,
and milk, the latter of which includes cheese, yogurt and soy beverages. None of
these are “lifestyle adverse”, unlike say alcohol. While 40% of the responses for
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whole fruits, for example, equal zero, the percentage of children who never eat any
whole fruits at all is likely to be minuscule.

• Even if one disputes whether there are very few individuals who never consume
one of the dietary components, then it necessarily follows that we have
overestimated the HEI-2005 total scores, and hence the estimates of the proportion
of individuals with alarmingly low HEI scores are deflated, and not inflated. The
reason is that our model suggests everyone has a positive usual intake of the 6
episodically consumed dietary components. Since the HEI-2005 score components
are nondecreasing functions of usual intake of the episodically consumed dietary
components, this would mean that we overestimate the HEI-2005 total score.

6.2. Computing and Data
Our programs were written in Matlab. The programs, along with the NHANES data we
used, are available in the Annals of Applied Statistics online archive. Although a much
smaller amount of computing effort yields similar results, using 70, 000 MCMC steps with a
burn-in of 20, 000 takes approximately 10 hours on a Linux server.

We also estimated the Monte Carlo standard error which is defined by Flegal, et al. (2008)
as , where n is the total of iterations, and n = ab, where a is the number of blocks and
b is the block size, and where

The batch means estimate of  is

The ratio of the Monte Carlo standard error to the estimated standard deviation of the
estimated parameters averages 3.4% for Σu and 1.7% for β.

Because of the public health importance of the problem, the National Cancer Institute has
contracted for the creation of a SAS program that performs our analysis. It will allow any
number of episodically and daily consumed dietary components. The first draft of this
program, written independently in a different programming language, gives almost identical
results to what we have obtained, at least suggesting that our results are not the product of a
programming error.

7. Discussion
7.1. Transformations

In Section A.12, we describe how we estimated the transformation parameters as a separate
component-wise calculation. We have done some analyses where we simultaneously
transform each component, and found very little difference with our results. However, the
computing time to implement this is extremely high, because of the fact that different
transformations make data on different scales, so we have to compute the usual intakes at
each step in the MCMC, and not just at the end.
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7.2. What Have We Learned That Is New
There are many important questions in dietary assessment that have not been able to be
answered because of a lack of multivariate models for complex, zero-inflated data with
measurement errors and a lack of ability to fit such multivariate models. Nutrients and foods
are not consumed in isolation, but rather as part of a broader pattern of eating. There is
reason to believe that these various dietary components interact with one another in their
effect on health, sometimes working synergistically and sometimes in opposition.
Nonetheless, simply characterizing various patterns of eating has presented enormous
statistical challenge. Until now, descriptive statistics on the HEI-2005 have been limited to
examination of either the total scores or only a single energy-adjusted component at a time.
This has precluded characterization of various patterns of dietary quality as well as any
subsequent analyses of how such patterns might relate to health.

This methodology presented in this paper presents a workable solution to these problems
which has already proven valuable. In May 2010, just as we were submitting the paper, a
White House Task Force on Childhood Obesity created a report. They had wanted to set a
goal of all children having a total HEI score of 80 or more by 2030, but when they learned
we estimated only 10% of the children ages 2-8 had a score of 66 or higher, they decided to
set a more realistic target. The facility to estimate distributions of the multiple component
scores simultaneously will be important in tracking progress toward that goal.

7.3. In What Other Arenas Will Our Work Have Impact?
There are many other important problems where multivariate models such as ours will be
important. One such problem arises when studying the relationship between multiple dietary
components or dietary patterns and health outcomes. Traditionally, for cost reasons, large
cohort studies have used a food frequency questionnaire (FFQ) to measure dietary intake,
sometimes with a small calibration study including short-term measures such as 24hr recalls.
However, there is a new web-based instrument called the Automated Self-administered 24-
hour Dietary Recall (ASA24™), see http://riskfactor.cancer.gov/tools/instruments/asa24,
which has been proposed to replace or at least supplement the FFQ and which is currently
undergoing extensive testing. The dietary data we will see then is what we have called Yijk,
i.e., 24hr recall data. In order to correct relative risk estimates for the measurement error
inherent in the ASA24™, regression calibration (Carroll, et al., 2006) will almost certainly
be the method of choice, as it is in most of nutritional epidemiology. This method attempts
to produce an estimate of the regression of usual intake on the observed intakes, and then to
use these estimates in Cox and logistic regression for the health outcome. In order to
perform this regression, a multivariate measurement error model will be required, since the
regression is on all the observed dietary intake components in the regression model
measured by the ASA24™, and not on each individual component. Our methodology is
easily extended to address this problem.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A: DETAILS OF THE FITTING PROCEDURE
In this Appendix we give the full details of the model fitting procedure.

A.1. Notational Convention
In our example, age was standardized to have mean 0.0 and variance 1.0, to improve
numerical stability.

As described in Section 3.1, the observed, transformed non-zero 24hr recalls were
standardized to have mean 0.0 and variance 2.0. More precisely, for , we first
transformed the non-zero food group data as , and then we standardized
these data as , where  are the mean and
standard deviation of the non-zero food intakes . Similarly, for non-episodically
consumed dietary components and energy we transformed to  for

, and then standardized to . Of course,
whether the food group is consumed or not is  for . Collected, the

data are . The terms  are not random variables but are merely
constants used for standardization, and we need not consider inference for them. Back-
transformation is discussed in Appendix A.11.

A.2. Prior Distributions
Because the data were standardized, we used the following conventions.

• The prior for all βj were normal with mean zero and variance 100.

• The prior for Σu was exchangeable with diagonal entries all equal to 1.0 and
correlations all equal to 0.50. There were 21 degrees of freedom in the inverse
Wishart prior, i.e., mu = 21. Thus, the prior is IW{(mu – 19 – 1)Σu,prior, mu}. We
experimented with this prior by using zero correlation, and the results were
essentially unchanged.

• The prior for rk is Uniform[-1, 1]. Set the initial value: rk = 0, k = 1, . . . , 5.

• The prior for θk is Uniform[–π, π]. Set the initial value: θk = 0, k = 1, . . . , 25.

• The priors for v22, v44, . . . , v12,12 and v13,13, . . . , v19,19 were Uniform[-3,3]. Set
the initial values: v22 = v44 = . . . = v12,12 = v13,13 = . . . = v19,19 = 1.

• For the rest of the non-diagonal vij's which could not be determined by the
restrictions, we used Uniform[-3,3] priors. Set the initial values to be 0.

The constraints on Σε are nonlinear, and our parameterization enforces them easily without
having to have prior distributions for the original parameterization that satisfy the nonlinear
constraints.

The key thing that makes things work well with the other components of the matrix V with
Σε = VVT is that we have standardized the data as described in Section A.1. With this
standardization, things become much nicer. For example, the variance of the ε's for energy is

. However, since the sample variance for energy is standardized to equal 2.0, we
simply just need to make priors for v19,j be uniform on a modest range to have real
flexibility.
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A.3. Generating Starting Values for the Latent Variables
While we observe Q ̃ik, in the MCMC we need to generate starting values for the latent

variables  to initiate the MCMC.

• For nutrients and energy, Qijk = Wijk, no data need be generated, j = 13, . . . , 19.

• For the amounts, Qi2k, Qi4k, Qi6k, Qi8k, Qi,10,k and Qi,12,k, we set Wi2k = Qi2k, Wi4k
= Qi4k, Wi6k = Qi6k, Wi8k = Qi8k, Wi,10,k = Qi,10,k and Wi,12,k = Qi,12,k.

• For consumption, we generate Ũi as normally distributed with mean zero and
covariance matrix given as the prior covariance matrix for Σu. For , we

also compute , where  are
generated independently. We then set .

• Finally, we then updated W ̃ik by a single application of the updates given in
Appendix A.9.

A.4. Complete Data Loglikelihood
Let J = 19. The complete data include the indicators of whether a food was consumed, the W
variables, and the random effect U variables. The loglikelihood of the complete data is

We used Gibbs sampling to update this complete data loglikelihood, the details for which
are given in subsequent appendices. The weights wi are integers and are used here in a
pseudo-likelihood fashion. One can also think of this as expanding each individual into wi
individuals, each with the same observed data but different latent variables. For
computational convenience, since we are only asking for a frequentist estimator and not
doing full Bayesian inference, the latent variables in the process are generated once for each
individual. Estimates of Σu, Σε and βj for j = 1, ..., J were computed as the means from the
Gibbs samples. Once again, we emphasize that we are not doing a proper Bayesian analysis,
but only using MCMC techniques to obtain a frequentist estimate, with uncertainty assessed
using the frequentist BRR method.

A.5. Complete Conditionals for rq, θq and vpq

Except for irrelevant constants, the complete conditional for rq (q = 1, . . . , 5) is
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Except for irrelevant constants, the complete conditionals for vqq (q = 2, 4, 6, 8, 10, 12,
13, . . . , 19) are

Except for irrelevant constants, the compete conditionals for θq, (q = 1, . . . , 25) and non-
diagonal free parameters vpq are

The full conditionals do not have an explicit form, so we use a Metropolis-Hastings within a
Gibbs sampler to generate it.

• rq (q = 1, . . . , 5)

We discretize the values of rq to the set {–0.99 + 2 × 0.99(j – 1)/(M – 1)},
where j = 1, ..., M and we choose M = 41.

Proposal: The current value is rq,t. The proposed value of rq,t+1 is selected
randomly from the current value and the two nearest neighbors of rq,t. Then
rq,t+1 is accepted with probability min{1, g(rq,t+1)/g(rq,t), where

where here and in what follows, for any A, .

• θq (q = 1, . . . , 25)

We discretize similarly as above.

Proposal: The current value is θq,t. The proposed value θq,t+1 is selected
randomly from the current value and the two nearest neighbors of θq,t. Then
θq,t+1 is accepted with probability min{1, g(θq,t+1)/g(θq,t)}, where

• vqq (q = 2, 4, 6, 8, 10, 12, 13, . . . , 19)
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Proposal: The current value is vqq,t. A candidate vqq,t+1 is generated from the
Uniform distribution of length 0.4 with mean vqq,t. The candidate value vqq,t+1
is accepted with probability min{1, g(vqq,t+1)/g(vqq,t)}, where

• non-diagonal free parameters vpq

Proposal: The current value is vpq,t. The candidate value vpq,t+1 is generated
from the Uniform distribution of length 0.4 with mean vpq,t. The candidate
value is accepted with probability min{1, g(vpq,t+1)/g(vpq,t)}, where

A.6. Complete Conditionals for Σu

The dimension of the covariance matrices is J = 19. By inspection, the complete conditional
for Σu is

where here IW = the Inverse-Wishart distribution. The density of IW(Ω, m) for a J × J
random variable is

This has expectation Ω/(m – J – 1).

A.7. Complete Conditionals for β

Let the elements of  be . For any j, except for irrelevant constants,

which implies , where
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A.8. Complete Conditionals for Ũi

The NHANES 2001-2004 weights are integers, representing the number of children that
each sampled child represents. Thus, as described therein, the loglikelihood in Section A.4
could also be rewritten equivalently by developing wi pseudo-children, each with the same
observed data values. It thus does not make sense to use the weights to generate an
individual Ũi. Instead, as described in Section A.4, for computational convenience for
generating a Ũi to represent wi children, we set the weight for that child temporarily = 1.0.
Then, except for irrelevant constants,

Remembering that for purposes of this section we are setting wi = 1.0, this implies that

, where

A.9. Complete Conditional for , , 3, 5, 7, 9, 11
Here we do the complete conditional for  with , 3, 5, 7, 9, 11. Except for irrelevant
constants,

where, using the convention of Section A.8,

If we use the notation TN+(μ, σ, c) for a normal random variable with mean μ and standard
deviation σ that is truncated from the left at c, and similarly use TN–(μ, σ, c) when truncation

is from the right at c, then it follows that with  and ,
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Generating TN+(0, 1, c) is easy: if c < 0, simply do rejection sampling of a Normal(0, 1)
until you get one that is > c. If c > 0, there is an adaptive rejection scheme (Robert, 1995).

A.10. Complete Conditionals for Wi2k, Wi4k, Wi6k, Wi8k, Wi,10,k and Wi,12,k When
Not Observed

For p = 2, 4, 6, 8, 10, 12, the variable Wipk is not observed when Qi,p–1,k = 0, or,
equivalently, when Wi,p–1,k < 0. Except for irrelevant constants,

where, using the convention of Section A.8,

Therefore,

A.11. Usual Intake, Standardization and Transformation
Here we present detailed formulas for functions defined in Section 3.4. When λ = 0, the
back-transformation is

When λ ≠ 0, the back-transformation is

A.12. Transformation Estimation
As part of an earlier project (Freedman, et al., 2009), we estimated the transformations for
one food/nutrient at a time using the method of Kipnis, et al. (2009), both for the data and
also for each BRR weighted data set. To facilitate comparison with the one food/nutrient at a
time analysis, in our analysis of all HEI-2005 components, we used these transformations as
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well. Of course, our methods can be generalized to allow for estimation of the
transformations as well. By allowing a different transformation for each BRR weighted data
set, we have captured the variation due to estimation of the transformations.

SUPPLEMENTARY MATERIAL

Included in the supplementary materials (Zhang, et al., 2011) are (a) additional tables in a
pdf file; (b) data files of the NHANES data used in the analysis; and (c) Matlab programs for
the data analysis. (http://???/???). ???
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Fig 1.
The estimated percentiles of the HEI-2005 total score. The horizontal axis is the percentile
of interest, e.g., 0.5 refers to the median, while the vertical axis gives percentile of the
HEI-2005 scores. Standard error estimates are given in Table 2.
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Fig 2.
The estimated percentiles of the energy-adjusted usual intakes for Whole fruits (Top left) in
cups/(1000 kcal), Whole grains (Top right) in ounces/(1000 kcal), DOL (bottom left) in
cups/(1000 kcal) and calories from SoFAAS (bottom right) in % of Energy. The solid lines
are for those whose usual HEI-2005 total score is ≤ 50, i.e., poorer diets, while the dashed
lines are for those whose usual HEI-2005 total score is > 50, i.e., better diets.
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Fig 3.
The Y-axis gives the estimated probabilities of exceeding the κ (X-axis) percentile on all 12
HEI components, for κ = 1,2, ..., 99, see Section 5.6.
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Table 1

Description of the HEI-2005 scoring system. Except for saturated fat and SoFAAS, density is obtained by
multiplying usual intake by 1000 and dividing by usual intake of kilo-calories. For saturated fat, density is 9 ×
100 usual saturated fat (grams) divided by usual calories, i.e., the percentage of usual calories coming from
usual saturated fat intake. For SoFAAS, the density is the percentage of usual intake that comes from usual
intake of calories, i.e., the division of usual intake of SoFAAS by usual intake of calories. Here, “DOL” is
dark green and orange vegetables and legumes. Also, “SoFAAS” is calories from solid fats, alcoholic
beverages and added sugars. The total HEI-2005 score is the sum of the individual component scores.

Component Units HEI-2005 score calculation

Total Fruit cups min (5, 5 × (density/.8))

Whole Fruit cups min (5, 5 × (density/.4))

Total Vegetables cups min (5, 5 × (density/1.1))

DOL cups min (5, 5 × (density/.4))

Total Grains ounces min (5, 5 × (density/3))

Whole Grains ounces min (5, 5 × (density/1.5))

Milk cups min (10, 10 × (density/1.3))

Meat and Beans ounces min (10, 10 × (density/2.5))

Oil grams min (10, 10 × (density/12))

Saturated Fat %of energy if density ≥ 15 score = 0

else if density ≤ 7 score = 10

else if density > 10 score = 8 – (8 × (density – 10)/5)

else, score = 10 – (2 × (density – 7)/3)

Sodium milligrams if density ≥ 2000 score=0

else if density ≤ 700 score=10

else if density ≥ 1100 score = 8 – {8 × (density – 1100)/(2000 – 1100)}

else score = 10 – {2 × (density – 700)/(1100 – 700)}

SoFAAS % of energy if density ≥ 50 score = 0

else if density ≤ 20 score=20

else score = 20 – {20 × (density – 20)/(50 – 20)}

Ann Appl Stat. Author manuscript; available in PMC 2011 July 28.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zhang et al. Page 28

Ta
bl

e 
2

Es
tim

at
ed

 d
is

tri
bu

tio
ns

 o
f e

ne
rg

y-
ad

ju
st

ed
 u

su
al

 in
ta

ke
s f

or
 c

hi
ld

re
n 

ag
ed

 2
-8

; N
H

A
N

ES
, 2

00
1-

20
04

. F
or

 e
ac

h 
di

et
ar

y 
co

m
po

ne
nt

, t
he

 fi
rs

t l
in

e 
=

es
tim

at
e 

fr
om

 o
ur

 m
od

el
, w

hi
le

 th
e 

se
co

nd
 li

ne
 is

 it
s B

R
R

-e
st

im
at

ed
 st

an
da

rd
 e

rr
or

. H
er

e,
 “

D
O

L”
 is

 d
ar

k 
gr

ee
n 

an
d 

or
an

ge
 v

eg
et

ab
le

s a
nd

 le
gu

m
es

. A
ls

o,
“S

oF
A

A
S”

 is
 c

al
or

ie
s f

ro
m

 so
lid

 fa
ts

, a
lc

oh
ol

ic
 b

ev
er

ag
es

 a
nd

 a
dd

ed
, s

ug
ar

s. 
To

ta
l F

ru
it,

 W
ho

le
 F

ru
it,

 T
ot

al
 V

eg
et

ab
le

s, 
D

O
L 

an
d 

M
ilk

 a
re

 in
 c

up
s. 

To
ta

l
G

ra
in

s, 
W

ho
le

 G
ra

in
s a

nd
 M

ea
t a

nd
 B

ea
ns

 a
re

 in
 o

un
ce

s. 
O

il 
an

d 
So

di
um

 a
re

 in
 g

ra
m

s. 
Sa

tu
ra

te
d 

Fa
t a

nd
 S

oF
A

A
S 

ar
e 

in
 %

 o
f e

ne
rg

y.
 F

ur
th

er
 d

is
cu

ss
io

n
of

 th
e 

si
ze

 o
f t

he
 B

R
R

-e
st

im
at

ed
 st

an
da

rd
 e

rr
or

s i
s g

iv
en

 in
 th

e 
su

pp
le

m
en

ta
ry

 m
at

er
ia

l (
Zh

an
g,

 e
t a

l.,
 2

01
1)

.

Pe
rc

en
til

e

C
om

po
ne

nt
U

ni
ts

M
ea

n
5th

10
th

25
th

50
th

75
th

90
th

95
th

To
ta

l F
ru

it
cu

ps
/(1

00
0 

kc
al

)
0.

70
0.

14
0.

21
0.

37
0.

62
0.

95
1.

30
1.

54

0.
02

0.
02

0.
02

0.
02

0.
02

0.
03

0.
05

0.
07

W
ho

le
 F

ru
it

cu
ps

/(1
00

0 
kc

al
)

0.
31

0.
04

0.
07

0.
14

0.
26

0.
42

0.
61

0.
73

0.
02

0.
01

0.
01

0.
02

0.
02

0.
03

0.
04

0.
06

To
ta

l V
eg

et
ab

le
s

cu
ps

/(1
00

0 
kc

al
)

0.
47

0.
23

0.
27

0.
36

0.
46

0.
58

0.
69

0.
77

0.
01

0.
02

0.
02

0.
02

0.
01

0.
02

0.
03

0.
03

D
O

L
cu

ps
/(1

00
0 

kc
al

)
0.

05
0.

00
0.

01
0.

02
0.

03
0.

07
0.

11
0.

15

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

0.
01

0.
01

To
ta

l G
ra

in
s

ou
nc

es
/(1

00
0 

kc
al

)
3.

32
2.

35
2.

54
2.

87
3.

28
3.

72
4.

16
4.

45

0.
05

0.
08

0.
07

0.
06

0.
05

0.
06

0.
08

0.
10

W
ho

le
 G

ra
in

s
ou

nc
es

/(1
00

0 
kc

al
)

0.
27

0.
05

0.
07

0.
13

0.
23

0.
36

0.
52

0.
64

0.
01

0.
01

0.
01

0.
02

0.
01

0.
02

0.
03

0.
04

M
ilk

cu
ps

/(1
00

0 
kc

al
)

0.
97

0.
28

0.
38

0.
60

0.
90

1.
26

1.
64

1.
90

0.
02

0.
03

0.
03

0.
02

0.
02

0.
03

0.
05

0.
07

M
ea

t a
nd

 B
ea

ns
ou

nc
es

/(1
00

0 
kc

al
)

1.
84

1.
06

1.
21

1.
48

1.
80

2.
16

2.
51

2.
73

0.
04

0.
09

0.
08

0.
06

0.
04

0.
04

0.
05

0.
07

O
il

gr
am

s/
( 1

00
0 

kc
al

)
7.

13
4.

05
4.

60
5.

63
6.

93
8.

41
9.

90
10

.8
9

0.
23

0.
24

0.
21

0.
17

0.
20

0.
35

0.
54

0.
68

Sa
tu

ra
te

d 
Fa

t
%

 o
f E

ne
rg

y
11

.7
1

8.
56

9.
20

10
.3

3
11

.6
4

13
.0

1
14

.3
2

15
.1

3

0.
15

0.
25

0.
20

0.
15

0.
15

0.
22

0.
32

0.
38

So
di

um
gr

am
s/

(1
00

0 
kc

al
)

1.
49

1.
16

1.
23

1.
34

1.
48

1.
63

1.
77

1.
86

0.
01

0.
02

0.
02

0.
01

0.
01

0.
02

0.
03

0.
03

So
FA

A
S

%
 o

f E
ne

rg
y

36
.9

3
27

.1
9

29
.2

8
32

.8
7

36
.9

0
40

.9
6

44
.6

1
46

.7
7

0.
48

0.
93

0.
81

0.
63

0.
48

0.
49

0.
64

0.
75

Ann Appl Stat. Author manuscript; available in PMC 2011 July 28.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zhang et al. Page 29

Ta
bl

e 
3

Es
tim

at
ed

 d
is

tri
bu

tio
ns

 o
f t

he
 u

su
al

 in
ta

ke
 H

EI
-2

00
5 

sc
or

es
. F

or
 e

ac
h 

co
m

po
ne

nt
 sc

or
e,

 th
e 

fir
st

 li
ne

 =
 e

st
im

at
e 

fr
om

 o
ur

 m
od

el
, w

hi
le

 th
e 

se
co

nd
 li

ne
 is

its
 B

R
R

-e
st

im
at

ed
 st

an
da

rd
 e

rr
or

. T
he

 to
ta

l s
co

re
 is

 th
e 

su
m

 o
f t

he
 in

di
vi

du
al

 sc
or

es
. H

er
e,

 “
D

O
L”

 is
 d

ar
k 

gr
ee

n 
an

d 
or

an
ge

 v
eg

et
ab

le
s a

nd
 le

gu
m

es
.

A
ls

o,
 “

So
FA

A
S”

 is
 c

al
or

ie
s f

ro
m

 so
lid

 fa
ts

, a
lc

oh
ol

ic
 b

ev
er

ag
es

 a
nd

 a
dd

ed
 su

ga
rs

. F
ur

th
er

 d
is

cu
ss

io
n 

of
 th

e 
si

ze
 o

f t
he

 B
R

R
-e

st
im

at
ed

 st
an

da
rd

 e
rr

or
s i

s
gi

ve
n 

in
 th

e 
su

pp
le

m
en

ta
ry

 m
at

er
ia

l (
Zh

an
g,

 e
t a

l.,
 2

01
1)

.

Pe
rc

en
til

e

C
om

po
ne

nt
M

ea
n

5th
10

th
25

th
50

th
75

th
90

th
95

th

To
ta

l F
ru

it
3.

55
0.

87
1.

31
2.

33
3.

90
5.

00
5.

00
5.

00

0.
09

0.
13

0.
14

0.
15

0.
15

0.
00

0.
00

0.
00

W
ho

le
 F

ru
it

3.
14

0.
49

0.
82

1.
71

3.
24

5.
00

5.
00

5.
00

0.
14

0.
12

0.
16

0.
21

0.
26

0.
03

0.
00

0.
00

To
ta

l V
eg

et
ab

le
s

2.
16

1.
02

1.
24

1.
63

2.
10

2.
62

3.
15

3.
48

0.
06

0.
10

0.
10

0.
07

0.
06

0.
07

0.
12

0.
16

D
O

L
0.

62
0.

05
0.

09
0.

21
0.

45
0.

86
1.

38
1.

76

0.
04

0.
02

0.
03

0.
04

0.
05

0.
06

0.
08

0.
13

To
ta

l G
ra

in
s

4.
81

3.
92

4.
23

4.
79

5.
00

5.
00

5.
00

5.
00

0.
03

0.
13

0.
12

0.
09

0.
00

0.
00

0.
00

0.
00

W
ho

le
 G

ra
in

s
0.

90
0.

16
0.

24
0.

43
0.

75
1.

21
1.

74
2.

13

0.
04

0.
04

0.
05

0.
05

0.
05

0.
05

0.
10

0.
14

M
ilk

6.
77

2.
15

2.
96

4.
62

6.
91

9.
67

10
.0

0
10

.0
0

0.
12

0.
23

0.
22

0.
18

0.
17

0.
25

0.
00

0.
00

M
ea

t a
nd

 B
ea

ns
7.

22
4.

23
4.

83
5.

91
7.

21
8.

64
10

.0
0

10
.0

0

0.
16

0.
34

0.
30

0.
23

0.
17

0.
15

0.
11

0.
00

O
il

5.
92

3.
37

3.
83

4.
69

5.
77

7.
01

8.
25

9.
07

0.
18

0.
20

0.
18

0.
14

0.
17

0.
29

0.
45

0.
57

Sa
tu

ra
te

d 
Fa

t
5.

16
0.

00
1.

09
3.

18
5.

38
7.

48
8.

53
8.

96

0.
21

0.
35

0.
51

0.
35

0.
24

0.
23

0.
13

0.
16

So
di

um
4.

52
1.

25
2.

05
3.

31
4.

62
5.

83
6.

85
7.

44

0.
09

0.
30

0.
24

0.
15

0.
09

0.
11

0.
16

0.
19

So
FA

A
S

8.
73

2.
15

3.
60

6.
02

8.
73

11
.4

2
13

.8
1

15
.2

1

0.
32

0.
50

0.
42

0.
33

0.
32

0.
42

0.
54

0.
62

Ann Appl Stat. Author manuscript; available in PMC 2011 July 28.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zhang et al. Page 30

Pe
rc

en
til

e

C
om

po
ne

nt
M

ea
n

5th
10

th
25

th
50

th
75

th
90

th
95

th

To
ta

l S
co

re
53

.5
0

37
.4

2
40

.7
4

46
.7

3
53

.6
8

60
.3

6
65

.8
7

68
.9

6

0.
81

1.
45

1.
34

1.
09

0.
83

0.
82

0.
96

1.
08

Ann Appl Stat. Author manuscript; available in PMC 2011 July 28.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zhang et al. Page 31

Ta
bl

e 
4

Es
tim

at
ed

 c
or

re
la

tio
n 

m
at

rix
 fo

r e
ne

rg
y-

ad
ju

st
ed

 u
su

al
 in

ta
ke

s. 
H

er
e 

TF
 =

 T
ot

al
 F

ru
its

, W
F 

= 
W

ho
le

 F
ru

its
, T

V
 =

 T
ot

al
 V

eg
et

ab
le

s, 
W

G
 =

 W
ho

le
 G

ra
in

s,
TG

 =
 T

ot
al

 G
ra

in
s, 

Sa
tF

at
 =

 S
at

ur
at

ed
 F

at
. H

er
e,

 “
D

O
L”

 is
 d

ar
k 

gr
ee

n 
an

d 
or

an
ge

 v
eg

et
ab

le
s a

nd
 le

gu
m

es
. A

ls
o,

 “
So

FA
A

S”
 is

 c
al

or
ie

s f
ro

m
 so

lid
 fa

ts
,

al
co

ho
lic

 b
ev

er
ag

es
 a

nd
 a

dd
ed

 su
ga

rs
.

C
om

po
ne

nt
T

F
W

F
T

V
D

O
L

T
G

W
G

M
ilk

M
ea

t
O

il
Sa

tF
at

So
di

um
So

FA
A

S

TF
1

0.
76

0.
07

0.
41

-0
.1

0
0.

33
0.

16
0.

08
-0

.3
5

-0
.3

8
-0

.2
5

-0
.6

4

W
F

1
0.

14
0.

49
0.

03
0.

35
0.

10
0.

05
-0

.1
7

-0
.3

0
-0

.2
0

-0
.5

1

TV
1

0.
51

-0
.2

5
-0

.2
3

-0
.0

9
0.

51
-0

.0
8

0.
08

0.
42

-0
.1

6

D
O

L
1

-0
.0

8
0.

11
0.

14
0.

25
-0

.0
6

-0
.2

3
0.

01
-0

.4
7

TG
1

0.
30

-0
.3

0
-0

.1
3

0.
44

-0
.3

6
0.

17
-0

.2
2

W
G

1
0.

18
-0

.1
8

-0
.1

1
-0

.2
9

-0
.1

7
-0

.4
6

M
ilk

1
-0

.3
7

-0
.2

1
0.

21
-0

.2
7

-0
.2

1

M
ea

t &
 B

ea
ns

1
-0

.0
6

-0
.0

8
0.

39
-0

.1
9

O
il

1
-0

.0
6

0.
11

0.
05

Sa
tF

at
1

0.
09

0.
46

So
di

um
1

0.
04

So
FA

A
S

1

Ann Appl Stat. Author manuscript; available in PMC 2011 July 28.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zhang et al. Page 32

Table 5

Estimated correlations between each individual HEI-2005 component score and the sum of the other HEI
component scores, i.e., the difference of the total score and each individual component. The column labeled
“Two 24hr” is the naive analysis that uses the mean of the two 24hr recalls, while the column labeled “First
24hr” is the naive analysis that uses the first 24hr recall. The column labeled “Model” is our analysis, and the
column labeled “BRR s.e.” is the estimated standard error of our estimates. Here, “DOL” is dark green and
orange vegetables and legumes. Also, “SoFAAS” is calories from solid fats, alcoholic beverages and added
sugars.

First 24hr Two 24hr Model BRR s.e.

Total Fruit 0.38 0.44 0.62 0.05

Whole Fruit 0.31 0.37 0.59 0.10

Total Vegetables 0.09 0.11 0.10 0.11

DOL 0.18 0.24 0.41 0.07

Total Grains 0.00 0.00 0.06 0.11

Whole Grains 0.12 0.16 0.53 0.08

Milk -0.07 -0.01 0.01 0.08

Mean and Beans -0.03 -0.01 -0.03 0.15

Oil 0.08 0.05 -0.17 0.08

Saturated Fat 0.21 0.23 0.36 0.06

Sodium -0.03 0.05 0.07 0.12

SoFAAS 0.52 0.59 0.72 0.04
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