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As one reflects back through the past 50 years of scientific

research, a significant accomplishment was the advance into the

genomic era. Basic research scientists have uncovered the genetic

code and the foundation of the most fundamental building blocks

for the molecular activity that supports biological structure and

function. Accompanying these structural and functional discov-

eries is the advance of techniques and technologies to probe

molecular events, in time, across environmental and chemical

exposures, within individuals, and across species. The field of

toxicology has kept pace with advances in molecular study, and

the past 50 years recognizes significant growth and explosive

understanding of the impact of the compounds and environment

to basic cellular and molecular machinery. The advancement of

molecular techniques applied in a whole-genomic capacity to the

study of toxicant effects, toxicogenomics, is no doubt a significant

milestone for toxicological research. Toxicogenomics has also

provided an avenue for advancing a joining of multidisciplinary

sciences including engineering and informatics in traditional

toxicological research. This review will cover the evolution of the

field of toxicogenomics in the context of informatics integration its

current promise, and limitations.
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biomarker.

THE EVOLUTION OF MOLECULAR TOXICOLOGY AND

TOXICOGENOMICS

The history of molecular biology is rooted back to the

discovery of DNA structure by Watson and Crick (1953)

nearly 60 years ago. However, the ability to fully translate the

code to function is an ongoing challenge for scientists today.

Understanding the translation of the genetic code to clear

revelation of the function of proteins, cells, organs, and

organisms will require many more advances in technology,

data knowledge integration, and collaborative science. That

said, substantial progress is being made, and the advance of

molecular biology integration to toxicology is providing the

foundation for the translation of molecular perturbations to

cellular, organ, and organismal health.

In 1975, the first Southern blot demonstrated a methodology

to ‘‘visualize’’ the presence of genetic material in a manner that

was feasible for many biologists (Southern, 1975). This

technique was quickly adapted to the detection of RNA

transcripts via the Northern blot (Alwine et al., 1977). This

technology breakthrough enabled toxicologists to begin to

track and follow the changes in gene transcript level and likely

compensatory changes in protein products, following the

exposure of cells or tissues to toxicants or other environmental

stressors. Indeed, an example of one of the first applications of

the Northern blot in such an experiment was conducted to

quantitate the level of lactate dehydrogenase transcript

following exposure to compounds (Miles et al., 1981).

Although 1981 does not seem so long ago, if we fast forward

to today’s molecular toxicology laboratory, we find that

techniques such as the Southern and Northern blots are

practiced infrequently. These methods are now replaced with

more rapid and higher throughput methods that require very

small amounts of sample material and enable the tracking of

molecular events at a whole-genomic level across multiple

doses and time points.

The most enabling technology for such assessments is the

microarray chip. First published in the mid-1990’s, DNA

microarrays of two main types of platforms emerged. One

platform, borrowing technology from the semiconductor

industry, was produced with ‘‘on-chip synthesis’’ of sets of

short oligo sequences that spanned each gene transcript with

compilation of the individual gene probe sets to cover a whole

genome (Chee et al., 1996). The other platform involved
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deposition of longer length complementary DNA ‘‘spots’’

generated, a priori, by chemical synthesis or PCR onto

specially coated glass slides (Hughes et al., 2000; Schena et al.,
1995). The result for either platform was a miniature array

that could ideally allow the probing of the whole-genomic

transcript profile or monitor the expression of a host of func-

tionally related genes for any biological sample RNA that was

hybridized to it. The application of array technology in tox-

icology experiments provided the basis for the emergence of

a new field, toxicogenomics. Today, the term toxicogenomics

represents the interface of multiple functional genomics

approaches as applied to understand mechanisms of toxicity.

The promise of toxicogenomics was so strong for impacting

the fundamental basis of toxicological sciences and risk

assessment that there have been numerous reviews as well as

National Academy of Sciences reports that detail the opinion of

leading scientists in multiple fields to provide advice on the

needs and limitations for advancing application of toxicoge-

nomics toward screening, elucidation of mechanism, assess-

ment of exposure, and, ultimately, calculation of individual

susceptibility and risk (NRC, 2007). In addition, there has been

investment in the research and technology at numerous

academic, government, and industrial centers of toxicology

research. Although toxicogenomics is driving an evolution of

how we may conduct traditional toxicological work, such as

risk assessment, it is also now clear that successful execution of

microarray technology requires the development of collabora-

tive science across multiple disciplines such as molecular

biology, engineering, mathematics, chemistry, physics, statis-

tics, and computer science. The integration of the product of

these disciplines with various biological subdisciplines, such as

toxicological sciences, has really been a revolution not only for

scientific discovery but also in the culture and organizational

structures that toxicologists now work. Many papers have been

written that capture the summary of microarray technology and all

its complexities for application in all areas of biology. In fact, for

toxicology, there are more than 500 papers reviewing and/or

illustrating the concepts of toxicogenomics, too many to be mean-

ingfully captured in this review. Examples of key toxicogenomics

applications are summarized in Table 1. This review will highlight

illustrative examples of toxicogenomics applications in the

context of the emerging information integration.

TOXICOGENOMICS: UNDERSTANDING THE

VISUALIZATION OF COMPLEX DATA

First discussed in the public literature in 1999 (Nuwaysir

et al., 1999), toxicogenomics was first described as a term to

illustrate the integration of toxicological research with the

emerging new technologies designed to broadly interrogate the

functional genome (i.e., RNA, protein, metabolite profiling,

and polymorphisms/functional DNA mutations). Since then,

there has been a steady adoption of the principles and

technologies relevant to toxicogenomics throughout academic

and industry laboratories, and there have been many scientific

advances in various toxicology-related disciplines since.

Examples of the integration of the technology within

toxicological research will be highlighted in this review.

Making Sense of the Data: Classification and

Prediction Analysis

When toxicogenomics ushered to the forefront as an area

of research investigation and possible drug safety application

(Nuwaysir et al., 1999), it was following on the heels of

the initial success of large-scale genome initiatives related to

areas such as cancer biology, the cell cycle, development,

and differentiation. Typical toxicogenomics experiments

follow transcript changes across a genome following expo-

sure of cells or tissues to a compound or environmental insult

(Fig. 1). ‘‘Validation’’ of the toxicogenomics hypothesis that

these transcript changes lead to an ability to group com-

pounds with similar effects and/or elucidate mechanistic

insights previously unknown with the chemical action

requires not only technical precision of the cell/organ

exposure, sample collection, and processing components of

the experiments but also complex computational and

bioinformatics approaches and resources. With the wealth of

the genomic data collected from series of microarray experi-

ments, investigators quickly realized that databases and

analytical tools were essential in order to effectively manage

and condense the data into a more manageable form. Building

on the momentum gained from leveraging databases and

computational algorithms for genome sequencing efforts,

engineers, statisticians, mathematicians, and computer scien-

tists began to develop analytical tools and shared resources

for microarray gene expression data. Analysis of toxicoge-

nomics data can follow several different paths including

class discovery, comparison, prediction, and mechanistic

analysis. Each one will be presented here with a brief

overview to highlight the impact that bioinformatics and

statistical analysis have had on the field of toxicogenomics

over the past 5–10 years accompanied with a long-term (50þ
years from now) vision of how bioinformatics will influence

TABLE 1

Overview of Key Examples of Toxicogenomics Applications

Clustering of compounds in similar mechanistic classes

Generation of hypotheses regarding compound action

Revelation of mechanisms of compound action

Classification of blinded compounds

Clustering of compounds by elicited toxicant phenotype

Ranking and categorization of drug candidates by toxicogenomics signature

Discerning no effect level for compound transcript effect

Discovery of biomarkers of toxicity

Discovery of exposure biomarkers

Validation/qualification of biomarker signatures
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and be used in toxicogenomics to improve human health and

the prevention of diseases from environmental/toxicological

stressors.

Clustering

Arguably, the most successful and widely used analytical tools

developed for microarray to date are the clustering algorithm and

tree-based visualization of gene expression data. Having a subset,

an array, or genome-wide list of genes in the rows of a matrix and

the samples used for microarray analysis in the columns, a given

element of the two-dimensional matrix (row and column

coordinates) contains the expression value whether it be a ratio

of the measurements of two samples or the relative intensity of

a single sample (Fig. 2). The Eisen laboratory (Eisen et al. 1998)

popularized the use of the hierarchical clustering methodology

(building groups of genes and samples from the individual objects

to clusters of objects based on similarity of expression measure-

ments) to analyze a yeast cell cycle time course study (Spellman

et al., 1998) and displayed the relationship of the genes according

to their (1) distance relative to one another on a dendrogram and

(2) pattern and differential expression illustrated by a color

gradient heat map (Fig. 2). The result of the clustering of gene

expression data is an assessment of the co-expression of genes

within or between samples and the presumed coregulation of

genes based on regulatory machinery (Fig. 2). Waring et al.
(2001) were one of the first groups to use clustering to analyze

toxicogenomics data. Strong correlation between the histopathol-

ogy, clinical chemistry, and gene expression profiles from rats

treated with 1 of 15 known hepatotoxicants was revealed, and

genes were identified whose expression level correlated strongly

with effects on clinical chemistry parameters.

Other clustering approaches such as self-organizing maps

(Tamayo et al., 1999), k-means, and principal component

analysis (PCA) (Yeung and Ruzzo, 2001), which varied the

methodologies used for grouping the data, became available to

extend the analysis capability of gene expression data and was

applied in many fields of biology. However, it was clear, early

on, that the study design of a cancer biology experiment, e.g.,

with tumor versus nontumor samples for comparison, is quite

different from a typical toxicogenomics study with a time series

and/or dose-response underpinning making the use of ordinary

tools for clustering gene expression data from toxicology

studies somewhat inadequate for class discovery. Compound-

ing the challenge is that many toxicogenomics studies utilize

several compounds for comparison that may have unique or

common expression signatures (Burczynski et al., 2000;

Hamadeh et al., 2002b; Hughes et al., 2000) and low-dose

exposures (Hamadeh et al., 2002a; Harries et al., 2001;

Lobenhofer et al., 2004) that may elicit very small, early, and

difficult to distinguish gene expression changes.

To address some of the challenges of clustering gene

expression data from toxicogenomics studies, several bio-

informaticians with expertise in computation and a fundamental

understanding of biology began working with toxicologists,

pathologists, and statisticians to enhance or refine cluster

analysis tools that (1) leveraged the experimental designs of the

studies (Bushel et al., 2001; Fostel et al., 2005) and/or (2)

harnessed phenotypic and other ancillary data (Hamadeh et al.,

FIG. 1. Example of toxicogenomics flow scheme. In this example, individual rodents are exposed to varied doses of compound and tissues are collected at various

time points and subject to microarray analysis. Calculations are made to (1) determine the significantly altered genes in each sample and (2) map these gene changes into

annotated pathways. This allows for initial assessment of a view to potential mechanisms of tissue response to compound perturbation. As illustrated by (3), expression

files may also be mapped against archived files to determine similarity of compound action/response to other compounds that have been previously studied in the database.

It should be noted that analyses may be conducted on individual dose/time profiles or across dose and time response with an assessment of ‘‘trend.’’
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2002c; Luhe et al., 2003; Paules, 2003; Powell et al., 2006).

Tan et al. (2006) integrated time course gene expression data

from a toxicogenomics study with a marker for cytotoxicity by

partial least squares to identify biomarkers in primary rat

hepatocytes exposed to cadmium. Extracting patterns and

identifying co-expressed genes (EPIG) is a novel approach

developed (Chou et al., 2007) to find all the patterns in a data

set and categorize them based on the signal to noise ratio,

magnitude of expression, and correlation of gene profiles.

EPIG is similar to performing an ANOVA between intragroups

and intergroups representing biological replicates and treat-

ments, respectively. Leveraging the three parameters and the

study design gives EPIG power to extract a fair amount of all

the patterns in the data and hence more genes categorized

to them that cover more biological processes that may be

impacted in the study.

In order for successful application of clustering to obtain co-

expressed genes, the vectors of the expression profiles across

the samples need to be highly similar; discriminant vectors

are organized by ‘‘unsupervised’’ clustering of samples. Some-

times investigators wish to apply clustering of data based on

samples; however, one of the challenges for this is how to

categorize samples, based on treatment, time point, or pheno-

type? Sometimes, supervised clustering of samples limits

discovery of similarities of samples based on molecular

endpoints, and ideally, a combination of supervised and

unsupervised approaches should be applied. To address this

challenge, Bushel et al. (2007a) devised a semisupervised

clustering approach that incorporates phenotypic data (i.e.,

histopathology observations and clinical chemistry measure-

ments) with gene expression to group samples that are more

valid than if clustered with gene expression data alone.

Following the grouping, the genes that discern the clusters of

the samples most significantly can be extracted from the

prototypes (representations) of the clusters. The expression

profiles of these are highly correlated with the phenotypes of

the samples within the clusters.

Interestingly, with toxicogenomics data, there are actually

cases where a subset of expression profiles is highly similar

across a subset of conditions. For instance, genes related to

glycolysis and gluconeogenesis may be tightly co-expressed in

an early response to a chemical treatment but may be less

correlated under other exposure conditions. Regular cluster

analysis is not designed to pick out these types of salient

responses. However, methods such as biclustering (Cheng and

Church, 2000; Prelic et al., 2006) were developed to partition

the two-dimensional matrix of gene expression data into

subsets of genes sharing compatible expression patterns across

subsets of samples (so-called cliques). cc-Biclustering (Chou

and Bushel, 2009) takes this a step further by constraining the

extraction of expression bicluster cliques according to an

experimental design and an endpoint measurement related to

the phenotype of the samples. Another way to exploit the time

and dose dimensions of toxicogenomics studies is to account

for the correlation of gene expression given an offset in the

time or dose dimension. For instance, at a given dose range of

acetaminophen (APAP) or carbon tetrachloride (CCl4), a set of

genes measured in exposed rat liver are uncorrelated with each

other between the two toxicants. However, if the expression

profiles of the CCl4 samples for the time series are offset

positively by three intervals, then the expression of the sets of

the genes between the two toxicants are highly correlated.

Mining the data in such a fashion is extremely valuable in

toxicogenomics studies in order to extract expression patterns

with an explicit phase shift that is typical for compound-

specific delayed responses following a stress response.

Statistical Comparison of Classes

At the very least, investigators in the field of toxicogenomics

are often interested in a basic question of whether or not there

are a set of gene expression profiles that can separate two or

more classes of samples according to a particular exposure

condition or phenotype (Fig. 3). An important consideration is

the ability to confidently account for the variation across

FIG. 2. Example of typical ‘‘clustering’’ figure. Individual gene

expression profiles are grouped according to similarity on the x- and y-axis.

Each column represents an individual animal gene expression profile

(compound-exposed liver). Each row represents an individual gene in the

profile. The red color indicates that a gene is increased in the compound-treated

samples relative to vehicle controls. Green color represents a decrease in

expression of the compound-treated samples relative to vehicle controls.
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groups of biological samples. The use of mixed linear models

was introduced as a powerful and flexible way to accommodate

a wide variety of experimental designs for the simultaneous

assessment of significant differences between multiple types of

biological samples (Wolfinger et al., 2001). An additional

contribution is that the output of the mixed model analysis is

visualized best with a ‘‘volcano plot’’ that illustrates the

distribution of the expression measurements partitioned by

p values and fold change. Dudoit and Fridlyand (2002)

presented the MA plot as a different visualization of two-color

gene expression data where the average intensity (A) is plotted

on the x-axis and the ratio of the intensity (M) is plotted on the

y-axis. Here, A ¼ (1/2) (log2R þ log2G), M ¼ log2R � log2G,

where R and G are the intensity measurements from the red

(Cy5) and green (Cy3) microarray chip scanning channels,

respectively. Whatever the basic analysis strategy, given that

several statistical tests are performed on a large number of

genes, the chance of finding one detected as significant is not at

the predefined type one error setting. Therefore, it became

common practice to control for multiple comparisons of

samples and multiple testing of genes by adjusting the

p values for the family-wise error rate and the false discovery

rate, respectively.

An initial challenge and in some sense proof-of-concept for

applying toxicogenomics to the genome-wide study of toxicol-

ogy was to differentiate compounds based on the gene

expression signature elicited from exposure (Burczynski et al.,
2000; Hughes et al., 2000). The ambitious goal for these groups

was to distinguish between two mechanistically unrelated

classes of toxicants (cytotoxic anti-inflammatory drugs and

FIG. 3. Workflow for analysis of microarray data. Individual microarray chip data are deposited into a data warehouse with metadata that describe the samples

analyzed. Gene measurements are corrected for background and normalized relative to controls. Multiple arrays can then be assessed for similarity or discriminant

patterns of gene expression using clustering, and prediction of class may also be applied. Finally, individual or groups of arrays or clusters of genes can be analyzed

for mechanism using a variety of pathway tools and visualization aids.
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DNA-damaging agents) based solely on the correlation of

approximately 250 gene expression profiles in HepG2 human

hepatoma cultured cells. Surprisingly, the discrimination of the

100 compounds was not possible given the large number of gene

profiles and the limited replication in the data set. However,

when technical and biological replications were introduced into

the experimental design to reduce the variability between

samples, a more definitive set of discriminators was obtained to

distinguish between cisplatin and a pair of nonsteroidal anti-

inflammatory drugs. Furthermore, this more focused fingerprint

of the compounds was ultimately useful for discriminating

between the database of 100 cytotoxic anti-inflammatory drugs

and DNA-damaging agents. Class comparison of toxicogenom-

ics data sets was set in motion.

Prospectively, a more extensive investigation, albeit a less

sophisticated data analysis than those before, to discern

compound class signatures for compound separation using

gene expression was performed (Bartosiewicz et al., 2001).

Gene expression patterns, assessed as significantly differen-

tially expressed based on a designated twofold criterion, from

liver and kidney tissues exposed to five classes of compounds

were found to be relatively distinct from one another. It was

clear that rudimentary bioinformatics analysis strategies with

prudent statistical considerations taken into account were

sufficient enough to glean gene expression signatures from

samples to compare compound classes.

Interestingly enough, Hamadeh et al. (2002a) leveraged

a series of analytical approaches to identify gene expression

profiles from the livers of male Sprague-Dawley rats that were

specific for distinguishing subclasses of compounds based on

liver samples exposed to phenobarbital, an enzyme inducer,

from the peroxisome proliferator agents clofibrate, gemfibrozil,

and Wyeth 14,643. Therefore, the sophistication of the use of

bioinformatics analysis tools and intuitive strategies made it

convincingly clear that class separation of compounds based on

gene expression data could be resolved as specific as subclasses

of compounds that share biological outcomes. In addition, as

a form of validation for class discernment of toxicogenomic

data sets, these distinctive gene expression patterns were used

to predict, with a high degree of success, the likeness of

blinded compounds to either a compound in the chemical

signature database or not (Hamadeh et al., 2002b). A more

streamlined, less subjective computational approach to parti-

tion the phenobarbital and peroxisome proliferator compounds

into classes and subclasses based on the gene expression data

was done by quality assessment of the data, hierarchical cluster

analysis, a one-way ANOVA or linear discriminant analysis,

and mixed linear model approach (Bushel et al., 2002). Based

on the gene expression profiles, the phenobarbital samples

were highly distinguishable from the peroxisome proliferator,

and the fibrates (clofibrate and gemfibrozil) were found to be

very much distinct from the Wyeth 14,643 compound. Even

a basic t-test, when employed with quantity threshold

clustering to analyze toxicogenomics data, was useful for

teasing out gene expression patterns that separated hepatotoxic

chemicals (Minami et al., 2005). Similarly, general linear

models, linear and logistic regressions that were used to test for

groups of genes with expression data that are associated with

clinical outcomes and survival, were of value as bioinformatics

tools to analyze toxicogenomics data for class comparisons

(Goeman et al., 2004). Even PCA using expression data from

genes that respond to the exposure of rats to a large number of

typical drugs was found to be able to (1) separate dose- and

time-dependent clusters of samples in the treated groups from

their controls (Hamadeh et al., 2004) and (2) correlate the

components with elevated bilirubin levels. Obvious and

convincing is the notion that leveraging bioinformatics,

mathematics, statistics, pathology, and toxicology is essential

for transforming toxicogenomics data into meaningful and

useful knowledge for class comparison (Morgan et al., 2004;

Waters et al., 2003). Fortunately, classical statistical models

and bioinformatics/computational biology methods such as

ANOVA, mixed linear models, and decision trees offer a good

bioinformatics framework to begin to use microarray data with

other associated biological/toxicological data for analysis

(Johann et al., 2004; Kerr and Churchill, 2001; Tong et al.,
2003; Wolfinger et al., 2001).

Newer more sophisticated approaches for analysis of

toxicogenomics data sets involved simultaneous compar-

isons of groups of samples by assessing the means of the

data using inequalities (Peddada et al., 2003). Using a class

of statistics called order-restricted inference, candidate

temporal gene profiles are defined in terms of inequalities

among mean expression levels at time or dose points. The

methodology selects genes when they meet a bootstrap-

based criterion for statistical significance and assigns each

selected gene to the best fitting candidate profile for class

comparison. Brute force approaches used different statistical

and clustering methods to discriminate genotoxic carcino-

gens from nongenotoxic ones (Ellinger-Ziegelbauer et al.,
2005; van Delft et al., 2005). However, a true test of using

toxicogenomics to separate and compare compounds and

probably the validation of the proof-of-concept applied

support vector machines (SVMs, a supervised learning

approach) to discriminate different classes of toxicants

based on transcript profiling (Steiner et al., 2004). Simply

put, SVMs are classifiers comprised of a given set of training

examples, each marked as belonging to one of two

categories and a model that determines whether an unknown

sample falls into one category or the other. In one example

study, the SVMs derived classification rules and potential

biomarkers, which discriminated between hepatotoxic and

nonhepatotoxic compounds (Steiner et al., 2004).

Class Prediction

Given the previous successes in the world of bioinformatics,

such as the analysis of toxicogenomic gene expression data to

separate rather easily distinguishable classes of samples, newer
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challenges were presented to determine whether the current

state-of-the-art bioinformatics tools and methodologies could be

used to identify indicators of toxicity as well as ascertain early

predictors of a toxicological response. The National Institute of

Environmental Health Sciences (NIEHS) National Center for

Toxicogenomics (NCT) launched an in-house informatics

challenge to find analytical methodology that could use gene

expression from the blood of rats to predict toxic exposure to

APAP. Out of all the analytical approaches submitted, the three

derived with a bioinformatics flavor (taking the study design

into consideration) outperformed the other bioinformatics

approaches when predicting test blood samples (Bushel et al.,
2007b). The accuracy was as high as 96%, but interestingly, the

top approaches also outperformed predictions using traditional

histopathology and clinical chemistry/clinical pathology panels,

which illustrate a conundrum for toxicologists. Furthermore,

genes in the predictors based on the rat data separated gene

expression data from human subjects that overdosed on APAP.

As an extension from a single compound, Huang et al. (2008)

used an eclectic array of bioinformatics approaches to show

genes related to apoptosis predicted necrosis of the liver as

a phenotype observed in rats exposed to a compendium of

hepatotoxicants. Taking prediction to even a higher level, the

MicroArray Quality Control Phase II Food and Drug Admin-

istration (FDA)–led consortium embarked on using toxicoge-

nomics and clinical data sets to derive biomarkers predictive of

a battery of endpoints (Shi et al., 2010). The NCT toxicoge-

nomics compendium gene expression data set and an elaborate

cross-classification strategy were used to identify genes and

pathways that predicted necrosis of the liver (a form of drug-

induced liver injury [DILI]), across tissues (blood to liver and

vice versa), and genomic indicators from the blood as

biomarkers for prediction of APAP-induced liver injury (Huang

et al., 2008). However, an active debate in the field concerns the

‘‘gold standard’’ for data analysis and comparison. This is an

important issue with respect to establishing molecular changes

and the impact of molecular events relative to the phenotypic

changes that are ultimately observed, sometimes well after the

initiating insult.

Other more targeted utilizations of bioinformatics approaches

to predict toxicogenomics data were employed. For example,

prediction analysis of microarray training was accomplished by

comparing two positive compounds as nongenotoxic hepato-

carcinogens (methapyrilene and thioacetamide, high-dose group

only) with six negative compounds (Uehara et al., 2008a).

A classifier containing 112 probe sets produced an overall

prediction success rate of 95% and also showed characteristic

time-dependent increases of expression of the gene set by

treatment. They also revealed species-specific coumarin-

induced hepatotoxicity differences in gene expression between

human and rat hepatocyte cultured cells (Uehara et al., 2008b),

whereas others capitalized on classifiers and prediction of

toxicogenomics data from short-term in vivo studies. In

summary, the variety of classification methods that have been

applied to toxicogenomics data sets has aided to advance the

visualization of similar and distinct patterns of molecular effects

that toxicologists now use to infer similarity or differences in

compound effects.

Mechanistic Analysis

The bioinformatics community within the toxicogenomics

arena has had a vigorous and long-lasting debate about the

importance of discerning the mechanisms of action of toxic

responses versus simply identifying a small cadre of genes

that serve to possibly predict an endpoint of toxicity but fall

short of conveying much about the biology of the condition

(Cunningham and Lehman-McKeeman, 2005). As per Ray

Tennant (Tennant, 2002), former Director of the NIEHS NCT,

‘‘Toxicology will progressively develop from predominantly

individual chemical studies into a knowledge-based science

in which experimental data are compiled and computational

and informatics tools will play a significant role in deriving

a new understanding of toxicant-related disease.’’ Hence,

bioinformatics was perceived to be the key to unraveling the

mysteries of mechanistic toxicology from a genomics perspec-

tive (Tennant, 2002). However, to better understand the

underlying biology of events that mediate toxic responses,

a good understanding of the biology of target and nontarget

organs is essential. This is an enormous and ambitious effort

considering the tens of thousands of genes in the genome of

a species and the complexity of the cellular pathways. A wealth

of data have been collected and analyzed by world-wide efforts

to assess the risk and human health ramifications from exposure

to toxic, environmental, and physical stressors; the knowledge

about the key biological mechanisms leading to idiosyncratic

toxicity or human genetic susceptibility to toxic agents will

evolve as multiple data sets are combined and integrated. The

quandary is that in the past, simple models and reductionist

approaches to understand the development of a complex

phenotype characteristic of a toxic response have been utilized

to assess human risk to chemical exposures, xenobiotics, and

environmental pressures (Hamadeh et al., 2004). Subsequently,

the current understanding and knowledge of toxicity remains

grossly descriptive, the molecular mechanisms are elusive, and

the intervention of human genetic variation, i.e., polymor-

phisms, provides another layer of complexity for the individual

risk assessment equation. One of the earliest attempts at using

genomics and bioinformatics to investigate the mechanisms of

toxicants and the impact of dose-response was where the

transcriptional response of a hormone-responsive breast cancer

cell line (MCF-7) stimulated with various concentrations of

estrogen was used to define a new baseline in toxicology called

the No Observed Transcriptional Effect Level (NOTEL)

(Lobenhofer et al., 2004). NOTEL is essentially the dose (or

concentration) of a compound or stressor that does not elicit

a meaningful change in gene expression (i.e., the threshold of

the dose/concentration that elicits minimal mechanistic activ-

ity). This work was followed with a similar approach applied to
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an in vivo exposure and genomics assessment of hormonally

responsive tissues. The dose-response assessment suggested

that detection of relevant gene expression occurred at doses

similar to doses where phenotypic changes were observed and

not lower (Naciff et al., 2007). Fortunately, toxicogenomics

promises to bridge conventional toxicology with genomics and

expression analyses in order to shed new light on the

mechanisms involved in incipient toxicity. New methods of

data analysis and bioinformatics are needed if this endeavor is to

be successful.

Although there are known regulatory pathways catalogued in

biological resources, most of these regulatory networks are

constructed from gene interactions ascertained under normal

conditions and as such do not represent the totality of the

mechanisms involved in responses to environmental factors,

toxicants, and other forms of stressors. The assortment of

biological resources such as Gene Ontology, Kyoto Encyclo-

pedia for Genes and Genomes, Munich Information Center for

Protein Sequences, GenBank, Ensembl, the Human Gene

Organization, TRANSFAC, and TRANSPATH databases that

provide annotation of genes and gene processes are certainly

helpful but fall short when considering the fact that in

toxicogenomics we need to know much of what is unknown

regarding gene membership in pathways and gene annotation

across species. In addition, the data sets necessary to resolve

the specific changes in biological processes mediated by toxic

exposures are limited in chemical depth and exposure

treatments. Be that as it may, there have been efforts and

programs set in place to get at the low hanging fruit when it

comes to ascertaining mechanisms of action of stressors. The

National Center for Toxicological Research (NCTR) within the

FDA is embarking on an impressive genomics and bioinfor-

matics study to understand the transcription baseline of the

liver. The idea is that because a significant number of drugs fail

during late-stage clinical trials because of unanticipated liver

toxicity and given that adverse events, including liver injury,

may show up only after the drug has been on the market, thus

necessitating withdrawal, it is critically important to understand

liver toxicity at the mechanistic level and to develop novel

tools for identifying liver toxicity issues along the various

stages of drug development (Weida Tong, personal communi-

cation). The NCTR/FDA has developed a liver toxicity

knowledge base (LTKB). The LTKB is a content-rich resource

with a focus on developing knowledge and data mining tools

for hepatotoxicity in the form of networks between drugs,

molecular signatures, liver-specific biomarkers, gene/protein

functions, pathways, and injury types. The project will help to

improve the basic understanding of liver toxicity and facilitate

the data and knowledge for utilization by research, industry,

and regulatory groups.

Key to the comparison of mechanistic or general gene

expression profiles is the composite of knowledge bases that

combine key gene/probe annotation with pathway/mechanistic

information. Ideally, these databases, when applied in toxicol-

ogy and comparative biology settings, would enable cross-

species annotation. Within the past 10 years, there has been the

development of toxicogenomics databases, which provided

licensed or open access to data corresponding to chemicals that

affected biological systems. Iconix and GeneLogic, two

commercial entities, offered databases of chemically perturbed

molecular profiles using their proprietary toxicology signature

models for the liver, kidney, or other tissues (Ganter et al.,
2005). They derived their chemical models from analyzing

databases containing hundreds or thousands of gene expression

signature profiles corresponding to reference compounds tested

both in vivo and in vitro. Their systems provided mechanistic

insight into potential toxicities. The chemical effects in

biological systems (CEBS) database started off by making

the expression profiles for toxicants studied at the NCT,

publicly available, but then extended the system to be

a repository for any toxicogenomics studies (Waters et al.,
2008). The hallmark of CEBS is that the data from

toxicogenomics experiments are curated, stored in the context

of the study design, and integrated with other omics data or

ancillary toxicological data (Fostel et al., 2005; Xirasagar

et al., 2006). The National Toxicology Program at the NIEHS

has acquired DrugMatrix, a toxicogenomics reference database

and informatics system along with its companion toxicoge-

nomics analysis suite resource ToxFX with the goal of making

these resources freely available to public and ultimately

facilitated the integration of toxicogenomics into hazard

characterization (Scott Auerbach, personal communication).

DrugMatrix is existing large molecular toxicology reference

database and informatics system containing a unique reference

set of gene expression profiles based on benchmark molecules

that are anchored to classic pharmacology, toxicology, and

clinical pathology measurements. The database currently

contains the profiles derived from administering 638 different

therapeutic, industrial, and environmental compounds to rats or

cultured rat tissue cells at both nontoxic and toxic doses

including FDA approved drugs, drugs approved in Europe and

Japan, withdrawn drugs, drugs in preclinical and clinical

studies, biochemical standards, and industrial and environmen-

tal toxicants. Additionally, a curation team extracted all

relevant information on the compounds from the literature,

the Physicians’ Desk Reference, package inserts, and other

relevant sources. The EDGE database also provides a central-

ized resource for toxicogenomics data that were generated on

a common platform and from a standardized protocol (Hayes

et al., 2005). The Comparative Toxicogenomics Database

provides access to interactions between chemicals and genes

and facilitates cross-species comparative studies of gene

expression networks (Mattingly et al., 2006). Interestingly,

commercial literature-based knowledge bases such as Inge-

nuity Pathway Analysis (IPA) and Netherlands Organization

for Applied Scientific Research’s T-Profile have data mining

capabilities that are targeted toward toxicogenomics and

toxicological gene regulatory function. IPA-Tox assesses the
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toxicity of compounds in the context of toxicological pro-

cesses, pathways, and gene networks, whereas T-Profiler all-

ows the comparison of toxicogenomics data sets for enrichment

of mechanistic pathways, biological processes, and signaling

cascades. Also, GeneGo offers a bioinformatics tool called

MetaDrug for compound-based pathway analysis to glean

mechanisms of action, assess toxicity profiles, and determine

off-target effects.

Gene expression profiles give a good indication of the state

of the organ. This phenotype can be defined by several means

including clinical readings, functional tests, clinical chemistry

evaluations, or histopathological observations (Hamadeh et al.,
2004). Anchoring gene expression to these alterations is key to

finding hallmark biomarkers of adverse effects and for

derivation of testable hypotheses regarding mechanisms of

action. Two early toxicogenomics investigations that utilized

bioinformatics to obtain an initial understanding of the

mechanisms of action demonstrated the feasibility of pheno-

typic anchoring of gene expression to lesions elicited by

nephrotoxicants. In addition, microarray analysis was used to

associate gene expression with cisplatin-mediated toxicity in

male Sprague-Dawley rat kidney samples (Huang et al., 2001).

The gene expression pattern elicited suggested the occurrence

of apoptosis and the perturbation of intracellular calcium

homeostasis. In addition, the induction of multidrug resistance

genes and tissue remodeling proteins suggested development of

cellular resistance to the drug as well as tissue regeneration. In

another study, transcriptional changes in genes involved in

DNA damage response and apoptosis, as well as oxidative

stress and inflammation reactions, were detected following

exposure of male Wistar rat kidneys to a mycotoxin contam-

inant found in cereals (Luhe et al., 2003).

An idealistic expectation of toxicogenomics is that gene

expression data suffice as a ‘‘digital pathology’’ representa-

tion of the phenotype of toxicity for a given toxicant.

A working hypothesis is to define signature patterns of

altered gene expression that indicate specific adverse effects

of chemicals, drugs, environmental pressure, or physical

stressors (Paules, 2003). Ideally, the gene expression

changes associated directly with the primary effect of the

compound would be elucidated prior to the appearance of the

phenotypic changes. Foster et al. (2007) conducted toxico-

genomics profiling for a multiyear period across preclinical

toxicology drug in vivo screening studies. In this analysis,

the group discerned a general correlation between the overall

number of gene changes and ultimate compound dose

toxicity. In addition, they found that in a fair number of

cases, the gene expression changes consistently preceded

changes observed through histopathology analyses (Foster

et al., 2007). In general, the maturing of our biological

knowledge and incorporation of all genes into pathway

information will be required for full understanding of the

promise of toxicogenomics. In this vein, bioinformatics will

be key to aid in teasing out mechanisms of action of

toxicants and will be invaluable in the quest to elucidate

molecular mechanisms involved in the manifestation of

toxicity as well as to derive of molecular expression patterns

that predict toxicity or the genetic susceptibility to it.

BIOMARKERS: SURROGATES OF PATHWAY AND/OR

TOXICOLOGICAL EFFECTS

From a rapid screening perspective, it is still not cost

effective or practically feasible to consider that whole-genome

profiling of organisms in ‘‘real time’’ can be done to elucidate

biological responses to unique compounds or the environment.

For some time, tests will likely be developed that will focus on

subsets of genes/proteins; however, the qualification of these

sets of biomarkers will require scientific collaboration in order

to fully understand the sensitivity/specificity of these markers.

For example, one group published a key signature set of genes

that was associated with phospholipidosis in a set of carefully

conducted experiments (Sawada et al., 2005). As phospholi-

pidosis is an active area of research and concern by drug

developers and approving agencies, it is likely that future work

on cross-industry validation of this or related signatures will

emerge. Other signature set of genes, related to possible

prediction of the carcinogenic phenotype (Fielden et al., 2008),

association of genotoxic activity (Ellinger-Ziegelbauer et al.,
2009), or nephrotoxicity biomarkers (Amin et al., 2004, Wang

et al., 2008), have already been the center of industry-academic

collaborations, facilitated by groups such as The Health and

Environmental Sciences Institute (http://www.hesiglobal.org)

or the Critical Path Institute (http://www.c-path.org). These

collaborations have enabled the replication and refinement of

signature gene sets toward universal qualification, even for

regulatory purposes.

Some groups have focused on the functional annotation of

genes using a custom-curated knowledge base of pathways,

biological processes, regulatory interactions, and molecular

reactions (Shi et al., 2008), whereas other groups have

extended the prediction exercise using other types of data

sets for biomarker elucidation. For instance, Wang et al.
(2009) recently demonstrated the potential of circulating

microRNA molecules (small regulatory noncoding RNAs) as

biomarkers of DILI in an APAP-overdosed mouse model

system. Kondo et al. (2009) used gene selection based on

t statistics coupled with the SVM classifier and achieved

a sensitivity of 90% with a selectivity of 90% of predicting

drug-induced renal tubular injury. The list of the candidate

biomarkers contained well-known genes, such as Kidney

injury molecule 1, Ceruloplasmin, Clusterin, Tissue in-

hibitor of metallopeptidase 1, and also novel biomarkers.

Zidek et al. (2007) leveraged gene expression data from

a focused Illumina BeadChip microarray containing 550

liver-specific genes to predict acute hepatotoxicity with an

ANOVA model and SVM classifier.
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Other assay systems and bioinformatics analysis strategies

have been proposed or used as a model for identifying

predictors/biomarkers of toxicological responses (Amacher

et al., 2005; Burczynski and Dorner, 2006; Hamadeh et al.,
2010; Merrick, 2008; Miller et al., 2008; Xu et al., 2008). It

is now clear that cutting-edge bioinformatics approaches are

instrumental in discerning small sets of genes that are highly

predictive of endpoints within toxicogenomics data sets.

Whether the output can be further evaluated as potential

biomarkers in a clinical setting is highly debated in the

scientific community. Time will tell whether such

approaches, or a new breed, of them will be capable of

elucidating the biomarker surrogates for mechanisms of

action for a great deal of toxic responses that impact the

public.

ADVANCING TOXICOGENOMICS IN FUTURE YEARS

As toxicogenomics continues to move forward, it will

likely seem at times as if progression is standing still and at

other times advancing quickly. There are a number of

challenges that need to be continuously pursued by the field

in order to ensure future progression (Table 2). In order to

advance, key milestones will require coordination across

fields and disciplines, so progress is likely to be incremental.

Within the next 5 years, it is likely that toxicogenomics will

move slowly forward. Biologists will continue to impact the

field of informatics, and what constitutes a pathway will be

better defined and begun to be standardized universally. In

addition, the work of discovery and validation of prodromal

biomarkers for a variety of toxicities and diseases will

continue to evolve.

Ten to 20 years from now, toxicogenomics will likely

recognize progress and establishment of uniform technical

measure and definition of gene expression events toward

exquisite quantitation (i.e., possibly taking advantage of

techniques such as laser capture microdissection to look at

single cells on platforms for transcript counting, such as

NextGen sequencing). The advance in technology will no

doubt come with reduced cost per sample for analysis and will

enable simultaneous probing of genetic, genomic, proteomic,

and metabolomic events. In the regulatory environment,

toxicogenomics biomarker data will routinely be used to better

inform the risk assessment from in vitro and in vivo test

systems. The acceptance of modified test systems will

eventually lead to an impact that minimizes animal testing

and allows efficient modeling from human in vitro–based

assays and ultralow-dose testing of human subjects to

extrapolate and inform toxicity predictions. These models will

eventually lend way to predictive in silico models that can help

reduce use of animals and cost of experiments conducted to

assess hazard and risk.
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