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Predicted effects of climate change include high extinction risk for
many species, but confidence in these predictions is undermined by
a perceived lack of empirical support. Many studies have now
documented ecological responses to recent climate change, pro-
viding the opportunity to test whether the magnitude and nature
of recent responses match predictions. Here, we perform a global
and multitaxon metaanalysis to show that empirical evidence for
the realized effects of climate change supports predictions of fu-
ture extinction risk.We use International Union for Conservation of
Nature (IUCN) Red List criteria as a common scale to estimate ex-
tinction risks from a wide range of climate impacts, ecological
responses, and methods of analysis, and we compare predictions
with observations. Mean extinction probability across studies mak-
ing predictions of the future effects of climate change was 7% by
2100 compared with 15% based on observed responses. After tak-
ing account of possible bias in the type of climate change impact
analyzed and the parts of the world and taxa studied, there was
less discrepancy between the two approaches: predictions
suggested a mean extinction probability of 10% across taxa and
regions, whereas empirical evidence gave a mean probability of
14%. As well as mean overall extinction probability, observations
also supported predictions in terms of variability in extinction risk
and the relative risk associated with broad taxonomic groups and
geographic regions. These results suggest that predictions are
robust to methodological assumptions and provide strong empiri-
cal support for the assertion that anthropogenic climate change is
now a major threat to global biodiversity.

anthropogenic warming | elevated temperature | extinction crisis | climate
warming

Many scientists argue that we are entering the sixth great mass
extinction and that anthropogenic climate change is one of

the major threats to global biodiversity (1–3). Comprehensive,
multitaxon reviews suggest that 10–70% of plant and animal spe-
cies assessed so far could be at increased risk of extinction from
climate change (4) or that by 2050, climate-induced changes in
habitat will commit 15–37%of species to extinction (1). Both these
estimates are based on approaches that can be sensitive to eco-
logical and methodological assumptions (5–8), and the latter study
considers only geographical range shifts resulting from changes in
temperature and rainfall (1). Many species are also expected to
be adversely affected by changes in sea-level and ocean chemistry
(9), and the impacts of climate change may include breakdowns
in biological interactions as species respond individualistically
to climate change (10), loss of habitat because of sea-level rise
(11), and higher mortality because of increased ocean acidity (12).
The spectrum of approaches used to predict ecological responses
to climate change has also broadened in recent years, enabling
more robust estimates of future changes to bemade (13). Here, we
use International Union for Conservation of Nature (IUCN) Red
List Criteria (14) to derive estimates of extinction risk from a wide
range of climate impacts, ecological responses, and methods of
analysis. Importantly, the broad evidence base that now exists for
realized ecological responses to recent climate change allows us to
validate future predictions by comparison with responses that have
already been observed.

We identified 130 observed and 188 predicted ecological
responses to climate change using a robust review of 10 leading
scientific journals from 2005 to 2009 (Methods). The responses
included documented changes to extinction risk, population size,
and geographic range size for 305 taxa from all major groups of
organisms, covering a high proportion of the global terrestrial and
marine surface (Table S1). All 318 climate change responses were
expressed in terms of extinction risk using IUCN Red List crite-
ria, which is possible, because the threshold values used to assign
IUCN categories on the basis of population decline are linearly
related to the logit transform of threshold extinction risk values
(Fig. S1). Estimates of the mean extinction risk for taxa and the
proportion subject to varying degrees of extinction risk were de-
rived with an intercept-only generalized linear model with an
inflated β-error distribution and logit link function (Methods).
A range of factors relating to the selection of study systems

(climate impact type, taxon, and region) and the publication of
results could influence whether the sampled climate change
responses gave unbiased estimates of mean extinction risk. To
determine whether there was publication bias, we investigated
whether extinction risk was related to the journal in which the
study was published and also, created a funnel plot of extinction
risk against sample size (Fig. S2). The presence of asymmetry in
a funnel plot signifies bias to the publication of significant results
(15). To account for biases in the type of impact studied, we
incorporated impact type as a factor into models and compared
the results of averaging across impact types with those results
obtained by averaging across studies. To account for possible
phylogenetic nonindependence of extinction risk, we constructed
a phylogenetic tree and added the residual of each tip relative
to its branch to the mean across all tips in instances where
branches were significant. Research carried out in regions where
taxa are disproportionately threatened by climate change could
also bias overall estimates of threat, and therefore, we controlled
for spatial patterns in extinction risk by spatially averaging our
results (Methods).
To examine whether there were consistent ecoregional and

taxonomic patterns across studies making predictions and stud-
ies reporting empirical data, we subdivided our data into three
major taxonomic groups (plants, invertebrates, and vertebrates)
and four major ecoregions: (i) polar and boreal, (ii) temperate,
(iii) tropical and subtropical, and (iv) marine; we compared
observations with predictions.

Results and Discussion
Across all studies, the mean extinction risk over 90 y (i.e., to
2100) was 11.2%. Separating projections of extinction risk based
on predicted and observed responses yielded a mean extinction
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risk of 6.7% based on predictions but 14.7% based on observa-
tions (Table 1).
The proportion of taxa qualifying as threatened by 2100 using

IUCN criteria would be 7.6% based on predictions and 31.7%
based on observations. The proportion of taxa more likely to go
extinct than not was 1.9% based on predictions but 12.0% based
on observations (Table 1). The degree of variability in extinction
risk across observations and predictions is similar (Fig. 1), with
the majority of taxa (>80%) at low risk (<5%) of extinction; this
finding suggests that predictions are not invalidated by meth-
odological assumptions. The symmetry of the funnel plots of
extinction risk against sample size (Fig. S2) suggests very little
evidence of publication bias. However, extinction risk for both
observations and predictions was affected by climate impact type.
More studies reported threats from changes in temperature and
rainfall, but the few studies on the effects of reductions in sea ice
and changes in ocean circulation patterns showed higher pre-
dicted extinction risk (Table S2). More studies on effects such as

changes in oceanic circulation patterns and acidity on marine
organisms would improve estimates of extinction risk. Never-
theless, models that controlled for climate impact type did not
lead to marked changes in mean extinction risk, either for em-
pirical observations or predictions (Fig. 1 and Table 1).
There was evidence of phylogenetic nonindependence of ex-

tinction risk, with both observations and predictions suggesting
high levels of threat to vertebrates and lower levels of threat to
plants and invertebrates. This finding was also supported by
comparisons of extinction risk within each of these three major
taxonomic groups (Fig. 2). There was a high degree of consis-
tency between observations and predictions, with most taxa ob-
served to be at high risk also predicted to be highly threatened in
the future. After accounting for phylogeny, estimated extinction
risks from observations decreased to 14%, whereas those risks
from predictions did not change (Table 1). Thus, observed
responses may be slightly exaggerated by work on more threat-
ened taxa. Spatial averaging of results did not alter estimates of

Fig. 1. Proportion of taxa subject to varying degrees of extinction risk by 2100. Actual proportion derived from studies (histogram bars) together with a fitted
β-probability function (black curve). The horizontal hatched bars (actual) and horizontal black lines (modeled) represent the number of studies with an extinction
risk of zero or one. (A and B) Uncorrected estimates derived fromobserved (A) andpredicted (B) data. (C andD) Estimates accounting for biases (Methods) derived
from observed (C) and predicted (D) data. (E and F) Modeled probability density functions (green, observed; orange, predicted) overlaid to show that, when
uncorrected (E), the variance in extinction risk derived from observed and predicted data is similar, and when corrected (F), the means are similar.
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observed extinction risk (13.9%), whereas predicted risk in-
creased (10.3%), implying that models of future effects of cli-
mate change may, to some extent, have neglected regions subject
to higher levels of threat (Table 1). Comparisons of extinction risk
in broad ecoregions suggest that marine taxa are particularly
threatened and that taxa in the terrestrial tropics and subtropics
are less threatened than those taxa in terrestrial temperate and
high latitude areas, and the relative threat predicted for different
regions was quite well-supported by empirical observations (Fig.
3). However, for both observations and predictions, there were
few studies from the terrestrial tropics: the larger number of
predictions from the subtropical and tropical category is mostly of
tree responses inMexico (16). In themarine environment, there is
a bias to research on corals, which may be disproportionately

affected by climate change. More research from tropical areas,
where most species occur and are expected to have climates for
which no current analog exists (17) and on a greater variety of
marine taxa, would improve estimates of the realized threat to
biodiversity from climate change.
Our approach, using IUCN criteria to translate between pop-

ulation or range changes and extinction risk, has allowed us to
include more examples than simply population viability studies,
which estimate extinction risk directly. We, thus, reduce possible
bias in threat levels that could result, because particular method-
ologies might focus on endangered species. However, wemake the
assumption that the threshold values for criteria relating to de-
cline and extinction risk are comparable (SI Methods). Although
the rules used to assign taxa to IUCN categories represent inter-

Fig. 2. Frequency distribution of extinction risk by 2100 in (Left) observed and (Right) predicted studies of taxa: (Top Left and Top Right) plants, (Middle Left
and Middle Right) invertebrates, and (Bottom Left and Bottom Right) vertebrates. Actual proportion derived from studies (histogram bars) together with
a fitted β-probability function (black curve). The dark bars (actual) and horizontal black lines (modeled) represent the frequency of studies with an extinction
risk of zero or one. Data are scaled such that the total area of histogram bars and under the modeled extinction risk line is equal to one. N is the number of
samples in each category.

Table 1. Projected extinction risk by 2100 based on observations and predictions

Method

Expected extinction risk >50% probability of extinction Threatened with extinction

All Observed Predicted All Observed Predicted All Observed Predicted

Estimate derived from values
given in each study

0.112 0.147 0.067 0.069 0.120 0.019 0.291 0.318 0.076

Estimate obtained by averaging
across impact types

0.116 0.158 0.061 0.073 0.132 0.035 0.298 0.333 0.204

Estimate obtained by averaging
across taxa

0.104 0.140 0.061 0.051 0.104 0.049 0.296 0.329 0.375

Estimate obtained by spatially
averaging across the globe

0.118 0.139 0.103 0.000 0.002 0.000 0.620 0.648 0.600

Expected extinction risk is based on the β-distribution of observed or predicted extinction risks (npredicted = 188; nobserved = 130). Taxa categorized as
threatened were those taxa exceeding a modeled extinction risk by 2100 of 0.09. IUCN categories: CR, critically endangered; EN, endangered; VU, vulnerable.
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nationally accepted decision tools in conservation biology (14, 18)
and broad consistency between criteria was sought during their
development (19), variation among species makes it difficult to
validate the equivalence of thresholds for different criteria (20).
Moreover, phylogenetic nonindependence of extinction risk could
also reflect difficulties in assessments for poorly known taxa, with
generally fewer experts and less data available (14). For example,
the apparent low threat to invertebrates may partly reflect the lack
of detailed understanding of climate threats facing most insects,
with the majority of studies being on Lepidoptera (21). Direct
predictions of extinction, as determined, for example, by pop-
ulation viability analyses, yielded higher estimates of extinction
risk than estimates provided by changes in population and range
size (Fig. S3). However, we suspect that this finding is primarily
caused by these studies focusing on particularly endangered spe-
cies. Our results were not unduly sensitive to the assumed rela-
tionship between range change, population change, and extinction
risk (Table S3), suggesting that our overall estimates of extinction
risk are relatively robust to any lack of equivalency among IUCN
criteria. Furthermore, interactions between taxonomic group and
method did not significantly affect estimates of extinction risk,
suggesting that variation in the degree of difficulty in estimating
extinction risk across categories is unlikely to invalidate our cross-
taxonomic findings.
Estimated extinction risk was not related to the journal of

publication or the time period over which observations were car-
ried out or predictions were made. The sample size in each study
could still influence the reliability of results, but we did not use
formal metaregression techniques for two reasons. First, it was our
intention to report means and variances in extinction risk across
taxa rather than provide a single measure. Each estimate is derived
from different taxa and could stem from any one of a number of
different responses. Consequently, the effect beingmeasured is not

common across studies, and there is no reason to attribute a higher
weighting to studies with larger sample sizes. Second, many studies
do not report complete or comparable measures of uncertainty.
Therefore, the use ofmetaregression to calculate the uncertainty in
extinction risk across all studies would not be valid. Consequently,
we attached the same weighting to all studies, irrespective of
sample size. This weighting is unlikely to cause major bias in esti-
mates of extinction risk, because there was no evidence of a con-
sistent relationship of reported extinction risks with either sample
size or the number of species studied (SI Methods and Fig. S3).
There are many unknowns when projecting declines in bio-

diversity, and the values here should be interpreted with caution.
Nevertheless, our results were robust to publication, taxonomic,
geographical, and impact-type biases, and assumed theoretical
relationships between extinction risk, population decline, and
range change. Furthermore, the degree of variance is also similar
across observations and predictions, suggesting that predictions
are not invalidated by methodological assumptions. Given that
climate change is expected to accelerate and hence, exacerbate
impacts, empirical evidence suggests that many predictions of
extinction risk may be somewhat conservative. However, in terms
of consistent phylogenetic and ecoregional patterns, the results
suggest that realized ecological responses to climate change sup-
port predictions of future change. Our estimates of extinction risk
are lower than previous estimates of the proportion of species
committed to extinction by 2050 (1), but they are within the same
order of magnitude. Moreover, commitment to extinction is not
the same as extinction risk, because decades may elapse between
habitat loss or climate change and the resultant species-level
extinctions (22). Consequently, one would expect estimated ex-
tinction risk over a specified period to be lower.
Our results lend support to the contention, based on entirely

different data and methods (1), that anthropogenic climate

Fig. 3. Frequency distribution of extinction risk by 2100 in (Left) observed and (Right) predicted studies of ecoregions: (row 1) polar and boreal, (row 2)
temperate, (row 3) tropical and subtropical, and (row 4) marine. Actual proportion derived from studies (histogram bars) together with a fitted β-probability
function (black curve). The dark bars (actual) and horizontal black lines (modeled) represent the frequency of studies with an extinction risk of zero or one. Data
are scaled such that the total area of histogram bars and under the modeled extinction risk line is equal to one. N is the number of samples in each category.
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warming at least ranks alongside other recognized threats to
global biodiversity. Based on published results, we endeavor to
distinguish between responses to climate and other drivers of
change, although in many cases, the mechanisms behind species
responses to climate change are not known. Several studies
suggest that changes to biotic interactions have led to increased
extinction risk for at least one interacting species (10, 23).
Habitat degradation (24), invasive species (25), and over-
exploitation (26) play additional roles, and interactions among
these threats and climate change will increasingly threaten
populations of species. In addition, rapid climate change has the
potential to overwhelm the capacity for adaptation in many
populations, reducing the ability to resist and recover from other
environmental stressors (27). Our metaanalysis showing high
predicted levels of extinction, backed up by consistent data for
changes that have already occurred, shows the need to give cli-
mate change high priority in conservation planning and to
communicate its potentially wide-ranging consequences to policy
makers and the wider public.

Methods
Details of the studies and methods are provided in SI Methods and Table S1.

Selection of Studies.We reviewed 1,120 papers published from 2005 on in 10
leading journals focused on general science, ecology, or conservation. We
searched all papers with climate change in the title, abstract, or keywords
in Biological Conservation, Conservation Biology, Ecological Applications,
Ecology Letters, Journal of Applied Ecology, Nature, Proceedings of the
Royal Society of London Series B Biological Sciences, and Science, and all
papers with climate change and biodiversity in Global Change Biology and
PNAS. Those papers in which extinction probabilities, IUCN Red List cate-
gories, or a change in population size or range were reported were short-
listed for metaanalysis. We extracted data only from those articles in which
changes could primarily be attributed to climate change or where climate
was distinguished from other effects. From each paper, we recorded the
taxon and number of species, the start and end of the study period, the
type of climate change impact (changes in temperature and/or rainfall,
ocean circulation patterns, ocean acidity, or sea ice, or responses to habitat
change such as loss of habitat because of sea-level rise), and the number of
spatial and temporal replicates. We also specified whether the response
was observed or predicted. In all, we extracted data from 74 studies (32
observations and 42 predictions), providing 318 (130 observations and 188
predictions) taxon-specific climate change response estimates (SI Methods
and Table S1).

Estimating Extinction Risk. We used IUCN Red List criteria to derive estimates
of extinction risk from changes in population or range size, with a change in
range size measured as the change in the area occupied. We assumed that
a change in range is directly equivalent to a change in population size, an
approach that is likely to give conservative estimates of population decline
(28). Extinction risks can be standardized over any given period using mul-
tiple event probability theories (Eq. 1):

Es ¼ 1− ð1− EtÞ
s
t ; [1]

where Es is the extinction probability of the desired time period s and Et is
the extinction probability over time period t. When extinction probabilities
associated with each of the three IUCN Red List categories are standardized
to 55.628 y and logit transforms are applied to ensure a continuous range of
values, there is a perfectly linear relationship with the equivalent population
size reductions over 10 y in each of the categories (Fig. S1). It is, thus, possible
to infer extinction risk for any given change in population size, including
increases. We also included studies where species had been assigned to IUCN
Red List categories by assuming conservatively that their extinction risk
corresponded to the threshold value for the category in which they had
been placed. We assessed extinction risk over a 90-y period to give estimates
for 2100. Full details of the method used to infer extinction risk from each
study are given in Table S1. Because extinction estimates are constrained to

values between zero and one and were zero- and one-inflated, estimates of
the mean extinction risk for taxa and the proportion subject to varying
degrees of extinction risk were derived by fitting a zero- and one-inflated
β-error distribution to the data with a logit link function using the R (29)
package GAMLSS (30).

To test for publication bias to studies that reported a high extinction risk,
we examined the relationship between extinction risk and sample size. To test
for researcher bias to species particularly threatened by climate change, we
applied the same method using the number of species studied instead of
sample size. There was no evidence of either researcher or publication bias
(SI Methods and Fig. S2).

The potential effects of mean time of study, journal, and impact type on
extinction estimates were assessed using a generalized linear model in R (29).
All combinations of variables, including the null model, were tried, and the
final model was selected using Akaike’s Information Criterion (31). For both
observed and predicted data, models in which impact type was included
yielded the lowest Akaike’s Information Criterion. We, thus, averaged across
impact types to give a revised estimate.

To examine whether there were consistent taxonomic patterns across
studies making predictions and empirical data, we subdivided our data into
three major taxonomic groups: plants, invertebrates, and vertebrates.
Bacteria, fungi, and taxa such as algae that were resolved to insufficient
taxonomic detail were excluded from these analyses. To examine whether
there were consistent ecoregional patterns across studies, we subdivided
our data into four major ecoregions: (i) polar and boreal (ice sheets, tundra,
and taiga), including studies of high altitude taxa at mid-latitudes, (ii )
temperate (forest and steppe), (iii ) tropical and subtropical, including xeric
and Mediterranean habitats, and (iv) marine (all latitudes). Freshwater
wetland taxa were assigned to the ecoregion in which the wetland was
located. Studies spanning more than one ecoregion were excluded from
these analyses.

Phylogenetic Relationships. A composite phylogeny of all study taxa was
constructed using information contained in ref. 32, with branch lengths
scaled to be approximately equal to time since divergence. Often, extinction
estimates were for groups of species only, and in such instances, a dummy
species was created that branched from the node encompassing all species
within the group. Using the standardized normal residuals from the Gener-
alized Linear Model (GLM) modeling, the mean residual value across all de-
scendant terminal taxa was then calculated for each branch using the analysis
of traits function in Phylocom 4.1 (33). The significances of branch values
relative to the mean value across all terminal taxa were calculated by ran-
domizing values for each taxon across all tips. To control for the extent to
which particular taxa differed in terms of their extinction risk when calcu-
lating global estimates, the residual of the tip relative to the branch was
added to the mean across all tips in instances where branches were signifi-
cant. To test the robustness of our results to uncertainties associated with
divergence time estimation, we also ran our analyses on the same tree but
with branch lengths set to one. This change did not affect observed estimates
of extinction risk, but predicted estimates increased from 6.1% to 6.5%.

Spatial Relationships. The geographical boundaries of all study sites from
which extinction estimates were derived were mapped as polygons in ArcGIS
9.2 using a Cylindrical Equal Area projection (ESRI). The centroids of all study
areas were then calculated, and spatial kriging with a spherical semivario-
gram model was performed using the Spatial Analyst tool in ArcGIS. Because
it is not possible to define a projection that preserves true distances between
all points on the globe, a North Pole Azimuthal Equidistant projection was
used to perform spatial kriging in the northern hemisphere, and a South
Pole Azimuthal Equidistant projection was used to perform spatial kriging in
the southern hemisphere. The two hemispheres were then joined and con-
verted back to a cylindrical equal area projection with a 1-km2 resolution. The
individual pixel values were then exported as an ASCII file, and a zero- and
one-inflated β-error distribution with a logit link function was fitted to these
data to estimate the mean extinction risk and the proportion of taxa subject
to varying degrees of extinction risk.
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