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To study the protein structure–function relationship, we propose a
method to efficiently create three-dimensional maps of structure
space using a very large dataset of >30,000 Structural Classification
of Proteins (SCOP) domains. In our maps, each domain is repre-
sented by a point, and the distance between any two points
approximates the structural distance between their corresponding
domains. We use these maps to study the spatial distributions of
properties of proteins, and in particular those of local vicinities in
structure space such as structural density and functional diversity.
These maps provide a unique broad view of protein space and thus
reveal previously undescribed fundamental properties thereof. At
the same time, the maps are consistent with previous knowledge
(e.g., domains cluster by their SCOP class) and organize in a unified,
coherent representation previous observation concerning specific
protein folds. To investigate the function–structure relationship,
wemeasure the functional diversity (using the Gene Ontology con-
trolled vocabulary) in local structural vicinities. Our most striking
finding is that functional diversity varies considerably across struc-
ture space: The space has a highly diverse region, and diversity
abates when moving away from it. Interestingly, the domains in
this region are mostly alpha/beta structures, which are known to
be the most ancient proteins. We believe that our unique perspec-
tive of structure space will open previously undescribed ways of
studying proteins, their evolution, and the relationship between
their structure and function.

global map of protein universe ∣ protein function prediction ∣
protein structure universe

Investigating protein structure space and its relationship to func-
tion space is a fundamental scientific challenge. Characterizing

this relationship may also carry practical implications to protein
function prediction, whereby one wishes to infer the biological
role of a protein from its structure [as is the case with many
of the structures solved in the high-throughput pipeline of the
Structural Genomics projects (1, 2)]. One way to approach this
challenge is to represent protein structure space by three-dimen-
sional maps. Maps of structure space were first introduced by
Holm and Sander (3) and were later used by Kim and colleagues
(4–6). To calculate their maps, they first calculate the structural
similarity between all pairs of protein structures. Then, they use
multidimensional scaling (MDS) to find a collection of points in
three dimensions, each of which corresponds to a protein, and
where the distance between any two points depends on the struc-
tural similarity of the proteins they represent. Such a representa-
tion provides a comprehensive visual view of structure space,
which is not constrained by a hierarchical system such as the
Structural Classification of Proteins (SCOP) (7).

We propose an efficient way to calculate maps of protein struc-
ture space, using the recently introduced FragBag model (8).
Using FragBag, we represent each structure as a point in a high-
dimensional space and project these points to three dimensions.
It was recently shown that the similarity between the FragBag
vectors, or the points in the high-dimensional space, can identify
near structural neighbors as accurately as the state-of-the-art
structural aligners STRUCTAL and CE, for several definitions
of near structural neighbors (8). Because FragBag models struc-

tures as fixed-size vectors, we can replace MDS with a more effi-
cient procedure, Principal Component Analysis (PCA) (9). Thus,
we can map a very large set of >30;000 protein structures. Rather
than studying single structures, we study properties such as
structural density and functional diversity, which are defined at
each point of structure space through a whole collection of struc-
tures in the vicinity of that point. By coloring the maps according
to the values of these properties, we are able to visualize their
distribution across structure space. This way we discover that
structure space has a region of high functional diversity and that
this region consists mainly of alpha/beta structures, which are
known to be the most ancient proteins (10). We believe that
studying such maps holds great promise to revealing important
properties of protein structure space, its relation to function, and
perhaps even to sequence.

Results
Constructing Functional Diversity Maps of Protein Structure Space. To
study protein structure space we analyze a set of 31,155 SCOP
v1.71 (7) domains. We initially represent each such domain by
a 400-long FragBag vector, which may be thought of as a point
in 400-dimensional space. In the FragBag model, a protein struc-
ture is represented by a count vector of backbone fragments taken
from a library of 400 commonly occurring 12-residue fragments.
For each contiguous (and overlapping) 12-residue segment along
the protein backbone, we identify the library fragment that fits it
best in terms of RMSD after optimal superposition. The ith entry
in the FragBag vector is the number of times the library’s ith
fragment was found to be the best fit. The FragBag distance be-
tween two domains is the distance between their FragBag vectors.
We have recently shown that this distance is a good approxima-
tion of the structural distance, as quantified by structural align-
ment (8). Using principal component analysis (PCA) (11), we
then project the points to three-dimensional space. The eigenva-
lues of the resulting data covariance matrix (Fig. S1) drop sharply
and the fourth largest eigenvalue (0.0106) is 8% of the first
largest eigenvalue (0.1326); this indicates that three dimensions
can adequately represent the essential features of protein struc-
ture space. Fig. 1 B–D shows a three-dimensional map of protein
structure space, in which each domain is colored by its SCOP
class (7); we show three views of the map from three angles, to
get a better sense of it. As expected, the domains cluster by their
SCOP class.

The density of protein structure space is uneven—i.e., certain
regions have more domains per “unit volume” than others. This
can be seen in Fig. 1 F–H, which shows again the three views
of the map, now colored according to the density score of each
domain—the number of domains that are within a 0.005 distance
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from it. Certain proteins are more studied than others, and as a
result, more variants thereof are included in our dataset. To rule
out this bias as the source of the observed uneven density, we
prepared similar density maps, based on 40% and 95% sequence
nonredundant subsets of the original data (containing 2,517 and
4,238 domains, respectively). The results, shown in Fig. S2, are
qualitatively identical to the original density map, and the corre-
lation between the original density scores and those based on the
restricted sets are very high (r ¼ 0.945 and r ¼ 0.960 for the 40%
and the 95% sets, respectively). In the remainder of this study, we
use the full dataset.

Upon inspecting Fig. 1, one can see that there is a relation
between the SCOP class and the density score of a domain.
Fig. 2A, which is a histogram of the density scores of the domains,
color-coded by their SCOP class, shows this more clearly: The
alphaþ beta (yellow) and the all-beta (red) domains tend to re-
side in low-density regions, whereas the all-alpha (blue) domains
constitute the vast majority in the very high-density regions.

Next, we investigate how functional diversity varies across
structure space; for this, we quantify the functional diversity in
the vicinity of each domain in our dataset. We consider three de-
finitions for the vicinity of a domain d: (i) V fn is a fixed number
(100) of the nearest structural neighbors of d, (ii) V samp is a sam-
ple of fixed size (100) from the domains that lie within a fixed
structural distance (0.005) from d, and (iii) V fd is the collection
of all domains that are within some fixed structural distance
(0.005) from d. Although V fd is perhaps the most natural defini-

tion, it makes the vicinities of domains in denser regions contain
far more members, which may bias the results.

Our measure for the functional diversity in a vicinity of a pro-
tein, however vicinity is defined, is the number of distinct func-
tions that the domains within this vicinity possess. To determine
function, we use the functional annotations of the proteins from
the Gene Ontology molecular function (GO-MF) controlled
vocabulary (12), and the mapping of terms to SCOP domains
calculated by Lopez and Pazos (13). When a single domain is an-
notated as having more than one function, we include all its func-
tions toward the count.

Structure Space Has a Core of High Functional Diversity. Fig. 3 B–D
shows a functional diversity map of protein structure space. The
domains in the map are color-coded according to the functional
diversity of their vicinities (red for the most diverse ones; blue for
the least diverse), and vicinity is defined to be V samp (when there
were fewer than 100 domains within this distance, all were
included). This map shows a striking pattern: Protein space has
a highly diverse core, and diversity drops gradually toward its
periphery (we denote the high diversity region “core,” because of
its location in our maps). Figs. S3 and S4 show the maps con-
structed using the two alternative definitions of a vicinity, V fn
and V fd; the results are very similar.

As a control for the validity of our finding, we re-created the
diversity map (using V samp again) after randomly permuting the
functional annotations across all domains (i.e., the set of func-
tional annotations originally associated with each domain was
associated with a different, randomly chosen domain). If our find-
ing were merely an artifact of the projection to three dimensions,
or of some feature of protein structure space (say, the uneven
density), the resulting diversity map would show again a highly
diverse core. Fig. 3 F–H shows that this is not the case: Under the

Fig. 1. Maps of protein structure space. Each point represents a SCOP
domain, and the distance between any two points approximates the struc-
tural distance between their corresponding domains. B–D show the map of
the SCOP classes: As expected, the points are clustered. F–H show the struc-
tural density map, where the color of each point indicates the number of
domains that lie in its vicinity of fixed distance (denoted V fd). We see that
the highest density is within the regions of the all-alpha domains, followed
by a region in the alpha/beta domain and in the all-beta domain. Fig. S2
shows a similar density map when considering sequence nonredundant
samples of the protein world.

B

A C1,600

Fig. 2. Structural density and functional diversity by SCOP class. We calculate
the separate histograms of structural density (A) and functional diversity
(B) of each of the SCOP classes and stack them one on top of the other.
We see that the densest regions are populated by all-alpha domains, and the
most functionally diverse regions by the alpha/beta domains. See Table S2
(listing the exact proportions of each of the SCOP classes, among the top
10%∕20%most dense/functionally diverse domains) and Fig. S12 for support-
ing evidence.
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random permutation, the diversity score of almost all domains is
very high (colored in orange and red), and the map has no pro-
minent diverse core; the relatively few domains with low diversity
scores (colored in blue) are mostly isolated domains, having fewer
than 100 neighbors within a 0.005 distance, and thus necessarily
less diverse vicinities (there are 5,356 such domains). The exis-
tence of the diverse core is indeed a statistically significant finding
(p < 0.005; see Methods for details). When using V fn, the results
are very similar (Fig. S3); as expected, when using V fd, diversity is
highly correlated (r ¼ 0.953) with density, because domains in
denser regions now have more members in their vicinities, and
thus more functional annotations (Fig. S4).

We can reliably predict the functional diversity of structures in
a randomly chosen test set, using the mapping calculated for a
training set. Our test set consists of 250 randomly chosen struc-
tures from the sequence nonredundant set (using a 40% sequence
identity threshold); it has 52, 40, 92, 52, and 14 domains of the

SCOP classes all-alpha, all-beta, alpha/beta, alphaþ beta, and
others, respectively. The training set has the 29,014 domains that
share no sequence similarity with the test set proteins (BLAST
E-value threshold of 10−3 and sequence identity of 40%). Using
PCA of the training set FragBag data, we calculate the projection
Ptrain to R3. For each test set proteins p, we calculate PtrainðpÞ and
identify the structures in p’s training-set vicinity. The predicted
functional diversity score is the number of unique GO-MF terms
within this vicinity. Fig. S5 plots the predicted functional diversity
scores vs. the ones calculated using the complete dataset for the
three definitions of vicinity, V samp, V fn, and V fd, and shows that
these scores are highly correlated (r > 0.96).

A potential explanation for the high functional diversity in
the core is that the core contains a high proportion of multiple-
function domains, compared to the periphery (recall that multi-
ple-function domains contribute all their functions toward the
diversity). This is not the case: Fig. S6 shows a functional multi-
plicity map of structure space, i.e., a map in which each point is
colored according to the number of GO-MF annotations of the
domain it represents. The high functional diversity core seen in
Fig. 3 and Fig. S3 does not overlap with a region of high func-
tional multiplicity. Further, we see the highly diverse core even
after reconstructing the functional diversity maps using only
domains annotated by only one function (61% of the data);
see Fig. S7.

Another potential, yet invalid, explanation for the high func-
tional diversity in the core is related to the uneven degree of
detail in the GO-MF vocabulary. The GO is implemented as a
hierarchical directed graph, in which the terms are placed at
the nodes and the edges direct from the general to the specific.
The level of detail in the GO-MF graph is uneven: Some areas
are better studied and correspond to subgraphs of the GO-MF
graph that have more levels and, ultimately, more functional
annotations. In addition, proteins of the same function some-
times have annotations at different levels (14). One could argue
that perhaps the proteins that lie in the core happen to have func-
tions that are described in finer detail, and the apparent high
diversity of this core is merely an artifact of the uneven level of
detail in the GO-MF graph. To demonstrate that this, again, is not
the case, we create functional diversity maps based on Watson et
al.’s GO-slim controlled vocabulary (14). GO slim is a trimmed
variant of GO-MF in which function is defined more broadly, by
only 190 terms (out of >7;800); in particular, GO slim targets a
level of detail in which neighboring proteins in structure space
have similar functions. Fig. S8 shows a map that was constructed
similarly to the one in Fig. 3 and Fig. S3, except that the function
annotations are replaced by their more general terms in the
GO-slim graph. Once again we see the same phenomenon: a
diverse core and more homogeneous periphery. Indeed, these al-
ternative scores are highly correlated with the original diversity
score (r > 0.895); see Table S1.

We also consider three alternatives to the functional diversity
score used above. Two of these alternatives are based on a
weighted count of distinct GO-MF terms within a vicinity, rather
than on a simple count. In the first, commonly occurring terms
have a lower weight, and in the second, more specific terms
(i.e., ones that are farther from the root in the GO-MF graph)
have a lower weight. In the third alternative, the score is based
on the coherence measure proposed in refs. 15 and 16, which
quantifies the contribution of a functional annotation term to
a vicinity based on statistical tests. When using vicinity definitions
V samp, and V fn, these alternative scores are correlated with the
original diversity score (r > 0.79); see Table S1. Indeed, the func-
tional diversity maps under each of the three alternative scores,
shown in Figs. S9–S11, look similar to the one in Fig. 3.

Characterizing the Core’s Structures. A comparison of the func-
tional diversity maps (Fig. 3 B–D) and the SCOP-class maps

Fig. 3. Functional-diversity map of protein structure space. The color of a
point indicates the degree of functional diversity measured by the number
of distinct GO-MF terms annotating the domains in its vicinity. Here, we use
the V samp definition for a vicinity of a protein: a sample of fixed size from all
domains that fall within a fixed distance from it. A–D show the functional
diversity for the true data; E–H show the functional diversity of a random
world, in which the proteins have the same structures, yet their functions
are assigned at random. We see that when using the true functional annota-
tions, there is a core of high functional diversity, and that functional diversity
drops toward the periphery. Alternatively, when the functions are assigned
at random, there is no such core, and function diversity is uniformly high. The
figures in SI Appendix, and Table S1, show that the results are qualitatively
similar when using alternative datasets, scoring functions, and the more
uniform (coarser) annotation graph GO slim.
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(Fig. 1 B–D) reveals that the core of high functional diversity con-
sists mainly of alpha/beta domains (colored in green). Fig. 2B and
Fig. S13 A and B show this finding in another way, via histograms
detailing the contribution of each SCOP class to the functional
diversity scores. Table S2 lists the exact proportions of the various
SCOP classes among the domains with the top 10% and 20%
functional diversity scores; in all cases (including when consider-
ing the diversity scores only within the sequence nonredundant
sets), the majority of the high functional diversity domains are
alpha/beta proteins.

Fig. 4 highlights several SCOP folds that lie in the diverse core
of structure space. The full dataset is shown in Fig. 4A with a
black outline; Fig. 4 B–F show specific SCOP folds within this
outline, alongside the histograms of their functional diversity
scores. The most obvious candidate for the SCOP fold whose
structures lie in the core is the TIM barrels (c.1), which are well
known to accommodate many functions (2). Indeed, these lie in
the core, and their functional diversity scores are clearly higher
compared with the full dataset (Fig. 4B). We see, however, that
the TIM barrels are only a part of the picture, as the core contains
also many other domains. Fig. 4C shows SCOP fold adenine nu-
cleotide alpha hydrolase-like (c.26) that was also noted as accom-
modating many functions (1) and also lies within the core.

To identify more SCOP folds in the core, we search for folds
with (more than 25) domains that lie in functionally diverse vici-
nities. We quantify the diversity of a SCOP fold by the average
and the median of the diversity scores of its domains, using the
diversity scores based on the three definitions of vicinity. Table S3

lists the 20 most diverse folds under these measures: Each of the
resulting six measures identifies different SCOP folds as the most
diverse. To identify SCOP folds that are truly diverse, we consider
folds that are among the 20 most diverse folds under all six
measures. Nine folds satisfy this condition: 7-stranded beta/alpha
barrel (c.6), ClpP/crotonase (c.14), methylglyoxal synthase-like
(c.24), arginase/deacetylase (c.42), phosphorylase/hydrolase-like
(c.56), alpha/beta-hydrolases (c.69), AraD-like aldolase/epimer-
ase (c.74), amidase signature enzymes (c.117), protein kinase-
like (PK-like) (d.144). As expected, the domains in these folds are
indeed located in the core; Fig. 4 D–F shows three examples.

Better Predicting of Function from Structure in Regions of Low
Functional Diversity.We use the set of 90 proteins* studied by Wat-
son et al. (14) to assess if one can indeed better predict function
for proteins in regions of structure space having low functional
diversity. Watson et al. predicted function using global structural
similarity [as detected by secondary-structure matching (SSM)
(17)] and evaluated the correctness of their predictions. Fig. S13
maps the protein structures used in their experiment: on the right
these structures within our dataset, and on the left, the same
structures with markers indicating if the prediction was correct.
We see that Watson et al. better succeed in predicting the func-
tion of proteins that lie in regions of low functional diversity.

Fig. 4. SCOP folds that lie in the functionally diverse core. We highlight the location in structure space of specific SCOP folds and show histograms of the
diversity of the domains of these folds; for comparison, A shows the full dataset (a copy of Fig. 3 A and B) outlined in black. B and C show two SCOP folds that
are known to be functionally diverse, the TIM barrel fold (c.1) and the adenine nucleotide alpha hydrosase-like fold (c.26). Indeed, the domains of these two
folds are located in the highly diverse core of structure space. There are, however, many other domains in the core. D–F show three more examples of SCOP
folds that lie in the highly diverse core: phosphorylase/hydrolase-like (c.56), alpha/beta-Hydrolases (c.69), and protein kinase-like (PK-like, d.144), respectively.
Table S3 lists the mean and average functional diversity scores for several SCOP folds that lie in the core.

*Denoted the “known-function” dataset; 1nrh, 1tea were removed because they are
obsolete.
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We quantify this difference by separating the proteins to two
sets, according to their functional diversity, and comparing the
success rate in these sets. The first set consists of 35 proteins hav-
ing high diversity (≥45) vicinities, and the second consists of 55
proteins having low diversity (<45) vicinities. Among the high
diversity proteins, only 43% of the predictions were correct,
significantly lower than the 67% of the correct predictions for
the low diversity proteins (p ¼ 0.021 in a one-sided, two-sample
proportion test).

Discussion
The main contributions of our work are (i) we propose a method
for efficiently calculating low dimensional maps of very large
sets of protein structures and (ii) we use these maps to study
the spatial distribution of properties of local vicinities in protein
structure space (e.g., density and functional diversity) and reveal
a fundamental relationship between protein structure and func-
tion spaces. Maps of structure space offer an overall perspective
that complements the more detailed view offered by hierarchical
classifications such as SCOP. Although in the latter case one is
typically restricted to studying sets of proteins of the same label
(e.g., fold), maps display structural similarities among all proteins
in a single representation. Indeed, it was previously noted that con-
sidering all structural similarities is advantageous for studying pro-
tein structure and function (18, 19). The efficiency of our method
renders the calculation of maps for the full Protein Data Bank
(PDB) possible, as opposed to only a sparse sample from it. This
is a step forward because properties characterizing local vicinities
in structure space can only be measured using such large datasets.

Although our map calculation is far more efficient, it is funda-
mentally similar to the maps of Kim and co-workers (4–6, 20). To
calculate their maps, Kim and co-workers use MDS, whereas we
use PCA. Both methods generate the same map (up to a reflec-
tion and rotation of the entire space) if the distances in the MDS
matrix are the Euclidean distances between the vectors in the
PCA matrix (9). The difference is in efficiency: PCA calculates
the eigenvalue decomposition of an L × L matrix, where L is
the length of the vector describing a protein (L ¼ 400 in our
case), whereas MDS calculates the eigenvalues decomposition
of an N ×N matrix, where N is the size of the dataset (N ¼
31;155 here). The challenge, thus, is to find a representation
of proteins as vectors of fixed size, such that their Euclidean
distance reflects their structural distance.

FragBag fulfills this requirement: The Euclidean distance
between its normalized vectors approximates very well the struc-
tural distance between the proteins they represent (using a library
of 400 fragments of length 12). We have recently demonstrated
this by comparing FragBag to the state-of-the-art structural align-
ment methods CE and STRUCTAL and showing that they
identify near structural neighbors equally well, for different de-
finitions of near structural neighbors (8). The evaluation was car-
ried out on a large and challenging test set (2,928 proteins), and
using a very stringent gold standard: the near structural neighbors
identified by a best-of-all structural aligner that uses six methods
(21). Recently, in a different context of sequence-based homology
detection, Melvin et al. suggested another approach for represent-
ing proteins by fixed-size vectors (of dimension 200) (22). Their
algorithm ProtEmbed learns from pairs of proteins marked as si-
milar or dissimilar a transformation from a feature vector of the size
of the dataset, to a lower dimensional vector. Then, they use MDS
to visualize the ranking of the near neighbors in sequence space.

The phenomena we report are not due to a particular data or
parameter set, as we see them in various maps. Our SCOP-class
map is generally similar to the map calculated in refs. 4 and 5;
their maps were based on different datasets and used DALI to
identify structural similarities. In both maps the four SCOP
classes are generally separated: The all-alpha and all-beta are
farthest apart and orthogonal to each other, and the alpha/beta

and alpha+beta lie in between, separated from each other. The
maps of structural density for the full dataset and its (40%∕95%)
sequence nonredundant subsets are similar. Finally, we calcu-
lated several functional diversity maps, and all of them display
the same pattern.

We discovered that protein structure space has a functionally
diverse core and that diversity drops toward the periphery of the
space. Because this observation is made in the low dimensional
projection of the data, we rule out the possibility that this is a
statistical artifact, by verifying that this core is not seen in maps
generated for the same set of protein structures, but with ran-
domly assigned functions. In contrast to the maps generated
for real world data, and as expected from a random assignment,
functional diversity in the maps with the random association of
function is uniformly high. Of course in reality, the true function
of a protein is not assigned at random, but rather, depends on
its structure. Further, we show that our discovery cannot be
explained away by the core structures having more functional
annotations. Also, it cannot be attributed to the uneven level
of detail in the controlled vocabulary GO, which we use to anno-
tate function, because even when using GO slim, a (coarser) al-
ternative, we still observe the same phenomenon. The functional
diversity of a random test set of proteins is the same as when using
a mapping that was calculated for a subset of the data that shares
no sequence similarity with this test set. The functional diversity
of structure space has this fundamental characteristic pattern.

The highly diverse core of structure space contains mainly
alpha/beta domains, which were identified by phylogenetic ana-
lysis as most ancient. Winstanley et al. estimated the ages of
SCOP folds and classes through phylogenies constructed from
fold occurrence data in multiple genomes and concluded that
the alpha/beta SCOP class is the oldest (10). Using a different
method for estimating evolutionary age, Choi and Kim reached
the same conclusion (6). Winstanley et al. also calculated the re-
lative ages of SCOP folds, and according to all of their measures,
the nine folds we identified as lying in the core are among the
oldest folds (relative age ¼ 1.0). These nine core folds are all
enzymes, an observation in line with Redfern et al. (1), who com-
ment that some enzyme folds are functionally divergent because
their architectures easily accommodate structural embellishment,
thus allowing the exploration of different functions. Finally,
Winstanley et al. also conclude that the SCOP class of small pro-
teins is relatively young, and these proteins lie in the periphery of
our structure space.

A fundamental research challenge is to extend our investiga-
tion to include also sequence information and to characterize
how structure and function spaces relate to sequence space. For
example, the sequence variability of local structure vicinities may
vary: quantifying this variability and its spatial distribution is in-
teresting, especially since protein structure is far more conserved
than sequence (23). Alternatively, one could use the maps of pro-
tein sequence space calculated byMelvin et al. (22) to study struc-
tural and functional properties of vicinities in that space. We hope
that doing so will reveal further fundamental properties of the
relationship between protein sequence, structure, and function.

We also plan to investigate ways of applying our results to
improve the performance of protein function prediction. A com-
mon way to predict the function of a protein is to identify other
proteins of known function that have similar sequences and struc-
tures and transfer their functions to the target protein (2, 14, 24).
Because it is preferable to transfer function from homologues
that were identified based on sequence, the sequence variability
in the vicinity of the protein is very important. However, when
resorting to structure-based prediction, our study suggests that
if the protein lies in the periphery of structure space, then its
neighbors have only a few functions that need to be considered.
If, on the other hand, the protein lies in the functionally diverse
core, then its neighbors have jointly many functions to consider.
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This is a generalization of a call for caution recently made with
respect to function prediction for TIM barrels (24). Indeed, our
analysis of Watson et al.’s data (14) shows that they were more
successful in predicting function from structure for proteins lying
in less diverse regions of structure space. Thus, it seems that one
could use the functional diversity maps to better choose the para-
meters of structure-based function prediction, according to the
location of the target protein in structure space, and perhaps even
to assign confidence levels for the prediction.

Materials and Methods
Representing Protein Domains in 400 Dimensional Space. For each domain in
the dataset, we calculate FragBag (8) description vectors of length L ¼ 400

based on a library of 400 12-mer fragments (http://cs.haifa.ac.il/~ibudowsk/
libraries/centers400_12.txt); each entry in the vector is the number of times
the corresponding library fragment was the best approximation of any of the
12-mer fragments in the backbone of the represented protein. A list of one
or more GO-MF annotations is associated with each domain. Our dataset
includes N ¼ 31;155 SCOP v1.71 (7) domains for which Lopez and Pazos
(13) provide a GO annotation. We have previously shown that the cosine dis-
tance between two FragBag vectors best approximates the structural align-
ment score (SAS) (25) between their corresponding structures (8). Notice that
the Euclidean (norm 2) distance between two FragBag vectors that were nor-
malized to length 1 is exactly twice their cosine distance. To see this, consider
p1 and p2 two FragBag vectors, and let p̂1 ¼ p1

‖p1‖
, p̂2 ¼ p2

‖p2‖
be the normalized

vectors. The cosine distance between p1 and p2 is 1 − cosðp1;p2Þ ¼ 1 − p̂1
T p̂2;

the Euclidean distance between the normalized vectors is

ðp̂1 − p̂2ÞTðp̂1 − p̂2Þ ¼ p̂1
Tp̂1 þ p̂2

Tp̂2 − 2p̂1
Tp̂2 ¼ 2 − 2p̂1

Tp̂2

¼ 2ð1 − p̂1
Tp̂2Þ:

Thus, we normalize all FragBag vectors and consider the Euclidean (norm 2)
distance; because all distances are relative, the uniform factor 2 is of no
consequence.

Projecting to Three Dimensions. We store the normalized descriptions of
length Lð¼ 400Þ of the N structures in our dataset in an L × N matrix and
project it to three dimensions using PCA. Namely, after centering the
L × N coordinates about the origin (by subtracting their mean), we calculate
the L × L covariance matrix (normalized by N) and find the eigenvectors cor-
responding to its three largest eigenvalues. Bymultiplying these eigenvectors
(a 3 × L matrix) by the L × N data matrix, we find the 3 × N matrix that is the
projection of our data to three dimensions. There, the Euclidean (norm 2)
distances between two 3D vectors is an approximation of their Euclidean
(norm 2) distances in L dimensions. We emphasize that this requires only
the easy computation of finding the top three eigenvalues and eigenvectors

of the relatively small L × L matrix. This is in contrast to the slightly different
calculation done in previous studies: Given N structures, they calculate a sym-
metric matrix D of size N × N of all pairwise structural distances and use MDS
to find the coordinates of the points representing these N structures in three
(or two) dimensions (3, 5). The technical bottleneck in the MDS calculation is
finding the top three (or two) eigenvalues and eigenvectors of an N × N
matrix derived from D (26); it is a challenging computation for datasets of
several tens of thousands proteins. Indeed, the datasets in previous studies
were smaller (e.g., less than 1,900 structures in ref. 6).

Calculating Alternative Functional Diversity Scores. Each of the domains in the
dataset has a list of its GO-MF terms; in each case, the terms are the most
specific ones (rather than the term and all its parents). For each term, we
calculate its weighted functional diversity in two ways: (i) (1–10* the fraction
of its occurrence), where the fraction of its occurrence is the fraction of
domains that are annotated by it; the scaling factor was determined to
be 10, to better space the range of values in the dataset. (ii) The inverse
of the depth of the term in the GO-MF annotation graph; the depth is
the number of times we can replace the terms by more general ones until
we reach the root. There are seven cases (out of 9,500) in which a term
has two different depths, and these differ by at most three (this is a conse-
quence of GO being a graph rather than a tree). In these cases, we use the
average depth. To calculate the “coherence measure,” we check for each
term and vicinity if the term is “enriched” in the vicinity, i.e., if it appears
at a rate that is statistically significant. The “coherence” is the percent of
the terms in a region that are enriched. Thus, the coherence measure is a
value between 0–100%, and high coherence implies low diversity and vice
versa; see ref. 16 for more details. Finally, the GO-slim annotation of a func-
tional term is the most specific parent(s) of the term that is present in the
GO-slim annotation graph.

Measuring the Spatial Spread of the Core in True and Random Associations of
Functional Annotations to Structures. We measure the spatial spread of the
most diverse domains by their average distance from their center of mass.
We consider two definitions of the most diverse proteins: (i) all domains
whose diversity scores are greater than 0.8 ×max_diversity, where max_
diversity is the highest diversity score found in our dataset; (ii) the 20% most
functionally diverse proteins. We measure the spatial spread of the most
diverse domains in our dataset, and in 300 random assignments of the func-
tional annotations to locations in structure space. The average distance in the
true dataset for these two definitions is 0.0860 and 0.1131, respectively. In
the random permutations, the average distances are 0.3501� 0.0151 and
0.3499� 0.0220, respectively, resulting in a p value < 0.0033.
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