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Abstract
Incretin hormones are intestinally derived peptides that are known to augment glucose-stimulated
insulin secretion and suppress glucagon levels. Incretin mimetics are attractive adjunctive therapy
for type 2 diabetes due to its efficacy on reducing hyperglycemia with a minimal risk of
hypoglycemia. In contrast to most available hypoglycemia agents that cause weight gain, incretin
mimetics are associated with moderate weight loss. In this review, we focused our discussion on
the actions of glucagon-like peptide 1 (GLP-1) in the brain regulation of energy expenditure and
food intake. Furthermore, we reviewed the data from preclinical and clinical studies in humans
and discussed the actions of GLP-1, GLP-1 analogs, dipeptidyl pepidase 4 (DPP-4) inhibitors on
body weight regulation as well as mechanism by which these effects may occur. The
gastrointestinal side effects common to GLP-1 based therapeutics such as nausea hamper its wide
spread use. Here, we discussed theoretical possibilities for maximizing weight loss and
minimizing nausea with of incretin-based therapy.
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1 Introduction
Over 50 years ago, it was discovered that insulin secretion in response to a glucose load was
greater with oral vs. intravenous glucose administration [1]. The authors hypothesized that
this was due to hormones secreted from the gut that stimulated insulin release in response to
nutrient exposure. We now know that gastric inhibitory peptide (GIP) and glucagon-like
peptide-1 (GLP-1) are two such incretins. However, the predominant role of GIP seems to
be related to increased adipogenesis, likely through direct actions on adipocytes [2], while
GLP-1 has been found to be a very important regulator of glucose homeostasis. In fact, long
acting GLP-1 derivatives and pharmaceuticals aimed at increasing circulating GLP-1 by
inhibiting the cleavage enzymes (dipeptidyl pepidase 4 [DPP-4]) have been found to be
effective treatments for type 2 diabetes mellitus (Table 1). While majority of the diabetes
therapies cause weight gain [3, 4], GLP-1-based therapies are associated with weight loss
that is actually comparable to the handful of FDA-approved drugs available to treat obesity
[5]. One of the side effects of GLP-1 analogs is that they cause nausea in many patients [5].
This review will focus on the potential contribution of GLP-1 on regulation of energy
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homeostasis. We will discuss the CNS regional effects GLP-1 and how this could be
exploited to optimize weight loss and minimize nausea.

2 The GLP-1 system
In response to a meal, GLP-1 is secreted into the circulation by enteroendocrine L-cells
located predominantly in the mucosa of the distal intestinal tract [6, 7]. Only one GLP-1
receptor (GLP-1r), initially cloned from pancreatic islets, has been described. The receptor is
also found within the CNS, heart, and lung. In general, GLP-1 is thought to be a brain-gut
peptide that acts as a hormone and neurotransmitter mediating several distinct processes
related to nutrient metabolism, including glucose metabolism and regulation of food intake.

3 Review of clinical data on GLP-1 and energy homeostasis
3.1 Regulation of energy homeostasis

Energy intake and energy expenditure are two essential elements for body weight regulation.
Data on the effect of GLP-1 on energy expenditure in humans is limited. Higher fasting
GLP-1 levels were found to be correlated with higher resting energy expenditure and fat
oxidation [8]. GLP-1 infusion resulting in a four-fold increase in plasma GLP-1 and
increased energy expenditure in healthy individuals [9]. However, this effect was abolished
when insulin level was kept constant during a pancreatic clamp suggesting that the effect on
energy expenditure was indirect. In another study, a similar dose of GLP-1 infusion lowered
diet induced thermogenesis by 47% due to reduced carbohydrate oxidation but did not alter
fat oxidation [10]. In contrast, treatment of a low dose (0.6 mg daily) of the long-acting
GLP-1 analog liraglutide for 8 weeks had no effect on 24 h energy expenditure [11]. The
combination of exenatide treatment and lifestyle modification induced greater weight loss
and glucose lowering but showed similar decreases in caloric intake and increase in
exercise-derived energy expenditure as compared to placebo in overweight or obese
individuals with type 2 diabetes [12]. Taken together, exogenous GLP-1 or GLP-1 analogs
do not seem to have a consistent or significant effect on energy expenditure in humans.

3.2 Regulation of food intake
The vast amount of literature examining GLP-1 based therapies has focused on the effect of
GLP-1 on food intake. Exogenous administration of GLP-1 to humans, raising plasma levels
to pharmacologic ranges, has an acute and negative effect on energy intake in humans. In a
randomized, blinded, placebo-controlled crossover study, short-term intravenous (IV)
infusion of GLP-1(7–36 amide) that increases plasma concentration of total GLP-1 to
pharmacological levels (60–90 pmol/L) in healthy normal-weight males enhanced satiety
and fullness as well as reduced spontaneous food intake by 12% as compared with placebo
[13]. Similar effects of GLP-1 on hunger ratings, satiety and energy consumption were also
reported in obese subjects [14] and subjects with type 2 diabetes [15]. The anorexic effect of
GLP-1 was also demonstrated in healthy individuals given GLP-1 to achieve plasma
concentrations closer to those seen postprandially [16], in which graded GLP-1 infusions
caused a dose dependent reduction in caloric intake. In a meta-analysis on 9 published and
unpublished studies that included 115 subjects, the average energy intake reduction was
12% during varying rates and durations of GLP-1 infusion [17]. In this analysis, the GLP-1
infusion rate was the only independent predictor of reduced energy intake. However, the
negative effects of GLP-1 on satiety and food intake have not been universally observed [18,
19]. Proof of concept for the feasibility of using native GLP-1 for therapeutic purpose was
obtained from a 6-week study of patients with type 2 diabetes [20]. GLP-1 delivered via
continuous subcutaneous infusion, in addition to benefitting glucose homeostasis,
significantly decreased weight by 1.9 kg. Taken together, these data suggest that
pharmacological administration of GLP-1 can lead to reductions in food intake, but it
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remains whether the physiological changes that occur with GLP-1 during a meal in humans
actually contributes to reductions in food intake. Regardless, these pharmacological effects
are proving to be beneficial in patients with type 2 diabetes. Whether it is a viable option for
weight loss in obese, non-diabetic patients remains to be determined.

3.3 GLP-1 based therapies and regulation of food intake
3.3.1 Long-acting GLP-1r agonists
Exenatide: Exendin-4 is a 39 amino acid peptide extracted from the venom of the Gila
monster (Heloderma suspectum) with a structural homology of 53% with mammalian
GLP-1 and a high affinity for GLP-1 receptors [21]. The glycine residue at position 2 of the
peptide confers resistance to DPP-4 degradation. Twice daily administration of
subcutaneous injection of exenatide, a synthetic exendin-4 derivative, has been shown to
improve glucose control with concomitant weight loss ranging 1.5–3 kg over 30 weeks [22–
24]. A 52-week open-label, uncontrolled extension of the 30-week exendin-4 treatment led
to a total weight loss of 4–5 kg [25]. In another study, a 5.3 kg weight loss was achieved
after 3-year treatment with 10 µg twice daily exendin-4 administration [26, 27]. Importantly,
this weight loss is due to reductions in fat mass as one-year exenatide treatment led to
significant reduction in body weight (6%), waist circumference, total body and trunk fat
mass in addition to increased adiponectin [28]. Mild to moderate gastrointestinal (GI) side
effects such as nausea, vomiting or diarrhea was reported in all trials but few subjects
discontinued therapy during the trial period.

The requirement that current peptide GLP-1r agonists be given by injection has led to the
development of new compounds with daily or weekly effectiveness. A long acting release
formula (LAR) of exenatide and albuminexendin-4 conjugates that are partly DPP-4
resistant, have beneficial effects on glycemic control and body weight in rodents and
humans, making them attractive alternatives for the treatment of type 2 diabetes [29]. In a
phase II randomized control trial, exenatide LAR administered at 0.8 and 2.0 mg once
weekly for 15 weeks significantly improved glucose control as compared to placebo, and at
the higher dose there was comparable weight loss to previous studies using shorter acting
exenatide. Mild nausea was the most frequent adverse event.

Liraglutide: Another long-acting GLP-1r agonist currently available in the clinic is
liraglutide, a fatty acid acylated GLP-1 molecule that exhibits a prolonged pharmacokinetic
profile after a single injection due to the non-covalent bound with albumin [30]. Liraglutide
mimics all of the actions of native GLP-1 and effectively lowers blood glucose in human
subjects with type 2 diabetes [31]. The circulating half-life of liraglutide is 10–14 h as
compared to 60–90 min with exenatide after a single subcutaneous injection [32, 33].

The efficacy of liraglutide on glucose lowering and body weight as well as body
composition changes was evaluated in the phase 3, double-blind, randomized controlled
Liraglutide Effect and Action in Diabetes (LEAD) trials. After 26 or 52 weeks of 1.2–1.8
mg liraglutide once daily treatment, weight reduction of 2–2.5 kg was observed with
liraglutide monotherapy (LEAD-3) [34], 0.2 kg in combination treatment with sulphonyluea
(SU) (LEAD-1) [35], 1.8–2.8 kg in combination with metformin (LEAD-2) [36], 1–2 kg
when added to metformin and thiazolidinediones (TZD) (LEAD-4) [37], and 1.8 kg
combined with metformin and SU (LEAD-5) [38]. The higher dose of liraglutide led to
larger amount of weight loss in these studies suggesting a dose dependency. Interestingly,
participants who had nausea for more than 7 days also had a tendency to lose more weight
compared to those who did not have nausea days in LEAD-3 [34]; this is similar to findings
reported from a recent study with exenatide-LAR (Duration trial) [29]. The effectiveness of
weight loss with liraglutide (1.8 mg, once daily) and exenatide (10 µg, twice daily) was
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similar when compared in a head-to-head trial (LEAD-6) [39]. Varying combination
treatment produces similar degree of weight loss in most trials (LEAD 2–6) [34, 36–39]
except for the SU combination where greater weight loss was achieved with exenatide
(LEAD-1) [35]. However, this result needs to be interpreted with caution due to the lower
baseline body weight in the liraglutide treated group than the exenatide treated group.

The effectiveness of liraglutide in the treatment of obesity was assessed in a randomized,
double-blind, placebo-controlled 20-week trial where 564 obese individuals with fasting
plasma glucose of less than 7 mmol/L and BMI ranging 30–40 kg/m2 were randomized to
receive one of the four doses of liraglutide (1.2–3.0 mg daily) or placebo or orlistat (120 mg
daily) [40]. Treatment with liraglutide, in addition to an energy-deficit diet and exercise
program, led to a dose-dependent weight loss that was significantly greater than that with
placebo (all doses) and orlistat (vs. liraglutide 2.4 and 3.0 mg only). The mean weight loss
with liraglutide 3.0 mg was 7.2 kg over 20 weeks. Nausea and vomiting were again more
common in the liraglutide treated group but mostly transient and of mild or moderate
intensity.

The reduction of weight with liraglutide was found to be primarily from reduction in fat
mass rather than lean tissue mass. Body composition changes related to liraglutide therapy
were evaluated by using dual-energy X-ray absorptiometry and computed tomography in
LEAD-2 and LEAD-3 trials [41]. Both visceral and subcutaneous adipose tissue were
significantly reduced by liraglutide treatment alone (LEAD-3) or in combination with
metformin (LEAD-2). In addition, liraglutide 1.8 mg increased the liver-to-spleen
attenuation ratio, possibly indicating reduced hepatic steatosis. Absolute total lean body
tissue mass was also reduced in all liraglutide treatment arms in a dose-dependent manner.
However, these reductions were not significantly different from the placebo control group.
Together with the findings from the exenatide treatment study discussed previously [28],
GLP-1 analogues induce weight loss and fat mass reduction. In addition, body weight
reduction due to liraglutide treatment was also associated with a reduction in lean mass as
commonly observed in subjects undergoing a weight loss intervention.

3.3.2 Increasing circulating endogenous GLP-1—The previous literature suggested
that raising circulating levels of GLP-1 with exogenous administration could inhibit food
intake. Another way to increase circulating GLP-1 is to inhibit the cleavage enzyme, DPP-4.
In fact, DPP-4 inhibitors that raise endogenous concentrations of active GLP-1 [42] and
have been shown to be effective in lowering fasting and postprandial glucose concentrations
[43]. In contrast to GLP-1 based therapy, DPP-4 inhibitors have been shown to be weight
neutral [5]. Thirteen randomized controlled trials evaluating the effects of DPP-4 inhibitors
on HbA1c and weight loss prior to May 2007 were summarized in this meta-analysis and
systematic review by Amori et al. [5]. Overall, there was a small increase in weight with
DPP-4 inhibitors compared with placebo (weighted mean difference, 0.5 kg; 95% CI, 0.3–
0.7 kg). In non-inferiority trials, sitagliptin produced more weight loss than glipizide
(between-treatment difference, −2.5 kg; 95% CI, −3.1, −2.0) [44] while vildagliptin had a
favored weight profile compared with thiazolidinediones (TZDs) (−1.7 kg; 95% CI, −2.2 to
−1.2 kg) [45, 46] but not compared with metformin [47]. The new member of the FDA
approved DPP-4 inhibitors saxagliptin has shown similarly minimal effect on weight as the
other members [48]. In contrast to GLP-1r agonists, DPP-4 inhibitors have not shown to
have significant effect on body composition at least in rodents [49, 50]. It is still important
to note that while these methods of increasing circulating GLP-1 may not cause weight loss,
they do not cause the significant weight gain seen with other antidiabetic medications such
as insulin and some insulin sensitizers. The respective side effects of DPP-4 inhibitors were
summarized in the systematic review by Amori et al. [5].
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3.4 Summary of clinical findings
While we still have much to learn regarding the physiological role of GLP-1 in body weight
regulation in humans, it is clear that the long acting GLP-1r agonists are effective at
lowering body weight through a reduction in food intake vs. increasing energy expenditure.
The mechanism for this remains unknown. Data from the LEAD-3 trial [34] suggested
greater incidence of nausea was associated with greater weight loss. This leads us to the
question of whether nausea is the cause of the weight loss. We now turn to a review of basic
science literature on the role of GLP-1 in body weight regulation and will explore further the
potential role of GLP-1-induced nausea in the reduction of food intake.

3.5 Mechanisms for GLP-1-induced weight loss
GLP-1 is also made within a discrete population of neurons the found in the nucleus of the
solitary tract (NTS) [6, 51, 52]. These GLP-1 neurons within the NTS have rich axonal
innervation to the hypothalamus [52, 53]. Third ventricular (i3vt) administration of GLP-1,
increases c-fos immunoreactivity, a marker for neuronal activation, in various areas of the
brain known for regulating energy balance including the paraventricular (PVN) and arcuate
(ARC) nucleus of the hypothalamus [54]. Further support for a role for GLP-1 in energy
homeostasis is that neuronal expression of preproglucagon within the hindbrain is decreased
with fasting in mice [55].

3.5.1 Mechanisms for GLP-1-induced changes in energy expenditure—If GLP-1
regulates energy expenditure, it could be through sympathetic activation. Acute GLP-1 or
long-acting GLP-1 agonist administration has been shown to increase sympathetic outflow
to regulate heart rate, and blood pressure [56], and lipolysis white adipose tissue [57] via
central mechanisms. While this suggests that GLP-1 systemically increases sympathetic
activity and thus increases in energy expenditure, the animal literature regarding the role of
GLP-1 on energy expenditure conflicts. As stated above, human data shows minimal effect
of GLP-1 on energy expenditure [9, 11]. In mice, the effect may depend upon diet since 1
week of ICV administration of GLP-1 prevented the decrease in energy expenditure seen
with caloric restriction in lean mice [57]. Further, acute (1 week) central blockade of
endogenous GLP-1r had no affect on food intake but increased body weight with a tendency
for a decreased energy expenditure in C57/Bl6 mice fed a chow diet [57] while more chronic
(1 month) central blockade increased energy expenditure in high fat fed C57/Bl6 mice [58].
It is unknown whether it is the timing (1 week vs. 1 month) vs. the diet (chow vs. high fat)
or some other factor that leads to these discordant results. Regardless, it seems that if central
GLP-1 action is beneficial for treatment of obesity, increased in energy expenditure does not
make a major contribution to the negative energy balance.

3.5.2 Mechanisms for GLP-1-induced anorexia—While GLP-1 may have only
minimal effects on energy expenditure, at least in obesity, it is clear that CNS GLP-1 affects
the other side of the energy balance equation by decreasing food intake [59–63]. The
anorectic action of GLP-1 is short-lived, reducing food intake typically only within the first
few hours of the onset of the dark cycle (when rats typically eat most) [59–63]. Unlike the
effects on energy expenditure, central GLP-1 administration works equally well to reduce
food intake in lean vs. obese animals [60].

GLP-1 administered directly into the lateral [64], 3rd and 4th ventricles [59, 64], the
paraventricular nucleus and hindbrain [65] reduces food intake. Interestingly, GLP-1 given
directly into the arcuate nucleus (ARC) of the hypothalamus, a key nuclei regulating energy
balance, has little effect on food intake [66].
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The regional effects of GLP-1 to reduce food intake suggest that GLP-1 acts on a variety of
neuronal populations to activate anorectic circuits. The GLP-1r is colocalized with POMC
(anorectic neurons) but not NPY (orexigenic neurons) neurons within the ARC [66],
However, the role of these cells to mediate the feeding effects of GLP-1 are not direct since
administration of peptide to this brain region does not change food intake. While there are
data suggesting NPY [67–69] may block GLP-1 anorectic action, neither AgRP [70], nor
administration of SHU9119, a melanocortin receptor antagonist, at a dose that blocked the
anorectic effects of leptin [71], blocked the anorectic effects of GLP-1. However, it remains
possible that these neurons play a role in other CNS effects of GLP-1.

Recent data suggest a link between leptin and GLP-1 in reducing food intake. When sub-
threshold doses of GLP-1 and leptin are given together, they potently inhibit food intake
suggesting an additive effect of the two drugs [72]. Interestingly, prolonged fasting blunted
the anorexic effects of both GLP-1 and exendin-4 (a long acting GLP-1 agonist), an effect
that was overcome with a concomitant infusion of leptin. In addition, fasting downregulates
hindbrain expression of preproglucagon and this is prevented with leptin infusion during the
fast [73]. Whether these effects of leptin are direct or indirect remains unclear but do suggest
that these peptides interact to regulate satiety.

3.5.3 The interplay between the peripheral and the central glp-1 systems for
regulating body weight—The role for peripheral GLP-1 to regulate glucose homeostasis,
and the role of the CNS GLP-1r to regulate food intake are thought to be two separate
functions of the GLP-1 system. However, there is evidence for interplay of these two
systems. Intravenously administered GLP-1 binds to specific areas within the CNS [74].
However, the short residence time in the circulation raises some doubt as to whether GLP-1
can directly activate CNS neurons from the blood stream or after transport into the brain. An
alternative to endocrine action of GLP-1 on the CNS is that the secreted peptide engages
visceral afferents which, in turn, activate the central GLP-1 system to initiate some of the
physiological effects. Support for this possibility is that nodose ganglion nerves contain
GLP-1r [75] and intra-portal infusion of GLP-1 increases pancreatic and vagal afferent
activity [76, 77]. However, GLP-1 action in the portal vein seems to be more important for
glucose homeostasis [78] rather than food intake [79]. Interestingly, recent data show that
the anorectic effect of gastric distention, but not duodenal nutrient infusion, is blocked by
hindbrain administration of a GLP-1r antagonist [55]. Together these data suggest a model
similar to the CNS GLP-1r system, whereby activation of visceral afferent neurons by
GLP-1 is heterogeneous whereby activation of the GLP-1r on the gastric vagal afferents
have different physiological effects compared to activation of the GLP-1r located on hepatic
visceral afferents. Explaining the physiologic basis for this heterogeneity may facilitate the
identification of more specific pharmacologic targets for the GLP-1 system aimed at
optimizing weight loss. It is possible to imagine that these targets may even be distinct from
targets used to treat type 2 diabetes mellitus.

3.5.4 The role of nausea in GLP-1-induced weight loss—Nausea is the one of the
most limiting factors for targeting GLP-1 as a therapy for obesity (and its current use as
therapy for type 2 diabetes). Data from the LEAD 3 trial [34] showed an association
between increased nausea and increased weight loss in type 2 diabetic patients. This would
lead one to speculate that nausea may be a mechanism for GLP-1-induced weight loss.

While the effect of these agents on improving glucose homeostasis is similar between
GLP-1 analogues and DPP-4 inhibitors, the GI side effects commonly reported with GLP-1
analogue use is absent with DPP-4 inhibitors [5, 48]. Exogenous GLP-1 that produces high
circulating hormone levels can delay gastric emptying [80], increases gastric volume [81,
82], increase satiation and induce weight loss in patients with type 2 diabetes [20]. GLP-1r
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agonists decrease caloric intake and are associated with increased GI symptoms such as such
as nausea and vomiting [22, 24]. DPP-4 inhibitors (e.g. vildagliptin) on the other hand did
not alter satiety, gastric volume, or gastric emptying [83, 84]. The modest increase of active
GLP-1 level in the postprandial period with DPP-4 inhibition has been proposed as the
explanation for the lack of effect on GI motility and the desirable side effect profile
associated with this class of medication. However, even when the peak active GLP-1
concentration following meal ingestion is similar to the level produced by exogenous GLP-1
that is known to cause delayed gastric emptying [84, 85], individuals treated with DPP-4
inhibitor did not have increased frequency of GI symptoms [83]. Therefore, the differential
effect of GLP-1 analogues and DPP-4 inhibitors on the GI tract cannot be completely
explained by the concentration of active GLP-1 levels in the circulation alone.

Another possibility is that exendin-4, a therapeutically potent GLP-1r agonist, may have
distinct potency, duration of action, and altered binding to the GLP-1r compared to GLP-1
[86]. While the fact that exendin-4 may be more potent and have a longer duration of action
may not be surprising, but the idea that there are differences in the ability of each agonist to
bind to the GLP-1r is novel. Interestingly, it seems that this effect is specific to the CNS
GLP-1r signaling as central, but not peripheral affects of exendin-4 are resistance to GLP-1r
antagonism. Importantly, there may also be a greater capacity to generate visceral illness
with exendin-4 vs. GLP-1.

Like the clinical data, the major adverse effect of GLP-1 administration to rodents is the
induction of visceral illness. Importantly, the CNS regions responsible for these effects have
been identified. Specifically, GLP-1 acts on neurons within the central nucleus of the
amygdala to cause a conditioned taste aversion, a robust indicator of visceral illness [16].
Furthermore, administration of a GLP-1r antagonist, blocks visceral illness induced by
lithium chloride in rats and mice [87]. It is important to note that when given directly into
the PVN and 4th ventricle (which presumably hits the hindbrain neurons), GLP-1 reduces
food intake without causing visceral illness. The fact that we can dissociate these effects in
animal models lead to the plausibility of developing therapeutic strategies that would
dissociate the anorectic effects from illness-inducing effects of GLP-1. This has
considerable clinical significance since in humans treated with GLP-1r agonists for diabetes
the most commonly reported side effect, and the principle factor limiting tolerance, is nausea
[5].

4 Summary and conclusions
GLP-1 infusion and both short- and long-acting GLP-1r agonists in humans are associated
with weight loss due to decreased food intake rather than changes in energy expenditure, an
effect likely mediated by GLP-1 action in the hypothalamus and hindbrain. Conversely,
DPP-4 inhibitors that moderately increase active circulating GLP-1 level are weight neutral.
A major adverse effect of these GLP-1 analogue therapies is nausea, an effect that is not
seen with DPP-4 inhibitors. This difference may be due to differences in receptor potency of
the long acting GLP-1 analogues vs. the endogenous peptide. Regardless, GLP-1 appears to
act within very specific regions of the CNS to cause visceral illness in rodents, which may
be separate from regions mediating its effect on food intake. The ability to dissociate these
effects leads to the possibility that therapies could be developed aimed at reducing food
intake without nausea.

This unique function of GLP-1 and GLP-1 mimetics on reducing body weight make them
attractive therapeutic alternatives to the limited number of weight loss medications available
on the market and the weight-enhancing hypoglycemic agents for the treatment of obesity
and type 2 diabetes, respectively. However, the common side effect of GLP-1 such as
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nausea makes it less desirable. A recent report on the use of glucagon and GLP-1 co-agonist
showed potent and sustained effect on inducing satiation and lipolysis in diet induced obese
mice [88]. Combination treatment with agents that have synergistic effects on food intake
could enhance potency yet eliminate unwanted side effects associated with single-agent
therapy. Agents that specifically target the brain regions that are responsible for the GLP-1
action on food intake but not nausea such as the paraventricular nucleus and 4th ventricle
may become attractive options. Overall, a better understanding of the satiety effects of
GLP-1 is needed and will have an immediate impact on clinical practice.
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Table 1

Summary of major classes of GLP-1 based therapies for the treatment of type 2 diabetes

Drug Route of administration Dose
frequency

Effect on body
weight

Manufacture

GLP-1 receptor agonists

  Exenatide Subcutaneous injection Twice daily ↓ Amylin Pharmaceuticals

  Liraglutide Subcutaneous injection Once daily ↓ Novo Nordisk

DPP-4 inhibitors

  Sitagliptin Oral Once daily ↔↑ Merck & Co.

  Saxagliptin Oral Once daily ↔↑ AstraZeneca Pharmaceuticals
  LP/Bristol-Myers Squibb

  Vildagliptin Oral Once daily ↔ Novartis
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