
Nephrol Dial Transplant (2011) 26: 2558–2566

doi: 10.1093/ndt/gfq740

Advance Access publication 10 January 2011

Serum uric acid is a GFR-independent long-term predictor of acute
and chronic renal insufficiency: the Jerusalem Lipid Research Clinic
cohort study

Iddo Z. Ben-Dov1 and Jeremy D. Kark2

1Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY 10065, USA and 2Epidemiology Unit, Hebrew
University—Hadassah School of Public Health and Community Medicine, Ein Kerem, Jerusalem 91120, Israel

Correspondence and offprint requests to: Iddo Z. Ben-Dov; E-mail: iben@rockefeller.edu

Abstract
Background. Kidney disease is commonly accompanied
by hyperuricemia. However, the contribution of serum
uric acid (SUA) to kidney injury is debated. Our objective
was to assess the long-term prediction of renal failure by
SUA.

Methods. Visit 2 participants in the Jerusalem Lipid Re-
search Clinic cohort with normal baseline kidney function
were followed for 24–28 years. SUA levels were assessed
for associations with acute renal failure (ARF) and chronic
renal failure (CRF) as defined by hospital discharge
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records, and mortality, ascertained through linkage with the
national population registry.
Results. Among 2449 eligible participants (1470 men, 979
women aged 35–78 years in 1976–79), SUA was positively
linked with male sex, serum creatinine and components
of the metabolic syndrome but was lower in smokers and
in diabetic subjects. The 22- to 25-year incidence of hos-
pital-diagnosed kidney failure (145 first events, 67% CRF)
and the 24- to 28-year mortality (587 events) were higher
in subject with hyperuricemia (>6.5 mg/dL in men and
>5.3 mg/dL in women, reflecting the upper quintiles),
independent of baseline kidney function and covariates.
Hyperuricemia conferred adjusted hazard ratios of 1.36
(P ¼ 0.003), 2.14 (P < 0.001) and 2.87 (P ¼ 0.003) for
mortality, CRF and ARF, respectively.
Conclusions. SUA predicts renal failure incidence and all-
cause mortality independently of demographic and clinical
covariates. These results lend support to the undertaking of
clinical trials to examine the effect of uric acid-lowering
strategies on kidney outcomes.

Keywords: acute kidney injury; chronic kidney disease; cohort study;
mortality; uric acid

Introduction

Uric acid was proposed long ago as a possible determinant
of hypertension, diabetes and chronic kidney disease (CKD)
in addition to rheumatism and gout [1]. Recent animal stud-
ies have convincingly established an association between
serum uric acid (SUA) and CKD [2]. In rats, hyperuricemia
causes slowly progressive glomerular and tubulointerstitial
disease, which is prevented by a uricosuric agent [3]. In this
and other animal models, kidney damage is in part mediated
by hyperuricemia-induced hypertension [4] but has also a
hypertension-independent component [5, 6].

Prospective epidemiological studies link hyperuricemia
with risk of new onset or worsening kidney disease. Feig
[2] found support for a role of elevated SUA in renal dis-
ease in 8 of 12 studies he recently reviewed. These included
large studies from the USA [7, 8], Austria [9] and Japan
[10], as well as smaller studies from Brazil [11], China
[12], Taiwan [13] and South Korea [14]. Increased inci-
dence of both CKD and end-stage renal disease (ESRD)
was reported in relation to baseline SUA, as well acceler-
ated CKD progression. Four other studies from Mexico
[15], Taiwan [16], USA [17] and Germany/Austria/South
Tyrol [18] reported associations that were either weak or
did not withstand multivariable adjustment.

A major challenge in observational studies of the relation-
ship between SUA and cardiovascular diseases is accounting
for reverse causation and confounding effects. With regard
to CKD, decreased glomerular filtration, which defines
CKD, is itself a cause of increased SUA. Secondly, an asso-
ciation between SUA and CKD might be a reflection of the
metabolic syndrome, which is associated with SUA levels
(with increased SUA being both a cause and a consequence
of the metabolic syndrome [19, 20]) and, through diabetes,

leads to renal disease. Additionally, frank hyperuricemia
sometimes leads to uric acid (gouty) nephropathy.

Interventional trials are needed to resolve the role of
hyperuricemia in kidney disease. Several recently pub-
lished small clinical studies collectively suggest a possible
causative role [21–23]. Awaiting larger-scale clinical trials,
the objective of this work is to evaluate whether SUA
predicts the long-term occurrence of kidney disease inde-
pendent of its associations with baseline kidney function
and metabolic abnormalities. To do so, we analyzed data
from the population-based Jerusalem Lipid Research Clinic
(LRC) cohort study which was initiated in the 1970s as a
cardiovascular prevalence study, using protocols of the
North American LRC prevalence studies [24–26]. A subset
of predominantly middle-aged adults with normal kidney
function at baseline is the subject of this study.

Materials and methods

Participants

At Visit 2 of the Jerusalem LRC [24], information was gathered on 2544
middle-aged individuals, of whom 69.2% were randomly sampled from
Visit 1 participants and 30.8% were additionally sampled from Visit 1
subjects with elevated lipid levels (for additional information about the
sampling scheme see the supplementary data) [24]. Response rates were
reported as 72.0% at Visit 1 and 79.7 and 83.0% for the Visit 2 random and
high lipid samples, respectively [24]. Creatinine and SUA measurements
were not available for 51 participants. An additional 44 had estimated
glomerular-filtration rate (eGFR) <60 mL/min/1.73 m2 [‘calculated by the
Modification of Diet in Renal Disease (MDRD) formula—see below], leav-
ing 2449 for analysis.

Study variables

Analyses relate to the extensive sociodemographic, lifestyle, anthropomet-
ric and clinical chemistry measures collected at Visits 1 and 2 [24, 27, 28].
SUA was determined on a Technicon (USA) Autoanalyzer (AA-I) by a
phosphotungstate method [29]. Creatinine clearance (milliliter per minute)
was estimated (eCCr) using the Cockroft-Gault formula [30]. GFR (mL/
min/1.73 m2) was estimated by the four-variable MDRD equation [31] or
the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) for-
mulas, reported as more accurate in subjects with normal kidney function
[32]. Variables introduced into models in this study include, unless other-
wise specified: age, sex, dummy variable for sampling scheme (random
recruitment versus high-lipid group enrichment), secular education
(years), region of birth (Israel, Europe, Asia and North Africa; three
dummy variables), smoking (yes/no), alcohol consumption (grams per
week), protein consumption (grams per kilogram body weight), heart rate
(1 per minute), diabetes medication status, systolic and diastolic blood
pressure (BP: averages of 2 ordinary mercury sphygmomanometric and
2 random-zero measurements), triceps skinfold thickness (millimeters),
body-mass index (BMI), hematocrit, SUA, creatinine, glucose, total-,
low-density lipoprotein cholesterol (LDL-C) and high-density (HDL-C)
lipoprotein cholesterol, triglycerides (ln-transformed), aspartate amino-
transferase (AST), serum globulins, thyroxin, bilirubin and stick proteinu-
ria [semiquantified from a casual urine sample as 0 (negative), 10 mg/dL
(trace), 30 mg/dL (11), 100 mg/dL (12) or 300 mg/dL (13)]. All labo-
ratory tests were performed on fasting samples.

Outcome variables

Deaths were ascertained through linkage with the national population
registry (linkage date: April 2004). Incidence diagnoses of acute renal
failure (ARF) (ICD 9: 484), chronic renal failure (CRF) (ICD 9: 485)
and unspecified (ICD 9: 486) renal failure were obtained from hospital
discharge diagnosis lists by data linkage with the medical archives of all
relevant Jerusalem hospitals (linkage date: October 2001).

Statistical analysis

We stratified most of our analyses by sex. To identify variables related to
SUA, we grouped participants by sex-specific quintiles of SUA levels and
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evaluated co-variables using analysis of variance or chi-squared tests, as
appropriate. Triglyceride levels were ln-transformed, but actual values are
presented. Multivariable linear regression was used to compute the con-
tribution to the variance of SUA through evaluation of the stepwise change
in the model R2. Hierarchical clustering by squared Pearson coefficients
using average linkage was applied to all baseline variables (standardized)
to evaluate the location of SUA in the variable space. Additionally, prin-
cipal components were extracted from baseline variables (supplementary
data). The relationship of SUA with outcome (all-cause mortality, CRF,
ARF and unspecified renal failure) was assessed using Kaplan–Meier
(KM) curves, Cox proportional hazards and logistic regression models.
Unless otherwise stated, SUA was introduced as the highest quintile versus
the four lower quintiles grouped. In Cox and logistic regression, age,
serum creatinine, the sampling scheme (Cox only) and sex (in sex-pooled
models) were forced into the models, while all other variables were sub-
jected to backward elimination (P for entry and removal 0.05 and 0.1,
respectively). Introduction of a quadratic SUA term to exploratory Cox
models to detect a possible U-shaped relationship with outcome did not
improve the fit of the models. A separate analysis evaluated the occurrence
of CRF in models censored on coronary heart disease (hospital discharge
diagnosis) to address a possible detection bias related to comorbidity [33].
The proportional hazards assumption was validated by introducing the
ln(time) 3 variable interaction, which for SUA was significant only in a
non-adjusted Cox model for CRF in men. Weighted logistic regression
that reflects the sampling scheme, i.e. the probability to have been sampled
from Visit 1 subjects, based on age-specific lipid levels, was also used to
evaluate CRF outcomes at 16, 20 and 24 years of follow-up. Analyses
were conducted using PASW 17.0 software (SPSS Inc., Chicago, IL).
Hierarchical clustering was performed using MeV software version 4.5

[34]. A nominal two-sided P-value <0.05 was considered significant. Data
are displayed as mean � SD unless stated otherwise.

Results

Baseline associations of SUA

SUA was normally distributed, with 30% higher values in
men than women: 5.7 � 1.1 versus 4.5 � 1.0 mg/dL,
respectively (supplementary Figure S1). Notable associa-
tions (Table 1 and supplementary Table S1) included lower
SUA in diabetic subjects of both sexes [adjusted for age,
sex and BMI, SUA was 0.8 mg/dL lower in subjects treated
for diabetes (2.0% of participants), 4.3 versus 5.1 mg/dL,
P < 0.001]; lower SUA in male smokers (0.3 mg/dL lower
age- and BMI-adjusted SUA, P < 0.001); increasing SUA
with various constituents of the metabolic syndrome; in-
creasing SUA with education in men (10.3 mg/dL in those
with highest versus lowest education level, adjusted for
age, BMI and country of birth, P ¼ 0.005) but decreasing
SUA with education in women (not significant after adjust-
ments) and higher SUA in European-born men (5.9 mg/dL,
adjusted for age, BMI and education) compared to Asian
(5.6 mg/dL, P ¼ 0.01 with Bonferroni correction) or North

Table 1. Sociodemographic, anthropometric and clinical characteristics of the study population, partitioned by sex-specific quintiles of SUA (weighed
analysis and complete quintile data available as supplementary Table S1)

Uric acid quintile

Men, n ¼ 1470 Women, n ¼ 979

Q1 Q5 P-valuea Q1 Q5 P-valuea

SUA, mg/dL 4.3 6 0.6 7.3 6 0.7 <0.001 3.1 6 0.4 6.1 6 0.6 <0.001
Age, years 50 6 6 50 6 6 0.8 45 6 5 47 6 5 <0.001
Place of birth: Israel 29.9% 32.8% 35.6% 27.9%
Place of birth: Europe 14.6% 30.1% 22.1% 24.0%
Place of birth: Asia 33.8% 22.4% 25.5% 29.0%
Place of birth: North Africa 21.7% 14.7% 0.002b 16.8% 19.1% 0.9b

Education, years 8.3 6 5.2 10.3 6 5.7 <0.001 10.0 6 5.9 8.4 6 5.5 0.003
Alcohol, g/week 33 6 30 29 6 22 0.2 15 6 13 14 6 16 0.2
Smoking 52.3% 34.1% <0.001 30.3% 19.1% 0.04
BP medication 7.9% 29.3% <0.001 6.8% 29.5% <0.001
Hypoglycemics 5.7% 0.3% <0.001 2.4% 1.6% 0.2
Height, cm 167 6 7 169 6 7 <0.001 157 6 6 157 6 6 0.3
Weight, kg 72 6 11 80 6 12 <0.001 63 6 8 73 6 12 <0.001
BMI, kg/m2 25.6 6 3.3 28.0 6 3.5 <0.001 25.5 6 3.5 29.9 6 5 <0.001
Triceps skinfold, mm 22 6 10 24 6 10 0.002 27 6 8 33 6 9 <0.001
Systolic BP, mmHg 119 6 16 124 6 18 0.001 115 6 17 125 6 20 <0.001
Diastolic BP, mmHg 80 6 11 82 6 11 0.001 75 6 10 81 6 12 <0.001
Hematocrit, % 46 6 5 45 6 4 0.3 41 6 5 42 6 4 0.04
Glucose, mg/dL 116 6 51 106 6 16 0.02 102 6 42 104 6 18 0.004
Creatinine, mg/dL 0.83 6 0.13 0.94 6 0.14 <0.001 0.64 6 0.12 0.74 6 0.12 <0.001
eCCr, mL/min 111 6 25 110 6 27 0.7 115 6 29 112 6 28 0.3
eGFR, mL/min/1.73 m2 108 6 20 93 6 18 <0.001 113 6 26 93 6 18 <0.001
CKD-EPI, mL/min/1.73 m2 102 6 10 93 6 13 <0.001 107 6 12 96 6 14 <0.001
Cholesterol, mg/dL 209 6 43 213 6 41 0.3 207 6 41 225 6 45 <0.001
LDL-C, mg/dL 135 6 36 132 6 36 0.3 130 6 37 143 6 39 <0.001
HDL-C, mg/dL 41 6 10 39 6 9 0.001 54 6 13 46 6 12 <0.001
VLDL-C, mg/dL 33 6 28 43 6 26 <0.001 23 6 15 36 6 25 <0.001
Triglycerides, mg/dL 160 6 130 216 6 121 <0.001 110 6 59 178 6 108 <0.001
Globulins, g/L 31 6 4 32 6 4 <0.001 33 6 3 33 6 3 0.03
Bilirubin, mg/L 5.6 6 2.4 6.5 6 2.7 <0.001 4.6 6 1.8 5.5 6 2.8 0.001
AST, IU/L 30 6 17 33 6 12 0.01 25 6 6 30 6 11 <0.001
Thyroxin, lg/dL 44 6 7 44 6 8 0.7 46 6 8 45 6 8 0.1

aShown are P-values for linear trends derived from analysis of variance or chi-squared (linear-by-linear) tests, as appropriate.
bPearson chi-square with 3 degrees of freedom. VLDL-C, very low-density lipoprotein cholesterol.
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African-born men (5.7 mg/dL, P ¼ 0.04). SUA levels in-
creased with creatinine and decreased with eGFR but not
with eCCr (Table 1). The variance of SUA explained by
serum creatinine was 8% (both sexes), while that captured
by eGFR was 8%/9% (men/women) using the eGFRMDRD

and 6%/8% with the CKD-EPI equations. By multivariable
stepwise linear regression, 23% of the SUA variance in
men and 29% in women could be attributed to the meas-
ured variables, most notably BMI and creatinine (Table 2).

To further evaluate relationships between variables, and to
specifically search for those closely associated with SUA, we
subjected thebaseline data to unsupervisedhierarchical cluster-
ing (Figure 1), which placed SUA in the vicinity of creatinine,

adiposity indices, height and education in both sexes. Analysis
of principal components is presented in the supplementary
material.

All-cause mortality

Data linkage identified 587 deaths during follow-up, for
mortality rates of 12.5 and 6.2 per 1000 person-years in
men (448 events) and women (139 events), respectively.
SUA was associated with mortality in both sexes (Figure 2),
with a stronger effect apparent in women. Cox proportional
hazards model indicated a multivariable adjusted 36% [95%
confidence interval (CI) 11–66%] increase in all-cause

Table 2. Determinants (correlates) of SUAa

Variable

Men Women

R2 change (%)
Cumulative
R2 (%) R2 change (%)

Cumulative
R2 (%)

Creatinine 7.6 7.6 10.5 10.5
BMI 5.8 13.4 10.3 20.8
DM med 2.0 15.4 0.6 21.4
Triglycerides 2.0 17.4 4.8 26.2
Smoking 1.4 18.8
AST 1.1 27.3
Globulins 1.0 19.8
Bilirubin 0.9 20.7 1.6 28.9
Education 0.9 21.6
Glucose 0.7 22.3
Asian origin 0.4 22.7
Cholesterol 0.3 23.0

aDerived by stepwise linear regression models (with Pin 0.05 and Pout 0.1). The following were introduced into the models: age, secular education level
(years), birth origin (three dummy variables), protein and alcohol consumption, smoking, diabetes medication status (DM med), BMI, triceps skinfold
thickness, systolic and diastolic blood pressure, hematocrit, creatinine, globulins, serum AST, thyroxine, bilirubin, fasting glucose (ln), total cholesterol,
triglycerides (ln), LDL-C, HDL-C and very low-density lipoprotein cholesterol, urine protein (stick) and sampling scheme dummy variable.

Fig. 1. Hierarchical clustering dendrograms of baseline variables (using average linkage on squared Pearson coefficients of standardized variables) in
men (top) and women (bottom). ‘Protein (g)’ denotes dietary protein consumption in grams per kg body weight.
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mortality in subjects with hyperuricemia (highest sex-
specific quintile). Table 3 displays additional predictors.
Notably, serum creatinine was not a significant predictor
and neither were eGFRMDRD nor the CKD-EPI eGFR in
analogous models (both P-values ¼ 0.1).

Hospital diagnosis of CRF

CRF (ICD 9: 585) was reported in hospital discharge
summaries of 87 men (2.8 per 1000 subject-years) and
22 women (1.0 per 1000 subject-years). Leading comor-
bid conditions were ischemic heart disease (49%), diabe-
tes mellitus (38%) and heart failure (25%) (comorbid
diagnoses are presented in supplementary Table S2).
KM curves (Figure 3) showed that a steeper relationship
between SUA and CRF might exist in women compared
to men. Cox models were thus constructed to adjust for
co-variables and to assess interactions with SUA (entered
as the upper fifth versus the lower four quintiles grouped

together). The gender interaction with SUA was border-
line, both in an age-adjusted model (P ¼ 0.07) and in the
fully adjusted model (P ¼ 0.05). Further models were thus
either stratified by sex or included the interaction term.
The highest SUA quintile was associated with CRF in both
men and women; hazards ratio (HR) 1.94 (95% CI 1.20–
3.14, P ¼ 0.007) in men and HR 5.20 (95% CI 1.90–14.2,
P ¼ 0.001) in women. SUA predicted CRF similarly in sub-
jects with either normal eGFRMDRD (�90 mL/min/1.73 m2,
n ¼ 1683, 65 events) or subnormal eGFRMDRD (<90 mL/
min/1.73 m2, n¼ 766, 44 events); adjusted HR 2.21 (95% CI
1.24–3.96, P ¼ 0.007) and 2.37 (95% CI 1.20–4.66, P ¼
0.01), respectively, for the highest quintile subjects. Other
predictor variables are depicted in Table 4.

Weighted logistic regression that accounted for the sam-
pling scheme of the Visit-2 cohort (see Materials and meth-
ods) was consistent with the Cox findings. Odds ratios (OR)
for CRF in subjects with hyperuricemia (fifth SUA quintile)
were 4.6 (1.1–19.9) after 12 years (n¼ 2299, 15 events), 3.21
(1.1–9.4) after 16 years (n¼ 2223; 38 events), 1.8 (0.9–3.8) at
20 years (n ¼ 2124; 70 events) and 3.2 (1.4–7.2) at 24 years
(n ¼ 730; 108 events) (see supplementary Table S3).

Addressing a possible detection bias related to
comorbidity

In this study, renal failure outcomes were extracted from
hospital discharge diagnoses. This might have introduced
a detection bias, wherein exposure to high SUA levels
would favor the detection of CRF through a direct
relationship of hyperuricemia with the disease-causing hos-
pitalization. Indeed, in >9500 hospitalizations during follow-
up of our cohort, several common conditions that have been
previously linked with increased uric acid levels were found
to be closely associated with CRF. For example, CRF was
more likely to occur with a concomitant diagnosis of heart
failure (OR ¼ 26), chronic ischemic heart disease (OR ¼ 12),
diabetes mellitus (OR ¼ 10) and aortic aneurysm (OR ¼ 52).
We thus reanalyzed CRF outcome after censoring (at the date
of hospital diagnosis) for acute and chronic forms of ischemic
heart disease (ICD 9: 410–414), the most frequent comorbid

Fig. 2. KM curves plotting overall survival by SUA threshold in men (left), log-rank P-value ¼ 0.02 (n¼ 1470; 448 events) and women (right), log-rank
P-value ¼ 0.001 (n ¼ 979; 139 events).

Table 3. Cox models predicting all-cause mortality (n ¼ 2449, 587
events)a

Variable, unit HR (95% CI) P-value

Hyperuricemia, Q5 versus Q1–Q4 1.36 (1.11–1.66) 0.003
Age, year 1.11 (1.09–1.12) <0.001
Glucose, per 2.7-fold increase 4.10 (2.90–5.78) <0.001
Smoking, Y versus N 1.66 (1.39–1.98) <0.001
Sex, F versus M 0.61 (0.46–0.79) <0.001
Education, year 0.97 (0.96–0.99) <0.001
Systolic BP, 10 mmHg 1.09 (1.04–1.14) <0.001
LDL-C, 10 mg/dL 1.03 (1.01–1.06) 0.003
Triceps skinfold, 5 mm 0.94 (0.90–0.99) 0.02b

Globulins, g/L 1.03 (1.00–1.06) 0.02
AST, 10 IU/L 1.06 (1.01–1.12) 0.02
BMI, 5 kg�m�2 1.14 (1.02–1.29) 0.03
Creatinine, mg/dL 0.65 (0.34–1.23) 0.2

aCox proportional hazards were computed with backward elimination of
variables (SUA, age and creatinine and were forced into the model). BP,
blood pressure.
bBorderline interaction was noted with sex (P ¼ 0.07); the HR being <1
only in men.
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diagnoses of CRF and thus possibly a source of detection
bias. CHD-‘free’ hospital diagnoses of CRF were found in
only 32 men (1.2 per 1000 subject-years) and 7 women (0.3
per 1000 subject-years). KM curves (with both sexes com-
bined, due to the small number of events) showed that highest
SUA quintile subjects were prone to CRF (P ¼ 0.003, sup-
plementary Figure S2); the HR was 2.51 (95% CI 1.28–4.92,
P ¼ 0.007) in a CHD-censored Cox model with adjustment
for age (P < 0.001), sex (P ¼ 0.6), smoking (P ¼ 0.09), ln-
glucose (P < 0.001) and creatinine [P ¼ 0.006 with HR 19.7
(95% CI 2.4–163)].

Acute renal failure

ARF (ICD 9: 584) was reported in hospital summaries of
34 men (1.1 per 1000 subject-years) and 10 women (0.44

per 1000 subject-years). Comorbid diagnoses are presented
in supplementary Table S2. More than half had CRF. The
small number of events allowed only limited analyses. Sub-
jects in the upper sex-specific quintile of SUA were diag-
nosed with ARF more often than others as determined by a
KM analysis (log-rank P-value ¼ 0.003, supplementary
Figure S3) and by an adjusted Cox model (HR 2.87; 95%
CI 1.45–5.69, P ¼ 0.003). As opposed to CRF, KM anal-
ysis did not suggest a specific cutoff for prediction of ARF
by SUA (supplementary Figure S4). Thus, SUA was intro-
duced as an interval variable and was found to be a strong
predictor of ARF (second only to age), with a 74% (95% CI
33–127%) increase in hazards per 1 mg/dL of SUA (P <
0.001). Other independent predictors of ARF were smok-
ing [HR 2.40 (1.23–4.67, P ¼ 0.01)], diabetes [HR 6.16
(1.43–26.5), P ¼ 0.02] and stick proteinuria [HR 1.06

Fig. 3. KM curves plotting cumulative hazards of CRF in men (left), log-rank P-value ¼ 0.001 (n ¼ 1470; 87 events) and women (right), log-rank
P-value ¼ 0.001 (n ¼ 979; 22 events) by SUA threshold.

Table 4. Cox models predicting CRFa

Variable

Men (n ¼ 1470, 87 events) Women (n ¼ 979, 22 events)

HR (95% CI) P-value HR (95% CI) P-value

Hyperuricemia, Q5 versus Q1–4 1.94 (1.20–3.14) 0.007 5.20 (1.90–14.2) 0.001
Glucose, per 2.7-fold increase 13.7 (6.61–28.4) 0.001 N/A
Age, year 1.09 (1.05–1.12) 0.001 1.10 (1.00–1.21) 0.05
Smoking, Y versus N 2.89 (1.82–4.59) 0.001 4.48 (1.48–13.6) 0.008
Globulins, g/L 1.12 (1.05–1.19) 0.001 N/A
Cholesterol, 10 mg/dL 1.09 (1.03–1.15) 0.002 N/A
Origin: Israel N/A 1 0.05b

Origin: Europe N/A 0.32 (0.06–1.71) 0.2
Origin: Asia N/A 0.91 (0.27–3.11) 0.9
Origin: North Africa N/A 3.11 (0.88–11.1) 0.08
Stick proteinuria, 10 mg/dL 1.04 (1.01–1.08) 0.008 1.12 (1.05–1.19) 0.001
LDL-C, 10 mg/dL N/A 1.51 (1.11–2.07) 0.01
DM med, Y versus N N/A 20.0 (1.94–205) 0.01
Alcohol, g/week N/A 0.95 (0.91–0.99) 0.03
Education, years 0.95 (0.92–1.00) 0.03 N/A
Systolic BP, 10 mmHg N/A 1.25 (1.00–1.57) 0.05
Creatinine, mg/dL 2.27 (0.45–11.4) 0.3 1.36 (0.03–65.3) 0.9

aCox proportional hazards were computed with backward elimination of variables (SUA, age and creatinine were forced into the model). BP, blood
pressure; DM med, diabetes medication status. As separate models were run for men and women, some variables entered only one of the gender models
and are depicted with ‘N/A’ in the opposite gender.
bThis P-value reflects the overall effect, with 3 degrees of freedom.
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(1.02–1.10) per 10 mg/dL, P ¼ 0.007]. Creatinine (P ¼ 0.2)
and sex (P ¼ 0.7) were not significantly predictive.

In this study, elevated SUA conferred increased risks of
ARF and CRF. We thus concluded with additional analyses
combining both forms of renal failure, as well as unspecified
renal failure (ICD 9: 586). A total of 145 individuals were
diagnosed with renal failure (the first diagnosis being CRF
in 97, ARF in 22 and unspecified RF in 26). KM curves
plotting the cumulative hazard of a first renal event were
similar for subjects in SUA quintiles 1–4 but were signifi-
cantly steeper in the upper quintile of SUA (Figure 4, P <
0.001). In sex-stratified Cox backward elimination multi-
variable models, HRs of SUA were 2.25 (1.50–3.38, P <
0.001) in men and 2.70 (1.10–6.31, P ¼ 0.03) in women, for
the highest versus lower four pooled quintiles. Other sig-
nificant renal hazard predictors were age, smoking, educa-
tion (inverse, men only), ln-glucose, cholesterol (men only),
serum globulins (in men and borderline in women) and stick
proteinuria. Alcohol consumption (inverse, P ¼ 0.05),
triceps skinfold thickness (P ¼ 0.09) and systolic BP
(P ¼ 0.06) showed borderline prediction in women.

Discussion

In this study, we extend previous findings regarding the
relationship of uric acid with renal failure and its determi-
nants. We address reverse causation and confounding.

The well-known difference in baseline SUA between
men and women (supplementary Figure 1) invited sex-
stratified analyses, as performed in some, but not all pre-
vious studied. Furthermore, the determinants of SUA levels
were in part gender specific. Unadjusted, age and LDL-C
were associated with SUA in women but not in men and
measures of adiposity were more important in women than
in men, while education, smoking, height and fasting glu-
cose were associated with SUA only in men (Table 1). Most
of these differences persisted upon multivariable adjust-
ment (Table 2). The inverse association of SUA and glu-
cose was prominent but was limited to subjects with high
fasting glucose levels (upper quintile; data not shown). We
suspect that this represents the hyperglycemic effect of glo-

merular hyperfiltration [35, 36], but hypouricemia linked to
overproduction of nitric oxide due to hyperglycemia-
induced oxidative stress has also been suggested [37]. Like-
wise, decreased SUA levels in smokers [38] has been linked
to antioxidant neutralization [39]. As expected, SUA levels
correlated with creatinine, suggesting similar renal han-
dling since this relationship withstood adjustment for age,
sex and BMI, although only 7.6% of the variance of SUA
in men and 10% in women could be attributed to creatinine.
Thus, either production of uric acid is in general a stronger
determinant of SUA levels or more likely elimination is not
in simple relation with kidney function [40].

The relationship of baseline SUA with all-cause mortal-
ity (36% increased risk associated with hyperuricemia, de-
fined in our study as SUA levels in the top 20%) is in line
with that of most large population studies (summarized by
Ioachimescu et al. [41]). Independence from baseline kid-
ney function was suggested by exclusion of participants
with eGFR < 60 mL/min/1.73 m2 and by including serum
creatinine in the models (with similar findings when eGFR
replaced creatinine). Of note, in the National Health and
Nutrition Examination Survey I Epidemiologic Follow-up
Study, mortality was related to baseline SUA only in
women [42]. In our study, similar gender differences ex-
isted but were abolished by multivariable adjustment and/
or introduction of SUA as dichotomized variable (data not
shown).

SUA consistently proved predictive of CRF, the major
outcome of interest in this study. The nature of the associ-
ation of SUA with CRF was not linear. A clear increase in
incident CRF was observed only with SUA in the upper
fifth. These levels were >6.5 mg/dL (mean � SE: 7.3 �
0.7) in men and >5.3 mg/dL (mean � SE: 6.1 � 0.6) in
women, close to the standard clinical definition of hyper-
uricemia (7 mg/dL in men and 6 mg/dL in women) [43]. In
both sexes, hyperuricemia predicted outcome independent
of serum creatinine in multivariable-adjusted analyses, and
did so in subjects with either normal or subnormal baseline
eGFR.

Among 13 prior observational studies on the association
of SUA with kidney outcome of which 12 were reviewed
by Feig [2], the largest was reported from Northern Cali-
fornia using the US Renal Data System registry [7]. The
adjusted HR for ESRD was 2.14 (1.65–2.77) for the highest
versus lowest quartile of SUA. In an Okinawa study pop-
ulation with normal baseline kidney function, the 2-year
risk of developing abnormal renal function was 2.9-fold
and 10-fold in men and women with SUA levels >8 mg/
dL, respectively [10]. Pooled Atherosclerosis Risk in Com-
munities and Cardiovascular Health Study (CHS) data re-
vealed that 1 mg/dL increase in SUA was associated with a
multivariable-adjusted OR of 1.11 (1.02–1.21) for incident
kidney disease [8]. In healthy Viennese, the OR for new
onset kidney disease was 1.30 (1.26–1.34) per 1 mg/dL
increase in SUA [9]. Very recently, a linear association
was reported in a cohort of Italian blood donors between
SUA and kidney function decline at 5 years [44]. Studies
reporting weak or absent independent associations include
a separate analysis of the CHS (in which SUA predicted
CKD progression but not incident renal disease [17];
Weiner et al. [8] suggested that the finding in this elderly

Fig. 4. KM curves plotting the cumulative hazards of any renal event
(ARF, CRF or unspecified) by SUA quintiles, log-rank P-value <0.001
(n ¼ 2449; 145 events).

2564 I.Z. Ben-Dov and J.D. Kark



population may be biased toward the null) and the small-
sized Mild-to-Moderate Kidney Disease study [18]. Dis-
similarities and inconsistencies between the studies
reinforce the need for additional study.

Hyperuricemia has seldom been addressed as a possible
predictor of (or contributor to) ARF [45, 46], aside from
acute urate nephropathy that is characteristic of tumor lysis.
Despite the small number of ARF incidence events, we
found that SUA strongly and independently predicted
ARF, second only to age, conferring a 74% increased risk
per 1 mg/dL. Ejaz et al. [46] proposed several mechanisms
by which uric acid may contribute to ARF, including renal
vasoconstriction (reduction of nitrous oxide and renin-
angiotensin system stimulation), alteration of autoregulation
(preglomerular arteriolar disease), antiangiogenic effects
and proinflammatory and prooxidative properties. Uricase
treatment provided subtle renal benefits in a hyperuricemia
rat model of cisplatin toxicity [47]. Combining ARF, CRF
and unspecified renal failure events, hyperuricemia (high-
est quintile) conferred HR of 2.2 in men and 2.7 in women,
independent of other potential predictors, including serum
creatinine.

A weakness of our study is the modest number of events,
which limited the possibilities for sensitivity/subgroup
analyses. In women, who contributed fewer events than
men, outcome-related estimates are less precise. For
ARF, the number of events did not allow stratification by
sex, which may be important in light of findings from the
data reduction procedures (see principal component analy-
sis in the supplement data). Another potential limitation
relates to the mode of ascertainment of outcome events.
For this study, relevant laboratory data (i.e. creatinine) from
follow-up visits of the Visit 2 adult cohort were not avail-
able. Instead, renal outcomes were derived from hospital
discharge and death notification diagnoses. Firstly, these
may not be complete due to admission to hospitals outside
Jerusalem (although 97% still had a recorded Jerusalem
address at the end of the mortality follow-up). Secondly,
while diagnosis of ARF typically leads to hospitalization,
and is thus a good candidate outcome for our design, CRF
is predominantly included in hospital summaries as a sec-
ondary diagnosis, related to medical history or current lab-
oratory findings. Conceivably, some subjects with CRF
were not identified because they were never hospitalized.
In those identified, the censoring time is inevitably over-
estimated, as CRF must have existed prior to the admission
date (a possible advantage of CRF diagnosis by hospital
records might be higher specificity [8]). Thirdly, hospital-
ized CRF patients differ from never-hospitalized individu-
als with regard to comorbidities and complications. This
may have led to overestimation of the link between SUA
and CRF caused by a detection bias. For example, hospital-
ization due to a manifestation of SUA-linked coronary dis-
ease will provide an opportunity to diagnose CRF and also
create an indirect association between SUA and CRF. Our
CHD-censored analysis addressed this potential source of
bias. Although the number of outcome events remaining in
these analyses was small, the point estimate was similar to
the uncensored estimate. Lastly, we cannot exclude the
possibility that subtle kidney dysfunction, not detectable
by creatinine-based baseline estimates in subjects with

eGFR �60 mL/min/1.73 m2, led to high SUA levels (i.e.
reverse causation).

In summary, our study adds a layer to the growing
body of observational data that argue for a causal relation-
ship in which hyperuricemia precedes and begets renal
dysfunction, ARF and CRF, independent of baseline kid-
ney function [2, 48]. The accumulating evidence supports
large-scale interventional trials to test the hypothesis that
lowering SUA can prevent or halt CKD [21–23].

Supplementary data

Supplementary data, Figures S1–S3 and, Tables S1–S3 are
available online at http://ndt.oxfordjournals.org.
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