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Abstract

High-throughput mRNA sequencing (RNA-Seq) holds the promise of simultaneous transcript 

discovery and abundance estimation1-3. We introduce an algorithm for transcript assembly 

coupled with a statistical model for RNA-Seq experiments that produces estimates of abundances. 

Our algorithms are implemented in an open source software program called Cufflinks. To test 

Cufflinks, we sequenced and analyzed more than 430 million paired 75bp RNA-Seq reads from a 

mouse myoblast cell line representing a differentiation time series. We detected 13,692 known 

transcripts and 3,724 previously unannotated ones, 62% of which are supported by independent 

expression data or by homologous genes in other species. Analysis of transcript expression over 

the time series revealed complete switches in the dominant transcription start site (TSS) or splice-

isoform in 330 genes, along with more subtle shifts in a further 1,304 genes. These dynamics 

suggest substantial regulatory flexibility and complexity in this well-studied model of muscle 

development.

Recently, high-throughput sequencing of mRNA (RNA-Seq) has revealed tissue-specific 

alternative splicing4, novel genes and transcripts5, and genomic structural variations6. 

Deeply sampled RNA-Seq permits measurement of differential gene expression with greater 

sensitivity than expression7 and tiling8 microarrays. However, the analysis of RNA-Seq data 

presents major challenges in transcript assembly and abundance estimation arising from the 
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ambiguous assignment of reads to isoforms8-10. In earlier RNA-Seq experiments conducted 

by some of us, we estimated the relative expression for each gene as the fraction of reads 

mapping to its exons after normalizing for gene length11. We did not attempt to allocate 

reads to specific alternate isoforms although we found ample evidence that multiple splice 

and promoter isoforms are often co-expressed in a given tissue 2. This raised biological 

questions about how the different forms are distributed across cell types and physiological 

states. In addition, our prior methods relied on annotated gene models that, even in mouse, 

are incomplete. Longer reads (here 75bp versus 25bp in our prior work) and pairs of reads 

from both ends of each RNA fragment can reduce uncertainty in assigning reads to 

alternative splice variants12. To produce useful transcript-level abundance estimates from 

paired-end RNA-Seq data, we developed a new algorithm that can identify complete novel 

transcripts and probabilistically assign reads to isoforms.

For our initial demonstration of Cufflinks, we performed a time course of paired-end 75bp 

RNA-Seq on a well-studied model of skeletal muscle development, the C2C12 mouse 

myoblast cell line13 (Methods). Regulated RNA expression of key transcription factors 

drives myogenesis and the execution of the differentiation process involves changes in 

expression of hundreds of genes14,15. Prior studies have not measured global transcript 

isoform expression, though there are well-documented expression changes at the whole gene 

level for a set of marker genes in this system. We aimed to establish the prevalence of 

differential promoter use and differential splicing, because such data could reveal much 

about the model's regulatory behavior. A gene with isoforms that code for the same protein 

may be subject to complex regulation in order to maintain a certain level of output in the 

face of changes in expression of its transcription factors. Alternatively, genes with isoforms 

that code for different proteins could be functionally specialized for different cell types or 

states. By analyzing changes in relative abundances of transcripts produced by the 

alternative splicing of a single primary transcript, we hoped to infer the impact of post-

transcriptional processing (e.g. splicing) on RNA output separately from rates of primary 

transcription. Such analysis could identify key genes in the system and suggest experiments 

to establish how they are regulated.

We first mapped sequenced fragments to the mouse genome using an improved version of 

TopHat16, which can align reads across splice junctions without relying on gene annotation 

(Supplementary Methods Section 2). Out of 215 million fragments, 171 million (79%) 

mapped to the genome, and 46 million spanned at least one putative splice junction 

(Supplementary Table 1). Of the splice junctions spanned by fragment alignments, 70% 

were present in transcripts annotated by UCSC, Ensembl, or Vega.

To recover the minimal set of transcripts supported by our fragment alignments, we 

designed a comparative transcriptome assembly algorithm. EST assemblers such as PASA 

introduced the idea of collapsing alignments to transcripts based on splicing compatibility17, 

and Dilworth's Theorem18 has been used to assemble a parsimonious set of haplotypes from 

virus population sequencing reads19. Cufflinks extends these ideas, reducing the transcript 

assembly problem to finding a maximum matching in a weighted4 bipartite graph that 

represents compatibilities17 among fragments (Fig. 1a,b,c and Supplementary Methods 

Section 4). Non-coding RNAs20 and microRNAs21 have been reported to regulate cell 
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differentiation and development, and coding genes are known to produce noncoding 

isoforms as a means of regulating protein levels through nonsense-mediated decay22. For 

these biologically motivated reasons, the assembler does not require that assembled 

transcripts contain an open reading frame. Since Cufflinks does not make use of existing 

gene annotations during assembly, we validated the transcripts by first comparing individual 

time point assemblies to existing annotations. We recovered a total of 13,692 known 

isoforms and 12,712 new isoforms of known genes. We estimate that 77% of the reads 

originated from previously known transcripts (Supplementary Table 2). Of the new 

isoforms, 7,395 (58%) contain novel splice junctions, with the remainder being novel 

combinations of known splicing outcomes. 11,712 (92%) have an open reading frame 

(ORF), 8,752 of which end at an annotated stop codon. Although we sequenced deeply by 

current standards, 73% of the moderately abundant (15-30 FPKM) transcripts detected at the 

60 hour time point with three lanes of GAII transcriptome sequencing were fully recovered 

with just a single lane. Because distinguishing a full-length transcript from a partially 

assembled fragment is difficult, we conservatively excluded novel isoforms that were unique 

to a single time point from further analyses. Out of the new isoforms, 3,724 were present in 

multiple time points, and 581 were present at all time points. 6,518 (51%) of the new 

isoforms and 2,316 (62%) of the multiple time point novel isoforms were tiled by high-

identity EST alignments or matched RefSeq isoforms from other organisms, and endpoint 

RT-PCR experiments confirmed new isoforms in genes of interest (Supplementary Table 3). 

We concluded that a majority of the unannotated transcripts we found are in the myogenic 

transcriptome, and that the mouse annotation remains incomplete.

For the purposes of estimating transcript abundances, we first selected a set of 11,079 genes 

containing 17,416 high-confidence isoforms (Supplementary File 1). Of these, 13,692 (79%) 

were known and the remaining 3,724 (21%) were novel isoforms of known genes present in 

multiple time points. We then developed a statistical model of RNA-Seq parameterized by 

the abundances of these transcripts (Fig. 1d,e,f, Supplementary Methods Section. 3). 

Cufflinks' model allows for the probabilistic deconvolution of RNA-Seq fragment densities 

to account for cases where genome alignments of fragments do not uniquely correspond to 

source transcripts. The model incorporates minimal assumptions23 about the sequencing 

experiment, and extends the unpaired read model of Jiang and Wong8 to the paired-end case. 

Abundances were reported in expected Fragments Per Kilobase of transcript per Million 

fragments mapped (FPKM). A fragment corresponds to a single cDNA molecule, which can 

be represented by a pair of reads from each end. Confidence intervals for estimates were 

obtained using a Bayesian inference method based on importance sampling from the 

posterior distribution. Abundances of spiked control sequences (R2=0.99) and benchmarks 

with simulated data (R2=0.96) revealed that Cufflinks' abundance estimates are highly 

accurate. The inclusion of novel isoforms of known genes during abundance estimation had 

a dramatic impact on the estimates of known isoforms in many genes (R2 only 0.90), 

highlighting the importance of coupling transcript discovery together with abundance 

estimation.

We identified 7,770 genes and 10,480 isoforms undergoing significant abundance changes 

between some successive pair of time points (FDR < 5%). Many genes display substantial 
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transcript-level dynamics that are not reflected in their overall expression patterns 

(Supplementary File 2). For example, Myc, a proto-oncogene which is known to be 

transcriptionally and post-transcriptionally regulated during myogenesis24, is down-

regulated overall during the time course, and while isoforms A and B follow this pattern, 

isoform C has a more complex expression pattern (Figure 2b). We noted that many genes 

displayed switching between major and minor transcripts, some containing isoforms with 

muscle-specific functions, such as tropomyosin I and II, which display a dramatic switch in 

isoform dominance upon differentiation (Supplementary Appendix B). However, many 

genes featured dynamics involving several isoforms with behavior too complex to be 

deemed “switching”. In light of these observations, we classified the patterns of expression 

dynamics for transcripts, assigning them one of four “trajectories” based on their expression 

curves being flat, increasing, decreasing or mixed (Methods). Based on trajectory 

classification, a total of 1,634 genes were found to have multiple isoforms with different 

trajectories in the time course, and we hypothesized that differential promoter preference 

and differential splicing were responsible for the divergent patterns.

To explore the impact of regulation on mRNA output and to check whether it could explain 

the variability of trajectories, we grouped transcripts by their start site (TSS) instead of just 

by gene. Changes in the relative abundances of mRNAs spliced from the same pre-mRNA 

transcript are by definition post-transcriptional, so this grouping effectively discriminated 

changes in mRNA output associated with differential transcription from changes associated 

with differential post-transcriptional processing. Of the 3,486 genes in our high confidence 

set with isoforms that shared a common TSS, 41% had TSS groups containing different 

isoform trajectories. Summing the expressions of isoforms sharing a TSS produces the 

trajectory for their primary transcript, and we identified 401 (48%) genes with multiple 

distinct primary transcript trajectories. However, trajectory classification was not precise 

enough to prioritize further investigation into individual genes and could not form the basis 

for statistical significance testing. We therefore formalized and quantified divergent 

expression patterns of isoforms within and between TSS groups with an information-

theoretic metric derived from the Jensen-Shannon divergence. With this metric, relative 

transcript abundances move in time along a logarithmic spiral in a real Hilbert space25, and 

the distance moved measures the extent of change in relative expression. Quantification of 

expression change in this way revealed significant (FDR < 5%) differential transcriptional 

regulation and splicing in 882 of 3,486 (25%) and 273 of 843 (32%) candidate genes 

respectively, with 70 genes displaying both types of differential regulation (Supplementary 

Table 4). Myc (Fig. 2a,b) undergoes a shift in transcriptional regulation of transcript 

abundances to post-transcriptional control of abundances (Fig. 2c) between 60 and 90 hours, 

as myocytes are beginning to fuse into myotubes.

Focusing on the genes with significant promoter and isoform changes, we noted that in 

many cases changes in relative abundance reflected switch-like events in which there was an 

inversion of the dominant primary transcript. For example, in FHL3, a transcriptional 

regulator recently reported to inhibit myogenesis26, Cufflinks assembled the known isoform 

and another with a novel start site. We validated the 5′ exon of this isoform along with other 

novel start sites and splicing events by form-specific RT-PCR (Fig. 3a, Supplementary 

Methods Section 4). Limiting analysis to known isoforms would have produced an incorrect 
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abundance estimate for the known isoform of FHL3. Moreover, the novel isoform is 

dominant prior to differentiation, so this potentially important differentiation-associated 

promoter switch would have been missed (Fig. 3b). In total, we tested and validated 153 of 

185 putative novel transcription start sites by comparison against TAF1 and RNA 

polymerase II ChIP-Seq peaks. We also observed switches in the major isoform of 

alternatively spliced genes. In total, 10% of multi-promoter genes featured a switch in major 

primary transcript and 7% of alternatively spliced primary transcripts switched major 

isoforms. We concluded that not only is the impact of promoter-switching on mRNA output 

significant, many genes are also exhibiting evidence of post-transcriptionally induced 

expression changes, supporting a role for dynamic splicing regulation in myogenesis. A key 

question is whether genes that display divergent expression patterns of isoforms are 

differentially regulated in a particular system because they have isoforms that are 

functionally specialized for that system. Of the genes undergoing transcriptional or post-

transcriptional isoform switches, 26%, respectively 24%, code for multiple distinct proteins 

according to annotation. Genes with novel isoforms were excluded from the coding 

sequence analysis, so this fraction likely underestimates the impact of differential regulation 

on coding potential. We thus speculate that differential RNA level isoform regulation, 

whether transcriptional, post-transcriptional, or mixed in underlying mechanism, suggests 

functional specialization of the isoforms in many genes.

Although Cufflinks was designed to investigate transcriptional and splicing regulation in this 

experiment, it is applicable to a broad range of RNA-Seq studies (Fig. 4). The open-source 

software runs on commonly available and inexpensive hardware, making it accessible to any 

researcher using RNA-Seq data. We are currently exploring the use of the Cufflinks 

assembler to annotate genomes of newly sequenced organisms, and to quantify the impact of 

various mechanisms of gene regulation on expression. When coupled with assays of 

upstream regulatory activity, such as chromatin state mapping or promoter occupancy, 

Cufflinks should help unveil the range of mechanisms governing RNA manufacture and 

processing.

Methods

RNA isolation

Mouse skeletal muscle C2C12 cells were initially plated on 15 cm plates in DMEM with 

20% fetal bovine serum. At confluence, the cells were switched to low serum medium to 

initiate myogenic differentiation. For extraction of total RNA, cells were first rinsed in PBS 

and then lysed in Trizol reagent (Invitrogen catalog # 15596-026) either during exponential 

growth in high serum medium, or at 60 hrs, 5 days and 7 days after medium shift. Residual 

contaminating genomic DNA was removed from the total RNA fraction using Turbo DNA-

free (Ambion catalog # AM1907M). mRNA was isolated from DNA-free total RNA using 

the Dynabeads mRNA Purification Kit (Invitrogen catalog # 610-06).

Fragmentation and reverse transcription

Preparation of cDNA followed the procedure described in Mortazavi et al.2, with minor 

modifications as described below. Prior to fragmentation, a 7 uL aliquot (∼ 500 pgs total 
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mass) containing known concentrations of 7 “spiked in” control transcripts from A. thaliana 

and the lambda phage genome were added to a 100 ng aliquot of mRNA from each time 

point. This mixture was then fragmented to an average length of 200 nts by metal ion/heat 

catalyzed hydrolysis. The hydrolysis was performed in a 25 uL volume at 94°C for 90 

seconds. The 5X hydrolyis buffer components are: 200 mM Tris acetate, pH 8.2, 500 mM 

potassium acetate and 150 mM magnesium acetate. After removal of hydrolysis ions by G50 

Sephadex filtration (USA Scientific catalog # 1415-1602), the fragmented mRNA was 

random primed with hexamers and reverse-transcribed using the Super Script II cDNA 

synthesis kit (Invitrogen catalog # 11917010). After second strand synthesis, the cDNA 

went through end-repair and ligation reactions according to the Illumina ChIP-Seq genomic 

DNA preparation kit protocol (Illumina catalog # IP102-1001), using the paired end adapters 

and amplification primers (Illumina Catalog # PE102-1004). Ligation of the adapters adds 

94 bases to the length of the cDNA molecules.

Size selection

The cDNA library was size-fractionated on a 2% TAE low melt agarose gel (Lonza catalog 

# 50080), with a 100 bp ladder (Roche catalog # 14703220) run in adjacent lanes. Prior to 

loading on the gel, the ligated cDNA library was taken over a G50 Sephadex column to 

remove excess salts that interfere with loading the sample in the wells. After post-staining 

the gel in ethidium bromide, a narrow slice (∼2mm) of the cDNA lane centered at the 300 

bp marker was cut. The slice was extracted using the QiaEx II kit (Qiagen catalog # 20021), 

and the extract was filtered over a Microcon YM-100 microconcentrator (Millipore catalog 

# 42409) to remove DNA fragments shorter than 100 bps. Filtration was performed by 

pipeting the extract into the upper chamber of a microconcentrator, and adding ultra pure 

water (Gibco catalog # 10977) to a volume of 500 uLs. The filter was spun at 500 X g until 

only 50 uLs remained in the upper chamber (about 20 minutes per spin) and then the upper 

chamber volume was replenished to 500 uLs. This procedure was repeated 6 times. The 

filtered sample was then recovered from the filter chamber according to the manufacturer's 

protocol. Fragment length distributions obtained after size selection were estimated from the 

spike-in sequences and are show in Supplementary Fig. 1.

Amplification

One-sixth of the filtered sample volume was used as template for 15 cycles of amplification 

using the paired-end primers and amplification reagents supplied with the Illumina ChIP-

Seq genomic DNA prep kit. The amplified product was then cleaned up over a Qiaquick 

PCR column (Qiagen catalog # 28104), and then the filtration procedure using the Microcon 

YM-100 microconcentrators described above was repeated, to remove both amplification 

primers and amplification products shorter than 100 bps. A final pass over a G50 Sephadex 

column was performed, and the library was quantified using the Qubit fluorometer and 

PicoGreen quantification reagents (Invitrogen catalog # Q32853). The library was then used 

to build clusters on the Illumina flow cell according to protocol.
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Mapping cDNA fragments to the genome

Fragments were mapped to build 37.1 of the mouse genome using TopHat version 1.0.13. 

We extended our previous algorithms to exploit the longer paired reads used in the study. 

TopHat version 1.0.7 and later splits a read 75bp or longer in three or more segments of 

approximately equal size (25bp), and maps them independently. Reads with segments that 

can be mapped to the genome only non-contiguously are marked as possible intron-spanning 

reads. These “contiguously unmappable” reads are used to build a set of possible introns in 

the transcriptome. TopHat accumulates an index of potential splice junctions by examining 

segment mapping for all contiguously unmappable reads. For each junction the program 

then concatenates kbp upstream of the donor to kbp downstream of the acceptor to form a 

synthetic spliced sequence around the junction. The segments of the contiguously 

unmappable reads are then aligned against these synthetic sequences with Bowtie. The 

resulting contiguous and spliced segment alignments for these reads are merged to form 

complete alignments to the genome, each spanning one or more splice junctions. Further 

details of how version 1.0.13 of TopHat differs from the published algorithm are provided in 

Section 2 of the Supplementary Methods.

Transcript abundance estimation

We estimated transcript abundances using a generative statistical model of RNA-Seq 

experiments. The model was parameterized by the relative abundances of the set of all 

transcripts in a sample. For computational convenience, abundances of non-overlapping 

transcripts in disjoint genomic loci were calculated independently. The parameters of the 

model were the non-negative abundances ρt. Denoting the fragment distribution by F, we 

defined the effective length of a transcript to be

where l(t) is the length of a transcript. The likelihood function for our model was then given 

by:

where the products were over all fragment alignments R and transcripts T in the 

transcriptome, and It(r) was the implied length of a fragment determined by a pair of reads 

assuming it originated from transcript t (Supplementary Fig. 2). This is the likelihood 

function for a linear model, and therefore, assuming the model was identifiable, the 

likelihood function had a unique maximum, which our implementation calculated via a 

numerical optimization procedure. Rather than reporting this estimate, we instead found the 

MAP estimate using a Bayesian inference procedure based on importance sampling from the 

posterior distribution. The proposal distribution we used was multivariate normal with mean 
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given by the maximum likelihood estimate discussed above, and variance-covariance matrix 

given by the inverse of the observed Fisher information matrix. The samples were also used 

to compute 95% confidence intervals for the maximum a posteriori (MAP) estimates. The 

MAP estimates and (and associated confidence intervals) were used for differential 

expression testing.

Abundances were reported in FPKM (expected fragments per kilobase of transcript per 

million fragments sequenced). This unit is a scalar multiple of the parameters ρt. FPKM is 

conceptually analogous to the reads per kilobase per million reads sequenced (RPKM) 

measure, but it explicitly accommodates sequencing data with one, two, or – if needed for 

future sequencing platforms – higher numbers of reads from single source molecules.

Abundance estimates were validated using spike-in sequences (Supplementary Fig. 3) and 

simulations (Supplementary Fig. 4). In order to confirm that all transcripts of a gene are 

necessary for accurate abundance estimation, novel transcripts were removed from the 

analysis (Supplementary Fig. 5) showing that resulting estimates may be biased.

Transcript assembly

Transcripts were assembled from the mapped fragments sorted by reference position. 

Fragments were first divided into non-overlapping loci, and each locus was assembled 

independently of the others using the Cufflinks assembler. The assembler was designed to 

find the minimal number of transcripts that “explain” the reads (i.e. every read should be 

contained in some transcript). First erroneous spliced alignments or reads from incompletely 

spliced RNAs were filtered out. The algorithm for assembly was based on a constructive 

proof of Dilworth's Theorem (see Supplementary Methods, Appendix A, Theorem 17). Each 

fragment alignment was assigned a node in an “overlap graph” G. A directed edge (x,y) was 

placed between nodes x and y when the alignment for x started at a lower coordinate than y, 

the alignments overlapped in the genome, and the fragments were “compatible” 

(Supplementary Fig. 6). Compatibility was defined for overlapping fragments for which 

every implied intron in one fragment matched an identical implied intron in the other 

fragment. The resulting directed, acyclic graph was transitively reduced to produce G, to 

avoid including redundant path information. Cufflinks then found a minimum path cover of 

G, meaning that every fragment node was contained in some path in the cover, and the cover 

contained as few paths as possible. Each path in the cover corresponded to a set of mutually 

compatible fragments overlapping each other on the left and right (except initial and 

terminal fragments on the path). Dilworth's theorem implied that this path cover could be 

constructed by first finding the largest set of fragments with the property that no two are 

compatible. This set was determined by finding a maximum matching in a bipartite graph 

constructed from the transitive closure of G. The bipartite “reachability graph” had a node in 

each partition for all fragments in G, and nodes were connected if there was a path between 

them in G. Given a maximum cardinality matching M, any fragment without an incident 

edge in M was a member of an antichain. Each member of this antichain could be extended 

to a path, and this extension was a minimum path cover of G.

The minimum cardinality chain decomposition computed using the approach above was not 

guaranteed to be unique. In order to “phase” distant exons, we leveraged the fact that 
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abundance inhomogeneities could link distant exons via their coverage. We therefore 

weighted the edges of the bipartite reachability graph based on the percent-spliced-in metric 

introduced by Wang et al.4 Cufflinks arbitrated between multiple parsimonious assemblies 

by choosing the minimum-cost maximum matching in the reachability graph. In our setting, 

the percent- spliced-in ψx for an alignment x was computed by counting the alignments 

overlapping x in the genome that were compatible with x and dividing by the total number of 

alignments that overlap x, and normalizing for the length of the x. The cost C(y, z) assigned 

to an edge between alignments y and z reflected the belief that they originated from different 

transcripts:

A useful feature of the Cufflinks assemblies is that they resulted in provably identifiable 

models. Complete details of the Cufflinks assembler are provided in the Supplementary 

Material (Section 4), along with proofs of several key theorems.

Structural comparison of time point assemblies

To validate Cufflinks transfrags (assembled transcript fragments) against annotated 

transcriptomes, and also to find transfrags common to multiple assemblies, we developed a 

tool called “Cuffcompare” that builds structural equivalence classes of transcripts. We ran 

Cuffcompare on the assembly from each time point against the combined annotated 

transcriptomes of UCSC, Ensembl, and Vega (Supplementary Fig. 7). Because of the 

stochastic nature of sequencing, assembly of the same transcript in two different samples 

may result in transfrags of slightly different lengths. A Cufflinks transfrag was considered a 

complete match when there was a transcript with an identical chain of introns in the 

combined annotation. When no complete match was found between a Cufflinks transfrag 

and the transcripts in the combined annotation, Cuffcompare determined and reported if 

another potentially significant relationship existed with any of the annotation transcripts that 

could be found in or around the same genomic locus.

Assembly and abundance robustness analysis

A total of 61,787,833 cDNA fragments were sequenced at 60 hours. We mapped and 

assembled subsets of these fragments (at fractions 1/64, 1/32, 1/16, 1/8, 1/4, and 1/2 of the 

total) using TopHat and Cufflinks.

Each assembly of parts of the data was compared to the assembly obtained with the full 

fragment set using Cuffcompare. We counted transcripts recovered in assemblies from 

partial data that structurally matched some transcripts in the assembly using all the reads. 

We assessed robustness of abundance estimation by counting the fraction of assembled 

transcripts that were assigned abundances within 15% of the FPKM value reported for the 

full fragment set transcript.
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Simulation-based validation

To assess the accuracy of Cufflinks' estimates, we simulated an RNA-Seq experiment using 

the FluxSimulator27, a freely available software package that models whole transcriptome 

sequencing experiments with the Illumina Genome Analyzer. The software works by first 

randomly assigning expression values to the transcripts provided by the user, constructing an 

amplified, size-selected library, and sequencing it. Mouse UCSC transcripts were supplied 

to the software, along with build 37.1 of the genome. FluxSimulator then randomly assigned 

expression levels to 18,935 UCSC transcripts. From these relative expression levels, the 

software constructed an in silico RNA-Seq sample, with each transcript assigned a number 

of library molecules according to its abundance. FluxSimulator produced 13,203,516 75bp 

paired-end RNA-Seq reads from 6,601,805 library fragments, which were mapped with 

TopHat to the mouse genome using identical parameters to those used to map the C2C12 

reads. A total of 6,176,961 fragments were mapped (93% of the library). These alignments 

were supplied along with the exact set of expressed transcripts to Cufflinks, to measure 

Cufflinks' abundance estimation accuracy when working with a “perfect” assembly.

Validation of novel transcription start sites

Transcripts with 5′ exons not in UCSC, Ensembl, or VEGA were selected for validation. We 

excluded transcripts with estimated abundances less than 5.0 FPKM at all time points, as 

well as transcripts with a 5′ exon within 200bp of an annotated exon. To validate our novel 

observed 5′ exons, we conducted ChIP-Seq experiments as previously described28 at -24 and 

60 hour time points using an antibody to the unphosphorylated CTD-repeat of RNA 

polymerase II (8WG16, Covance) as well as an antibody to TAF1 (SC-735, Santa Cruz) 

which marks promoters. For each candidate 5′end, we took the region +/- 200 bp and 

measured the normalized read density (RPKM) of each ChIP-Seq, requiring at least 1.5 

RPKM of ChIP-Seq signal for both polymerase and TAF1 at either time point.

Endpoint RT-PCR validation of novel isoforms

Six genes with multiple assembled splice isoforms were chosen as cases for endpoint PCR 

validation, including three with novel isoforms (Supplementary Figs. 8,9). Amplification 

primers that cross the Cufflinks predicted spliced-exon junctions were purchased from 

Integrated DNA Technologies, Inc. (San Diego, CA). 5 ugs of total RNA from each time 

point was primed with oligodT(20) (Invitrogen catalog# 18418020), and reverse-transcribed 

at 50C using SuperScript III reverse transcriptase, (Invitrogen catalog # 18080044) 

according to the manufacturer's protocol. One tenth of the cDNA reaction was used as 

template for 35 rounds of PCR amplification with each pair of junction-crossing primers. 

The PCR reactions were cleaned up using the Qiaquick PCR cleanup kit (Qiagen catalog# 

28104), and quantified using a Nanodrop spectrophotometer. An equal mass of DNA from 

each reaction (50 ngs) was then loaded in each lane of a 2.0% agarose gel, post-stained with 

Sybr Gold (Invitrogen Catalog # S11494) and visualized on a UV transilluminator.

Analysis of gene expression and regulation dynamics

In order to test for divergent expression dynamics among isoforms, we tested all high-

confidence isoforms for significant changes between each time point using the abundance 
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variance estimates produced by our statistical model (FDR < 5%). Trajectories were 

assigned to transcript expression curves based on significant (FDR<5%) increases or 

decreases in expression between consecutive time points. To be deemed significant, 

expression between consecutive time points also had to change by at least 25%. The possible 

trajectories were therefore reduced to 81 combinatorial possibilities (increasing, decreasing 

or flat between any of the three pairs of consecutive time points). Trajectories were then 

classified into 4 groups: increasing (3 consecutive increases), decreasing (3 consecutive 

decreases), flat (no changes) and mixed (presence of both increases and decreases in 

expression along the time course). To test for significant changes in relative abundance a 

group of transcripts, we calculated the square root of the Jensen-Shannon divergence on the 

relative abundances in each of two time points. The variance of this metric under the null 

hypothesis of no change in relative abundance can be estimated using the delta method from 

the variance-covariance matrix on abundances estimates. Using the estimated variance of the 

JS metric, we applied a one-sided t-test for significant changes in relative abundance of 

transcripts grouped by TSS and also primary transcripts grouped by gene. Type I errors were 

controlled with the Benjamini-Hochberg correction for multiple testing of differential 

expression, splicing, and promoter preference throughout the analysis. Supplementary Figs. 

10,11 show examples of genes with significant changes in relative transcript abundances 

during the time-course.

Software availability

TopHat is freely available as source code at http://tophat.cbcb.umd.edu. It takes a reference 

genome (as a Bowtie29 index) and RNA-Seq reads as FASTA or FASTQ and produces 

alignments in SAM30 format. TopHat is distributed under the Artistic License and runs on 

Linux and Mac OS X.

The Cufflinks assembler and abundance estimation algorithms are open-source C++ 

programs and are freely available in both source and binary at http://

cufflinks.cbcb.umd.edu/. The package includes the assembler along with utilities to 

structurally compare Cufflinks output between samples (Cuffcompare) and to perform 

differential expression testing (Cuffdiff). Cufflinks is distributed under the Boost License 

and runs on Linux and Mac OS X. The source code for Cufflinks version 0.8.0 is provided 

in Supplementary File 3.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of Cufflinks. The algorithm takes as input cDNA fragment sequences that have 

been (a) aligned to the genome by software capable of producing spliced alignments, such as 

TopHat. With paired-end RNA-Seq, Cufflinks treats each pair of fragment reads as a single 

alignment. The algorithm assembles overlapping ‘bundles’ of fragment alignments (b-c) 

separately, which reduces running time and memory use because each bundle typically 

contains the fragments from no more than a few genes. Cufflinks then estimates the 

abundances of the assembled transcripts (d-e). (b) The first step in fragment assembly is to 
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identify pairs of ‘incompatible’ fragments that must have originated from distinct spliced 

mRNA isoforms. Fragments are connected in an ‘overlap graph’ when they are compatible 

and their alignments overlap in the genome. Each fragment has one node in the graph, and 

an edge, directed from left to right along the genome, is placed between each pair of 

compatible fragments. In this example, the yellow, blue, and red fragments must have 

originated from separate isoforms, but any other fragment could have come from the same 

transcript as one of these three. (c) Assembling isoforms from the overlap graph. Paths 

through the graph correspond to sets of mutually compatible fragments that could be merged 

into complete isoforms. The overlap graph here can be minimally ‘covered’ by three paths, 

each representing a different isoform. Dilworth's Theorem states that the number of 

mutually incompatible reads is the same as the minimum number of transcripts needed to 

“explain” all the fragments. Cufflinks implements a proof of Dilworth's Theorem that 

produces a minimal set of paths that cover all the fragments in the overlap graph by finding 

the largest set of reads with the property that no two could have originated from the same 

isoform. (d) Estimating transcript abundance. Fragments are matched (denoted here using 

color) to the transcripts from which they could have originated. The violet fragment could 

have originated from the blue or red isoform. Gray fragments could have come from any of 

the three shown. Cufflinks estimates transcript abundances using a statistical model in which 

the probability of observing each fragment is a linear function of the abundances of the 

transcripts from which it could have originated. Because only the ends of each fragment are 

sequenced, the length of each may be unknown. Assigning a fragment to different isoforms 

often implies a different length for it. Cufflinks can incorporate the distribution of fragment 

lengths to help assign fragments to isoforms. For example, the violet fragment would be 

much longer, and very improbable according to Cufflinks' model, if it were to come from 

the red isoform instead of the blue isoform. (e) The program then numerically maximizes a 

function that assigns a likelihood to all possible sets of relative abundances of the yellow, 

red and blue isoforms (γ1,γ2,γ3), producing the abundances that best explain the observed 

fragments, shown as a pie chart.
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Figure 2. 
Distinction of transcriptional and post-transcriptional regulatory effects on overall transcript 

output. (a) When abundances of isoforms A, B, and C of Myc are grouped by TSS, changes 

in the relative abundances of the TSS groups indicate transcriptional regulation. Post-

transcriptional effects are seen in changes in levels of isoforms of a single TSS group. (b) 

Isoforms of Myc have distinct expression dynamics. (c) Myc isoforms are downregulated as 

the time course proceeds. The width of the colored band is the measure of change in relative 

transcript abundance and the color is the log ratio of transcriptional and post-transcriptional 

contributions to change in relative abundances (plot construction detailed in Supplementary 

Method Section 5.3). Changes in relative abundances of Myc isoforms suggest that 

transcriptional effects immediately following differentiation at 0 hours give way to post-

transcriptional effects later in the time course, as isoform A is eliminated.

Trapnell et al. Page 17

Nat Biotechnol. Author manuscript; available in PMC 2011 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Excluding isoforms discovered by Cufflinks from the transcript abundance estimation 

impacts the abundance estimates of known isoforms, in some cases by orders of magnitude. 

Four-and-a-half-LIM domains 3 (Fhl3) inhibits myogenesis by binding MyoD and 

attenuating its transcriptional activity. (a) The C2C12 transcriptome contains a novel 

isoform that is dominant during proliferation. The new TSS for Fhl3 is supported by 

proximal TAF1 and RNA polymerase II ChIP-Seq peaks. (b) The known isoform (solid 

line) is preferred at time points following differentiation.
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Figure 4. 
Robustness of assembly and abundance estimation as a function of expression level and 

depth of sequencing. Subsets of the full 60-hour read set were mapped and assembled with 

TopHat and Cufflinks and the resulting assemblies were compared for structural and 

abundance agreement with the full 60 hour assembly. Colored lines show the results 

obtained at different depths of sequencing in the full assembly; e.g., the light blue line tracks 

the performance for transcripts with FPKM greater than 60. (a) The fraction of transcript 

fragments fully recovered increases with additional sequencing data, though nearly 75% of 
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moderately expressed (≥15 FPKM) are recovered with less than 40 million 75bp paired-end 

reads (20 million fragments), a fraction of the data generated by a single run of the 

sequencer used in this experiment. (b) Abundance estimates are similarly robust. At 40 

million reads, transcripts determined to be moderately expressed using all 60 hour reads 

were estimated at within 15% of their final FPKM values.
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