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Abstract
Articular cartilage repair and regeneration continue to be largely intractable due to the poor
regenerative properties of this tissue. The field of articular cartilage tissue engineering, which aims
to repair, regenerate, and/or improve injured or diseased articular cartilage functionality, has
evoked intense interest and holds great potential for improving articular cartilage therapy. This
review provides an overall description of the current state and progress in articular cartilage repair
and regeneration. Traditional therapies and related problems are introduced. More importantly, a
variety of promising cell sources, biocompatible tissue engineered scaffolds, scaffoldless
techniques, growth factors, and mechanical stimuli used in current articular cartilage tissue
engineering are reviewed. Finally, the technical and regulatory challenges of articular cartilage
tissue engineering and possible future directions are discussed.

Keywords
Articular cartilage; tissue engineering; regeneration; repair; scaffolds; cells; stem cells; self-
assembly; bioactive factors; regulatory affairs

I. INTRODUCTION
Joint and articular cartilage injuries are frequent occurrences; over 6 million people visit
hospitals in the U.S. each year for various knee, wrist, and ankle problems.1 Progressive
wear and tear on articular cartilage can lead to a progressive cartilage tissue loss, further
exposing the bony ends, leaving them without protection. This finally deteriorates into the
most common arthritis—osteoarthritis (or degenerative joint disease).2 It has been reported
that osteoarthritis affects 33.6% (12.4 million) of adults age 65 and older in the U.S.3,4 The
American Academy of Orthopaedic Surgeons (AAOS) reports that osteoarthritis is a primary
diagnosis accounting for 67% of short-stay and nonfatal hospitalizations in 2004.5
Considering the increasing population, especially in the elderly with longer life
expectancies, occurrences of injuries and osteoarthritis will undoubtedly increase, not only
in the U.S., but world-wide.

Unlike other self-repairing tissues, such as bone, cartilage has a low regenerative capacity.
Consequently, once injured, cartilage is much more difficult to self-heal. Three types of
cartilage exist in the human body: hyaline cartilage (e.g., within diarthrodial joints),
fibrocartilage (e.g., knee meniscus and TMJ disc), and elastic cartilage (e.g., ear).2,6
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Specifically, articular cartilage covering bone surfaces is a soft and specialized hyaline
cartilage that exhibits superior lubrication, wear, and low friction properties; it also reduces
stresses in the joint.7,8 Articular cartilage is composed of a small percentage of
chondrocytes, but a dense extracellular matrix (ECM) prevents chondrocyte mobility. In
addition, articular cartilage lacks vascular, neural, and lymphatic networks, as well as
various local progenitor cells. It has also been described as having high levels of protease
inhibitors, which may inhibit efficient tissue repair.9,10 For these reasons, currently it is
challenging to restore full tissue function in damaged or diseased articular cartilage.

Although traditional methods like autografts and allografts have been clinically employed to
treat articular cartilage lesions, there still exist many shortcomings associated with these
therapies. Autografts, which require the transplantation of a small portion of low-weight-
bearing cartilage from the patient into defect sites, have disadvantages such as donor site
morbidity and limited cartilage tissue availability.11–13 Allografts, cartilage pieces obtained
from tissue banks, may potentially induce immune responses.13 For patients with severe
joint damage and osteoarthritis, total joint replacement surgery is needed. However, many
complications such as inflammation, infection, and implant loosening frequently occur after
joint replacement and may lead to implant failure, necessitating future revision surgery.14,15

In fact, nearly 36,000 revisions for 328,000 hip replacements (11%) and 33,000 revisions for
418,000 knee replacements (8%) were performed in the U.S. in 2003 due to failed hip and
knee replacements.5 Therefore, it is desirable to develop an efficient and simple method to
successfully repair and regenerate articular cartilage tissues.

As a rapidly expanding field, tissue engineering may provide alternative solutions for
articular cartilage repair and regeneration through developing biomimetic tissue substitutes.
This review describes the anatomy of articular cartilage, traditional strategies and related
problems, the current progress of articular cartilage tissue engineering, and future directions
of articular cartilage repair and regeneration. In this context, the term “repair” is used to
denote the restoration of normal function of cartilage regardless of the composition of new
tissue that fills the defect sites. On the other hand, “regeneration” is defined as a process,
which not only restores the normal functions of injured articular cartilage, but also results in
the formation of new tissue that is indistinguishable from the native cartilage.

II. ARTICULAR CARTILAGE COMPOSITION AND STRUCTURE
II.A. Composition of Articular Cartilage

Articular cartilage is a thin connective tissue covering the surfaces in diarthrodial joints. For
example, the thickness of articular cartilage in a normal human adult knee is roughly 1.5–3
mm.16,17 It is composed of two phases – solid and liquid. Table 1 summarizes its
components, contents in two phases, and their corresponding functions. Generally, 60–80%
of total wet weight of articular cartilage is fluid (e.g., interstitial water and electrolytes),
which contributes to many important physical and physiological characteristics of articular
cartilage.18,19 The remaining 20–40% of the tissue is mainly solid ECM and chondrocytes.20

Chondrocytes, the only cell type existing in articular cartilage, account for less than 5–10%
of the total tissue volume.21 Although chondrocytes do not directly contribute to the
mechanical properties of cartilage,20 they can sense and respond to various mechanical
stimuli within their individual microenvironments.22 In addition, chondrocytes from
different zones of articular cartilage may respond to forces differently22 and exhibit diverse
morphologies (see section II.B for details). Mature chondrocytes are completely
encapsulated in the dense cartilage ECM and are not able to migrate or proliferate in a
significant manner, unlike cells in bone,11,19 thus potentially limiting the regenerative
capacities of cartilage after injuries.
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Articular cartilage ECM, which includes various organic constituents like collagen,
proteoglycans, and other noncollagenous proteins, accounts for most of the dry weight of the
tissue (Table 1) since chondrocytes occupy but a small fraction of the tissue. As will be
described below, the ECM and its interplay with the interstitial fluid play a critical role in
cartilage biomechanics. A variety of collagens such as collagen II, VI, IX, X, and XI are the
main components of articular cartilage ECM and contribute to the tensile properties of
articular cartilage.7 With maturation, the proportion of collagen II to other collagens
increases from 75% in fetal cartilage to over 90% in adult cartilage.7,23 Conversely, the
proportion of collagen XI to all collagens decreases from 10% of fetal cartilage to 3% of
adult cartilage.23 The organization of collagens also changes from random distribution and
uniform size in immature articular cartilage into oriented distribution and non-uniform size
in mature tissues.7

Moreover, collagens IX and XI can crosslink with collagen II to form larger fibrils. These
fibrils then interconnect into a mesh network, which is the main contributor to the tensile
properties of cartilage.7 Small amounts of collagen VI in the pericellular matrix surrounding
chondrocytes24 have been shown to play a role in mechanotransduction via cell-collagen
interactions.25 Moreover, by balancing proteoglycan swelling, the collagen fibers affect the
degree of tissue hydration, thereby contributing to tissue compressive properties.26–28

A special class of glycoproteins, proteoglycans, is another main component in hyaline
cartilage. Its biomechanical role is to provide compressive properties to the tissue. The
majority of proteoglycans found in cartilage are associated in aggregates (aggrecan).
Aggrecan is a large proteoglycan with long and unbranched glycosaminoglycan (GAG)
chains that spread out like tubular brushes. These brush-like structures are chondroitin
sulfate and keratin sulfate molecules attached to a high molecular weight protein core.29 The
aggregating structure is stabilized by aggrecan molecules being connected to hyaluronic acid
GAG chains via link protein. Aggrecan is highly negatively charged due to abundant
carboxyl (COO−) and sulfate (SO3

−) groups on chondroitin sulfate or hyaluronic acid GAG
chains.30 Since the collagen fibers prevent aggrecan from escaping from cartilage, the fixed
negative charges associated with aggrecan attract freely mobile cations in the fluid phase
into the tissue. The resultant high density of ions within the tissue creates what is termed the
“Donnan osmotic pressure.” This osmotic pressure causes cartilage to swell and also
manages water amounts within the tissue.8,31 Aside from aggrecan, smaller proteoglycans
like biglycan, fibromodulin and decorin also occur in minute amounts; many of these have
been shown to contribute to matrix organization.11,32

II.B. Structure of Articular Cartilage
Articular cartilage is divided into four different zones, each with varying matrix
composition, morphology, cellular, mechanical, and metabolic properties.22 These are
termed the superficial, middle (or transitional), deep (or radial), and calcified zones. Figure 1
illustrates the non-homogeneous distribution of cells and ECM in zones of mature articular
cartilage. Each zone plays a different role in contributing to the functional properties of
articular cartilage.

Starting from the articulating surface, the superficial zone only accounts for 10–20% of the
total articular cartilage thickness, but contains the highest density of collagen within the
tissue (Table 2). When compared to other zones, the collagen fibers here are the thinnest and
most densely packed to form an oriented lamina splendens that covers the joint. Similarly, a
relatively small number of fibroblast-like chondrocytes with few organelles33 are flattened
in the superficial zone and are oriented parallel to the surface and the direction of shear
stress. The ECM in this zone has fewer proteoglycans compared to other zones. It is
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believed that the composition and organization of this zone contributes to tensile strength,
resists shear during articulation, and adjusts fluid permeability.29

The middle zone is a transitional zone between the superficial and deep zones. This zone has
the highest proteoglycan content in the tissue. When examined from the superficial to the
deep zone, the collagen and water contents gradually decrease, and the collagen fiber size
increases in this zone (Table 2). Unlike the superficial zone, chondrocytes in the middle
zone exhibit a rounded morphology and have synthetic organelles. In addition, the collagen
fibrils transition from a tangential orientation in the superficial zone to a random orientation
here, to finally reach a perpendicular orientation in the deep zone (Figure 1).

The collagen fibrils in the deep zone are the largest in diameter. They are organized in radial
directions (perpendicular to the articulating surface) and are inserted across the tidemark (a
visible basophilic line that separates deep and calcified zones). The functional role of these
collagens is to strengthen the bond between cartilage and bone.19,32 The chondrocytes are
packed in columns parallel to the organized collagen fibers (Figure 1). Moreover, cells in the
deep zone show 10-fold higher synthetic activities although they only have twice as much
surface area and volume than cells in the superficial zone.34 It was observed that cells from
the deep zone attach and spread faster on tissue culture plastic (TCP) and synthesize more
keratin sulfate than cells from the upper zones.35

The transitional zone from articular cartilage to subchondral bone is the calcified zone,
which contains few inert chondrocytes embedded in a calcified ECM. It is the only zone
having collagen type X, which helps cartilage mineralization and provides structure
integrity.36

From a matrix point of view, articular cartilage is classified into three regions including
territorial, interterritorial, and pericellular matrices based on their distances from the cells.
The thin pericellular matrix is composed of proteoglycans, collagen type VI, and other non-
collagenous proteins. This matrix closely surrounds individual or a column of chondrocytes
and protects the cells from various mechanical loads.36,37 The interterritorial matrix is
farther from the cells and is made of organized collagen fibrils that are the largest in
diameter when compared across the three types of matrices.7,37 This matrix accounts for a
large percent of the total matrix volume.36 Finally, the territorial matrix is the farthest matrix
from cells, and it consists of collagen fibrils that may be less organized than the other two
matrices.7

II.C. Mechanical Properties of Articular Cartilage
Due to the small volume of articular cartilage, the amount of shock and energy that can be
absorbed by cartilage during normal activities are far less than those taken up by
surrounding muscles, tendons, ligaments and the underlying bones.29 However, the fiber-
reinforced, permeable articular cartilage plays a unique role in repeatedly dissipating
compressive loads, redistributing loading forces, and lowering joint frictions.38 According to
the biphasic cartilage model,39,40 cartilage is composed of liquid and solid phases, and the
interactions between these two phases characterize the viscoelastic properties of this tissue.
The incompressible interstitial fluid phase of cartilage encounters friction as it flows out of
the porous collagen-proteoglycan solid matrix. This frictional drag counterbalances the
compressive forces applied onto the tissue. Fluid exudation from the tissue also serves to
lubricate the joint during loading.41

Aside from structure, cartilage composition is also important in determining the tissue’s
biomechanical properties (e.g., tensile, compressive, and shear). As mentioned above,
collagen fibrils are the main contributors to the tensile properties of articular cartilage. Since
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different zones have different collagen diameters and organization, the tensile properties
vary significantly among zones. For example, Akizuki and associates42 measured tensile
moduli of human knee joint cartilages and found that the equilibrium tensile modulus value
was higher in the superficial zone (10.1 MPa) as compared to the other zones (e.g., 5.4 MPa
in the middle zone). This can be attributed to fact that collagen is the most abundant and
organized in the superficial zone.20 Within the same study, it was also shown that high
weight-bearing areas have lower tensile modulus values than low weight-bearing areas.

Compressive properties of articular cartilage are important because the cartilage tissue is
frequently compressively loaded during physiological use. Through confined compression,
unconfined compression, or indentation methods,20 the compressive properties of articular
cartilage have been evaluated. Generally, compressive moduli change with the depth and
location.43,44 It was reported that the compressive modulus increased nearly 27-fold from
the superficial zone (0.079±0.039 MPa) to the deepest zone (2.10±2.69 MPa) in bovine
articular cartilage.44 In addition, human articular cartilage’s aggregate equilibrium
compressive moduli, a measure of the solid ECM stiffness, may range from 0.1 to 2 MPa
depending on location.17,21,45–47

III. TRADITIONAL STRATEGIES AND PROBLEMS FOR ARTICULAR
CARTILAGE REPAIR
III.A. Articular Cartilage Injuries

Articular cartilage defects, which are caused by traumatic destruction or degenerative joint
diseases, are primarily divided into two categories: partial-thickness and full-thickness
cartilage defects.48,49 The partial-thickness defects only damage the zonal articular cartilage
but do not penetrate into the underlying subchondral bone, rendering the defect site
inaccessible to blood cells, bone cells, and progenitor cells in bone morrow.49 Thus, the
defect site lacks fibrin clots and other self-healing responses. Although some metabolic and
enzymatic activities occur and chondrocytes may begin to proliferate and synthesize ECM
right after the creation of a partial-thickness defect, there are still not enough new
chondrocytes to migrate into the injured sites to effectively repair the injury. Furthermore,
the reparative activities of chondrocytes typically cease before the cartilage defect is healed,
thus resulting in a lasting defect that reduces tissue function and can serve as a starting point
for tissue degeneration.29,49

Full-thickness (or osteochondral) defects penetrate the entire thickness of articular cartilage,
beyond the calcified zone, and into the subchondral bone. Unlike partial-thickness defects,
full-thickness defects are accessible to mesenchymal progenitor cells, macrophages, and
blood cells,49 all of which are involved in a spontaneous immune response and a healing
process after injuries as described elsewhere.48–50 Briefly, immediately following injury, the
defect void is filled with a fibrin clot and an inflammatory response is activated. Next,
mesenchymal stem cells from bone marrow migrate into the defect, gradually replacing the
fibrin clot and completely filling the defect after one week.49 Many of these mesenchymal
stem cells can differentiate into chondrocytes later, which secrete a proteoglycan-rich ECM
and repair the damaged cartilage tissue. However, it has consistently been observed that
fibrous, not hyaline, tissues with weaker mechanical properties and higher permeability are
formed in defect sites.51,52 Consequently, the spontaneous repair process in full-thickness
defects is only transient and imperfect, and tissue degeneration eventually occurs several
months later and proceeds continuously.49,50,53 After this point, the cartilage tissue often
becomes hypertrophic and is finally replaced by the progressive deposition of subchondral
bone.48,49 At this point, while chondrogenesis may still occur sporadically, complete
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resurfacing is rarely observed, leading to bone to bone articulation, inflammation, significant
pain, and disability.

III.B. Traditional Therapies and Problems for Articular Cartilage Repair
1. Microfracture—Microfracture surgery is one quick and common method to treat
smaller articular cartilage defects. Inspired by the spontaneous repair process of full-
thickness cartilage defects, this method aims to create microfractures in the underlying
subchondral bone via drilling, shaving, or abrasion.48 Microfracture causes the subchondral
bone to release bone marrow progenitor cells and, as expected, repair occurs similar to full-
thickness defects. This treatment is effective especially for small articular cartilage defects
(e.g., < 2 cm2), and is attractive due to its relatively minimally invasive nature, short surgery
and recovery time, and low morbidity.12 However, it should be noted that articular cartilage
repair results using microfracture has high inter-patient variability. Younger patients, earlier
treatment of defects,12 or smaller lesions may yield better cartilage repair, particularly since
mesenchymal stem cells, the cell type responsible for repair, are more abundant and active
in younger patients.54,55 In some cases, little or no hyaline cartilage is regenerated, and the
generated hyaline cartilage may turn over into weaker fibrocartilage, thus resulting in high
failure rates and limiting microfracture surgery effectiveness.11,48,56

2. Autologous Chondrocyte Implantation—As the first generation of cell
transplantation techniques for cartilage repair,57,58 autologous chondrocyte implantation
(ACI, also known as the Carticel® procedure by Genzyme corporation, MA) has been
accepted and used widely. It has been recommended for patients who have cartilage lesions
between 1 cm2 and 12 cm2, or have had previously failed microfracture surgeries.59 There
are two surgeries involved in this technique. In the first surgery, a small piece of healthy
cartilage is harvested from the low weight-bearing area of a patient’s knee. Then,
chondrocytes are retrieved from the cartilage tissue and further expanded in vitro for 3–5
weeks on monolayer to obtain sufficient numbers for reimplantation (approximately 12 ×
106 cells).60 A second surgery then occurs to inject the cells into the trimmed and prepped
lesion, and a periosteal patch from the patient’s shin bone is sutured as a cover to secure
chondrocytes within the injured site.60 Although many satisfactory results have been
reported, this technique still has some limitations and disadvantages. For example, the
invasive ACI procedure has a long recovery time and requires multiple surgeries to harvest
healthy cartilage, to harvest a periosteal patch, and to re-implant the healthy cells.61 In
addition, the possibility of periosteal hypertrophy, dedifferentiation of patients’
chondrocytes during in vitro culture, and decreased human chondrocyte number or
cellularity with aging may impair or even result in the failure of repair using ACI.12,62,63

3. Autografts and Allografts—Autografts and allografts are two other popular therapies
for repairing small cartilage lesions. For an osteochondral autograft, healthy, cylindrical
cartilage tissue plugs are harvested from a patient’s low weight-bearing area and are then
implanted into defect sites to restore function.12 Encouraging clinical results and excellent
tissue integration associated with autografts have been reported.64 However, there are some
limitations related to autografts including insufficient donor tissues (both in quantity and
quality), donor site morbidity, surface mismatch of the graft and implant sites, graft
instability, and long-term survival of the implant at its new high weight-bearing location
considering that it was harvested from a low weight-bearing region.12,48 Using the
autologous mosaicplasty technique that implants many small osteochondral autografts into
one defect site, a smoother contour can be created for small or medium defects.64,65 Smaller
donor tissues have three significant advantages. First, smaller donor site defects are
produced, and donor site morbidity is reduced. Second, more sites can serve to provide
donor tissue as compared to only sites that are as large or larger than the defect to be filled.
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Third, the smaller plugs address the surface congruity and contour problems seen with only
one large plug. The technique has shown promising results for treating 1–4 cm2 articular
cartilage lesions at short, middle, and long term follow-ups.66,67

Osteochondral allografts adopt cartilage tissues from tissue banks, thus avoiding donor site
morbidity, and alleviate the insufficient donor tissue supply. Allografts also circumvent the
multiple step surgeries required in autograft procedures. However, it has similar limitations
to autografts, such as contour matching and load-bearing capacity (which is typically
reduced during processing). The use of allografts may also induce immune reactions such as
inflammation or rejection. Finally, allografts contain dead cells that cannot maintain the
articular surface. Whereas cartilage has been shown to secrete proteins to lower the friction
of its articulating surface, the dead cells of allografts do not replace this function.

4. Total and Partial Joint Replacements—For severe joint injuries, disease, or
advanced osteoarthritis, articular cartilage cannot be recovered by any of the above
discussed treatments. In these cases, total or partial joint replacements are performed to help
patients restore normal function. In joint replacement therapies, the damaged osteochondral
tissue is partially or totally removed and resurfaced. An artificial implant composed of a
metal shell (such as titanium, stainless steel, or alloys), a polymer piece (such as
polyethylene in order to glide smoothly), and a metal stem is implanted to replace the
damaged joint.14 As the average age of the population increases, there is a potentially large
market for total knee and hip replacements. However, due to frequently reported
complications including infection, implant loosening, osteolysis, implant wear and tear, and
relatively short life spans of current implants, revision surgeries are often a necessity which
burdens the patient with increased pain and health insurance costs.14

IV. PROMISE OF TISSUE ENGINEERING FOR ARTICULAR CARTILAGE
REPAIR AND REGENERATION
IV.A. The Concept of Tissue Engineering

Tissue engineering (sometimes called regenerative medicine, though the latter refers
primarily to the use of stem cells) is an emerging interdisciplinary research field initially
defined in the early 1990s.68–70 It uses principles and methods in engineering, material
science, biology, and chemistry to develop biological substitutes that restore, maintain, or
improve functionality of damaged tissues and organs. In the ensuing years, this discipline
quickly developed to encompass a variety of cell types (e.g., stem cell, chondrocytes,
osteoblasts, endothelial cells, fibroblasts, and smooth muscle cells), scaffolds (e.g.,
biodegradable, natural or synthetic materials, polymers, and nanocomposites), bioactive
factors (e.g., various growth factors and cytokines), and physical stimuli (mechanical,
electrical, etc.) to form biomimetic tissues (Figure 2). In the following sections, cells,
scaffolds, bioactive factors, and mechanical stimuli for articular cartilage tissue engineering
will be discussed in detail.

IV.B. Cell Sources for Articular Cartilage Repair and Regeneration
1. Chondrocytes—Chondrocytes are the sole cell type in articular cartilage and are 10–13
µm in diameter.71 Clinically, these have served as the only cell source for articular cartilage
repair. Autologous chondrocytes have been extensively used in articular cartilage repair and
regeneration; however, there are some limitations. For example, autologous chondrocyte
availability is limited and cannot satisfy the high cellular demand of articular cartilage
repair. Although in vitro cell expansion methods, such as those used in ACI, have been
adopted to increase cell numbers for transplantation, chondrocytes may dedifferentiate
during in vitro culture.72
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Other readily available alternative chondrocyte sources (such as allogeneic or xenogeneic
chondrocytes) have also been widely studied. However, these chondrocytes can potentially
induce immune responses and transmit diseases. Thus, the field of allogeneic and
xenogeneic chondrocyte sourcing requires further investigations to mitigate such concerns.
Another area of investigation is the use of separately seeded zonal chondrocytes toward
regenerating biomimetic functional cartilage tissue,29,73 since chondrocytes from each of the
four zones have been shown to exhibit different properties.74,75 To more efficiently form
different sizes of cartilage tissues with suitable mechanical properties, the various cell
sources described above have also been grown in numerous biocompatible scaffolds and
treated with growth factors for articular cartilage tissue engineering applications, which will
be discussed later.

2. Stem Cells—Due to the many aforementioned limitations related to chondrocyte
sources, there is much effort to explore better alternative cell sources. Desirable
characteristics for such sources include accessibility, availability, and chondrogenic
capacity. Consequently, stem cells such as adult mesenchymal stem cells (MSCs) and
embryonic stem cells (ESCs) have emerged as promising cell sources for articular cartilage
tissue engineering.

Functionally, the broad definition of stem cells originates from two unique properties: the
self-renewal capabilities that can generate numerous descendant cells identical to the mother
cells while maintaining an undifferentiated state throughout, and the potent ability to
differentiate into multiple types of specialized cells. Figure 3 illustrates the hierarchical
structure of stem cells. According to the number of cell types that can be differentiated from
them, human stem cells can be classified into four types: totipotent, pluripotent, multipotent,
and unipotent stem cells.76 Morula cells are totipotent stem cells, which have the ability to
differentiate into any tissue in human body, while ESCs, usually harvested from the inner
cell mass in a 5–6 day old blastocyst from artificial in vitro fertilization, are pluripotent stem
cells. Pluripotent stem cells are almost totipotent; however, they cannot differentiate into
placental cells. Multipotent stem cells including adult stem cells derived from many parts of
the body have the ability to differentiate into multiple closely-related cell types only. For
example, MSCs, as shown in Figure 3, are able to differentiate into cartilage, bone, muscle,
etc., while hematopoietic stem cells can create all blood cell types such as red and white
blood cells, but not cartilage, bone, and muscle. Lastly, unipotent cells are the non-strictly
defined stem cells that only differentiate into one cell type but have self-renewal
capabilities.

a. Mesenchymal Stem Cells: Autologous MSCs from a variety of human tissues including
bone marrow, fat, synovium, periosteum, skeletal muscle, skin, etc., have been widely
investigated in regenerative medicine for small and large cartilage defect repair.77–79 These
autologous MSCs have a high enough proliferative capacity to expand to enough cell
numbers without losing their MSC phenotype, and they do not induce immune responses as
allografts and xenografts do. In addition, they can be easily isolated from many
mesenchymal tissues (especially the minimally invasive procedure to isolate MSCs from
adipose and skin tissues), which may decrease donor site morbidity and patient pain
compared to autograft and ACI therapies.71

Many methods have been studied to induce chondrogenesis of MSCs (typically marked by
GAG and collagen type II production).71 Various transforming growth factors (e.g., TGF-β1
and TGF-β3), insulin-like growth factors (e.g., IGF-I), dexamethasone, bone morphogenetic
proteins (e.g., BMP-2 or BMP-6), and fibroblast factors are supplemented in media,77,80–85

and mechanical stimuli such as hydrostatic pressure86 and cyclic compression87 have all
been reported to improve the chondrogenic differentiation of MSCs.
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Chondrogenic potentials of MSCs from different tissues have also been investigated and
compared.88–91 Specifically, MSCs from bone marrow (Figure 4) are the most popular
considering they are easily harvested (via the iliac crest) and have good chondrogenic
potential. Many in vitro and in vivo studies have revealed promising results of marrow-
derived MSCs combined with various biomaterials or growth factors for repairing cartilage
defects.92–96 For example, Koga and associates88 embedded MSCs isolated from bone
marrow, synovium, adipose tissue, and muscle of adult rabbits in collagen gels and then
implanted them into full-thickness cartilage defects in rabbits. Their results demonstrated
that MSCs from bone marrow and synovium had greater chondrogenic capability in vivo
than those from other mesenchymal tissues. Another study showed that synovium-derived
MSCs proliferated faster than bone marrow-derived MSCs when cultured in autologous
human serum, thus serving as another promising cell source for cartilage regeneration.97

Although in vitro studies have shown that adipose-derived stem cells (ASCs) may have
lower chondrogenic potentials than bone marrow-derived MSCs,89–91 ASCs still attract
increasing attention for cartilage tissue engineering because of their abundance and ease of
procurement (e.g., high yields of ASCs obtained from waste adipose tissues via
liposuction).98 In addition, the minimally invasive acquisition of ASCs from subcutaneous
adipose tissue circumvents donor site morbidity and pain. Chondrogenic growth of human
ASCs has also been reported to occur on different biomaterial scaffolds including agarose,
alginate, and biologically active gelatin to create tissue engineered cartilage constructs.99

It is important to note that most of the current MSC transplantation studies are still in
preclinical trials. Only a few results are available from clinical trials of MSC-based articular
cartilage repair on patients.100–103 Wakitani and colleagues102 evaluated clinical results of
autologous bone marrow-derived MSC transplantation into the knees of three patients. The
bone marrow-derived MSCs were harvested from the iliac crests of the patients, expanded in
vitro, embedded into collagen gels, and then reimplanted into 9 full-thickness articular
cartilage defects of the patients’ patello-femoral joints. The patients’ clinical symptoms were
improved after 6-month transplantation and maintained satisfactory performance during 17–
27 months. In addition, as a leading stem cell company, Osiris Therapeutics Inc. has
developed a manufacturing process to expand human bone marrow-derived MSCs for
clinical use. Their stem products, such as Chondrogen, have shown significant therapeutic
potential for preventing osteoarthritis during Phase I or II clinical trials.

Based on the results from preclinical and clinical studies, MSC transplantation exhibits
tremendous promise for promoting articular cartilage repair and regeneration. Thus, more
work is needed to optimize MSC culture conditions, understand underlying chondrogenic
differentiation mechanisms, regenerate biomimetic MSC-based cartilages, and explore
clinical therapies for successful human cartilage regeneration.

b. Embryonic Stem Cells: When compared with multipotent adult MSCs, ESCs have
features of unlimited proliferation (seemingly immortal) and almost universal differentiation
potential into any somatic cell type.71 These features make them promising for tissue
regeneration demanding large numbers of cells (e.g., traumatic cartilage defects). To date, in
vitro and in vivo studies have provided some evidence of direct chondrogenic differentiation
of ESCs via growth factors such as BMP-2, BMP-4, TGF-β1104 and TGF-β3,105 or via co-
culture with primary chondrocytes,106 embryonic limb bud cells107. For human ESCs, Koay
and associates108 developed a novel scaffold-free, modular approach that first differentiates
human ESCs in serum-free, chemically-defined conditions and then assemble them into
neocartilage constructs for cartilage tissue engineering applications (Figure 5). This
scaffold-free, modular approach has also been applied to fibrocartilage tissue
engineering.109 In addition, Hwang and colleagues derived MSCs from human ESCs and
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demonstrated in vivo commitment and cartilaginous tissue formation from the MSCs by
using chondrocyte-secreted morphogenetic factors.110 ESCs have also been seeded into
various biocompatible scaffolds such as polycaprolactone,111 3D fiber-deposited
scaffolds,112 and poly(ethylene glycol)-based (PEG) hydrogels113 to induce their
chondrogenic differentiation. One of the current challenges in scaffold development is in
fabricating materials that can improve differentiation efficiency via controlled release of
growth factors, linked peptides, and other biochemical methods. As ESCs may also respond
to mechanical forces by shifting their lineage, scaffold load-shielding effects should be
considered, but are yet to be investigated, in the area of scaffold development for stem cell
use. In short, there is a plethora of biochemical methods being pursued in conjunction with
scaffold effects on differentiation, but few investigators are examining the effects of scaffold
mechanics on differentiation.

Since ESC research is still in its infancy stages, there are many unexplored areas and ethical
concerns related to their clinical applications. For example, we still do not know the best
method to selectively differentiate ESCs into desirable cell lineages at injury sites to
regenerate desirable tissues. It is possible that multiple tissues are formed out of ESC-
differentiation, resulting in an undesirable teratoma.114 Due to the allogeneic nature of
ESCs, potential immunogenicity problems also exist for clinical transplants. Additionally,
since a layer of feeder cells like mouse embryonic fibroblasts are normally adopted to
culture ESCs, animal pathogens may potentially be introduced.115 It is, however, possible to
use human fetal and adult fibroblasts as safer alternative feeders to support human ESC
growth.116 More importantly, there are concerns about the sources of blastocysts, the safety
of ESCs, and so on115 for ESC research and clinical applications. Obviously, these issues
require more investigations to fully explore the medical potential of this flexible cell source.

3. Other Cell Sources—An equally exciting potential cell source is the dermis of the
skin.117–122 Considering its relative abundance and accessibility, the dermis is considered
one of the best autologous source organs to isolate stem/progenitor cells for future
therapeutic applications. This is true not only in the replacement of skin,123–125 but also as
an alternative cell source for several other organs. Human dermal fibroblasts cultured with
demineralized bone powder have been shown to acquire a chondroblastic
phenotype.117–121,126–132 Chondro-induction has also been shown for the human foreskin
fibroblast cell line Hs27 and the adult rabbit dermal fibroblast cell line RAB-9 when
cultured on aggrecan-coated surfaces.133 Several types of fibroblasts exist in the
dermis,134–136 and not all dermis subpopulations may possess latent chondro-induction
potentials. From these, a dermis-isolated, aggrecan-sensitive subpopulation has also been
shown to yield engineered constructs containing cartilage specific matrix.122

IV.C. Tissue Engineering Scaffolds for Articular Cartilage Repair and Regeneration
For tissue engineering applications, biomaterial scaffolds play a critical role in providing a
3D environment to support cell growth, matrix deposition, and tissue regeneration. An ideal
tissue engineering scaffold should satisfy several essential criteria: it should (1) be
biocompatible to minimize local tissue response but maximize cell growth and tissue
integration; (2) be biodegradable with a favorable resorption rate, which can provide
structural support for the initial cell growth and then gradually degrade after new tissue
formation; (3) have suitable porosity and interconnectivity to allow cell migration and
efficient exchange of nutrients and wastes; (4) possess appropriate mechanical properties to
support tissue growth under native mechanical loads.71,137 To date, a range of biomaterial
scaffolds including natural polymers extracted from living organisms and synthetic materials
obtained from various chemical processes have been widely investigated for tissue repair
and regeneration.71 The most extensively used natural or synthetic scaffolds and the
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emerging nanostructured scaffolds in cartilage tissue engineering will be described in detail
next.

1. Natural Scaffolds—Natural biomaterials are the popular scaffolds for cartilage repair
and regeneration due to their good biocompatibility for cell attachment and differentiation.
Specifically, natural scaffolds used in articular cartilage tissue engineering include
carbohydrate-based hyaluronic acid, agarose, alginate, and chitosan, and protein-based
collagen or fibrin glue.137

As a non-sulfated glycosaminoglycan derived from ECMs of many tissues, hyaluronic acid
(or hyaluronan) has been used to support chondrocyte growth or stimulate MSC
chondrogenesis.138,139 For example, a hyaluronan-based scaffold (Hyaff-11) seeded with
autologous chondrocytes has shown to be effective in regenerating cartilage tissues in
vivo.138 In addition, a minimally invasive surgical technique using hyaluronan as an
injectable material has shown promise in healing cartilage defects.71

Agarose and alginate are polysaccharides derived from seaweed and used as biocompatible
3D scaffolds to encapsulate cells for cartilage tissue engineering. Agarose gel is obtained
through changing temperatures, and a cross-linked alginate matrix can be formed via ionic
bonding in the presence of Ca2+. Both of these scaffolds have exhibited excellent
cytocompatibility for cell growth140–142: however, the poor degradation properties and the
difficulty to modify the scaffolds’ life71 may hinder their clinical applications for tissue
regeneration.

Collagens are main protein components in natural cartilage, bone, and other connective
tissue ECMs. They contribute to cell adhesion, proliferation and differentiation,143 and, thus
serve as one of the most common scaffold materials for cartilage tissue engineering. Many
studies have demonstrated that a combination of collagens (such as type I and type II
collagens) with chondrocytes and stem cells facilitated cartilage tissue growth in vitro and in
vivo.51,144–146 Specifically, a clinical therapy named the Matrix-induced Autologous
Chondrocyte Implant (MACI® implant, Genzyme) has been developed. In this method,
chondrocytes are expanded in a collagen membrane and then reimplanted into articular
cartilage defects without suturing. Moreover, other natural scaffold materials like the
biodegradable fibrin, chitosan or composites thereof are widely studied and have shown
potential to enhance cartilage tissue regeneration.71

2. Synthetic Scaffolds—Due to the ease of fabrication and chemical modification, good
biocompatibility, high versatility, suitable mechanical properties, and controllable
biodegradability, polymers currently elicit increasing interest from scientists who are
investigating their potential as synthetic cartilage tissue engineering scaffolds.

The most popular synthetic polymers for cartilage tissue engineering scaffolds are poly
lactic acid (PLA, which is present in both L and D forms), poly-glycolic acid (PGA), and
their copolymer poly-lactic-co-glycolic acid (PLGA). These FDA approved biodegradable
polymers can be fabricated into 3D matrices via particulate leaching, textile technologies, or
three-dimensional (3D) printing techniques, etc.14,147 The fabricated polymer scaffolds have
a controllable porosity and a suitable surface structure for cell attachment, proliferation, and
differentiation. In particular, it has been shown that PGA improved proteoglycan synthesis
when compared to collagen scaffolds.148 In addition, increasing chondrogenesis was
observed in a chondrocyte/PGA/bioreactor system over 40 days of cultivation.149 PLLA has
a slower degradation rate than PGA, and, thus is suitable for those applications requiring a
longer duration of matrix structural supports. As a derivative copolymer of PLA and PGA,
PLGA has high biocompatibility, an ability to degrade into harmless monomer units, a
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useful range of mechanical properties, and controllable degradation time depending on the
copolymer ratio.14 Studies demonstrated that nonwoven PLGA scaffolds are suitable for the
chondrogenesis of human adipose-derived stem cells.150 Additionally, PLGA scaffolds have
been loaded with various chondrogenic factors like TGF-β1 and dexamethasone to improve
chondrogenic differentiations of bone marrow-derived MSCs.151 Other polymers including
poly(ε-caprolactone) (PCL) and PEG have also received substantial attention for articular
cartilage tissue engineering.71

However, some disadvantages related to using synthetic polymers in cartilage engineering
applications are still present. For example, although synthetic polymers have flexibility in
design, they may lack the optimal cytocompatibility properties that natural materials possess
for cell growth and may elicit a host response caused by the release of toxic byproducts
during degradation. Therefore, there is a desire to design composite scaffolds combining the
respective advantages of synthetic and natural materials to improve cartilage tissue repair
and regeneration. For instance, fibrin glue, alginate, and hyaluronan have been used to
modify various PLGA, PGA, PCL scaffolds,152–155 and the results revealed that these
composite scaffolds can stimulate the chondrogenesis of different chondrocytes or
progenitor cells, thus warranting further investigations.

3. Nanostructured Tissue Engineering Scaffolds—Conventional natural or synthetic
scaffolds still require improvement to yield better biocompatibility and functional properties
for cartilage regeneration. Since natural cartilage tissues are nanometers in dimension and
chondrocytes directly interact with (and create) nanostructured ECMs, the biomimetic
features and excellent physiochemical properties of nanomaterials play a key role in
stimulating chondrocyte growth as well as guiding cartilage tissue regeneration.156 Although
it is a field in its infancy, many investigators are currently seeking to fabricate biomimetic
nanostructured tissue engineering scaffolds encapsulating cells (such as progenitor cells and
chondrocytes) for repairing and regenerating cartilage tissues.

Nanofibrous or nanoporous polymer matrices can be fabricated via electrospinning,
particulate leaching, chemical etching, 3D printing techniques, and phase separation. For
cartilage applications, there has been great interest in incorporating chondrocytes or stem
cells into the 3D polymer or composite nanofibrous scaffolds through
electrospinning.111,157,158 For example, in vitro chondrogenesis of bone marrow-derived
MSCs was evaluated in an electrospun PCL nanofibrous scaffold and compared with an
established cell pellet culture.157 The electrospun nanofibrous PCL scaffold effectively
induced chondrogenic differentiation of MSCs and finally formed a tissue engineered
construct with plentiful cartilaginous matrices. In addition, the easily fabricated and
modified nanofibers possessed much better mechanical properties compared to the cell
pellets, and thus the electrospun nanofibrous PCL scaffold presented itself as an ideal
candidate for stem cell transplantation during clinical cartilage repair. Because the small
pore sizes of nanofibers may inhibit cell infiltration, uneven cell distributions may occur
throughout the electrospun nanofibrous scaffolds. Therefore, a recent study improved
chondrocyte seeding technology and created a more homogeneous cell–PLLA nanofiber
composite.158 It was observed that chondrocytes were uniformly present throughout the
entire cell-nanofiber composite, and the scaffold developed into a smooth, cartilage-like
tissue with more total collagen and improved mechanical properties in a dynamic bioreactor
relative to one obtained in static culture. Moreover, another study observed significantly
increased chondrocyte functions (adhesion, proliferation and matrix synthesis) on 3D
nanostructured PLGA created via chemical etching.159

Besides research effort of pursuing optimum cytocompatibility properties of the above
mentioned biomaterial scaffolds, mechanical characteristics of biomaterials are another
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critical consideration for designing cartilage tissue engineering scaffolds. Due to the
different tissue loading environments, different natural or synthetic scaffolds should be
chosen to provide appropriate mechanical properties for cell adhesion and tissue
regeneration. For example, metal, ceramics or ceramic reinforced polymer composites with
robust mechanical properties have been used for bone repair, which requires more rigorous
mechanical loading.156 Since articular cartilage is under continuously excessive loading
environments, the mechanical mismatch between implanted scaffolds and surrounding
tissues may frequently deteriorate cartilage regeneration at defect sites and then lead to
implant failure. Thus, biomaterial scaffolds with both superior biocompatibility and suitable
mechanical properties similar to cartilage are desirable for articular cartilage tissue
engineering.

IV.D. Scaffold-free Cartilage Tissue Constructs
1. Scaffold-free Methods—Aside from using scaffolds, several scaffold-free techniques
for generating neocartilage have been investigated including organ, pellet, aggregate
cultures, and, more recently, a self-assembling process.160–167 These techniques do not
employ exogenous materials at all and were initially used to study chondrocyte phenotype,
metabolism, development, and disease. Within these methods, the state of the art in
chondrocyte culture by the late ‘80s was severely limited by diffusion, and, with few
exceptions,165 resulted in tissues less than 500 µm in size.165,168–170 Replacement cartilage
would need to be of native articular cartilage thickness (1–3mm or thicker),17,171 and, as
described below, recent techniques are capable of delivering constructs of similar size.

In the past few years, resurgence in scaffold-free culture has benefited from the knowledge
developed using scaffold systems (e.g., growth factor and mechanical stimuli) to culminate
in the production of thicker, more clinically relevant sized cartilage constructs that
demonstrate functional characteristics.172–174 As an example, chondrocytes were seeded on
(instead of into) a non-adhesive hydrogel mold in a process termed self-assembly.167 As the
system minimized its free energy, the cells associate and coalesce to form neocartilage free
of exogenous biomaterials and unaffected by adhesion to any surface other than each other
(Figure 6).175 Several other forms of scaffoldless culture techniques exist. For example, high
density culture of chondrocytes on tissue culture plastic, culture insert membranes, and
silicon molds have been used to create constructs ranging from 0.5 mm to 2.9 mm in
thickness.176 Some scaffoldless constructs have also been examined in vivo.177,178

For scaffold-free constructs formed on an adhesive surface, the aggregate modulus values of
engineered constructs have been reported at 41.6 kPa at 8 wks.176 In contrast, when
chondrocytes self-assemble over an agarose gel (of 98% water), cell-biomaterial interactions
are greatly reduced; engineered cartilage formed thusly has been shown to reach aggregate
modulus values of over 150 kPa.179 The differences in the properties observed may be due
to whether seeding occurs onto an adhesive or non-adhesive biomaterial. Surfaces where
proteins may adsorb to allow for cell attachment or spreading can alter cartilage tissue
formation, which has been shown to be mediated by cadherin175,180,181 and integrin
binding.182–184 These recent observations serve to explain why, in a comparison between
chondrocytes self-assembled over an adhesive TCP surface versus over agarose, the
spreading and attachment onto TCP resulted in constructs with a corrugated appearance and
significantly lower mechanical properties.167

Other scaffold-free methods include aggregate165,168–170 and pellet culture.185–189 In these
cases, mechanical forces are generally present during construct formation. Aggregates are
often formed by orbital shaker culture, and pellet cultures are formed under centrifugal
forces. Shear forces present in orbital shaker culture can be detrimental to chondrocyte
culture.190,191 Driven to quickly form constructs via centrifugation, pellet culture not only
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applies forces during construct formation, but may also alter cell-cell interactions that
characterize other methods of tissue formation more akin to cartilage
development.175,180–184,192 Rather than using centrifugation or rotational culture to form
aggregates, chondrocyte self-assembly allows for minimization of free energy by only
allowing cell-cell interactions, e.g., N-cadherin binding; in morphogenesis this is described
as the Differential Adhesion Hypothesis.192–194

2. Advantages of Scaffold-free Culture—Scaffold-free cultures offer certain
advantages over scaffold use. Morphological change, brought on by spreading, has been
strongly linked to chondrocyte dedifferentiation via cytoskeletal changes.195,196 In
retrospect, it is now known that diminished levels of collagen II and superficial zone protein
(SZP) expression seen immediately upon monolayer culture due to chondrocyte
dedifferentiation are unrecoverable.72 Similar to monolayer culture, cells seeded onto
polymer biomaterials spread,197–200 and thus may dedifferentiate.

Though chondrocytes are allowed to retain their spherical morphology, gel encapsulation
can limit cell-cell communication188,201 to inhibit ECM synthesis. This is in contrast to the
high cadherin and integrin activity, shown to be active during cartilage development,
observed during scaffold-free culture.175,182

Additionally, as chondrocytes are highly mechanosensitive, scaffold materials may result in
stress shielding that limits beneficial mechanotransduction.202 Finally, as with any
implanted biomaterial, there are concerns regarding potential toxicity of degradation
byproducts and immune responses.203

IV.E. Growth Factors and Mechanical Stimuli for Improving Cartilage Tissue Repair and
Regeneration

1. Growth Factors—The hormonal and growth factor regulation of chondrocyte
aggregation,204 adhesion,205 growth,206 and metabolism207 have been investigated since the
late ‘60s and ‘70s. Cartilage tissue engineering using growth factors coincided with the
development of scaffold materials in the ‘90s. From this point, the literature can be
separated into two categories: techniques to incorporate growth factors into biomaterials and
the effects of growth factors on chondrocytes. For the former, specific techniques on
retaining activity, controlled release, and other parameters particular to different
biomaterials constitute a major area in materials research. As the technologies applicable to
different scaffold systems are unique in themselves, it is impossible to present a
comprehensive overview (the reader is instead directed to a recently published textbook that
elaborates in depth on this subject).71 Nonetheless, the development of techniques that
combine growth factors with scaffolds remains an active and populous area of research. For
the latter, research in cartilage tissue engineering has reached a consensus via progress from
the ‘90s and beyond that growth factors are beneficial in improving functional properties.
IGF-I, basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), and platelet-
derived growth factor (PDGF) and the TGF-β superfamily are some of the most actively
researched growth factors today.

Various growth factors that have shown to have effects on proliferation, differentiation, and
synthesis include IGF-I, bFGF, HGF, and PDGF.208 IGF-I has been shown to mitigate
injurious response of impacted cartilage by limiting the loss of matrix components.209 This
may be due to IGF-I reducing apoptosis caused by a disruption of the collagen network.210

Applied to chondrocytes, IGF-I has been shown to increase collagen and proteoglycan
deposition,211 though their effects are different across cartilage zones.212 Research on HGF
has been limited as it is now considered to be ineffective toward chondrogenesis.213 PDGF
enhances chondrocyte migration214 and increases SZP expression.215 However, it also
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changes chondrocyte morphology to a spindle-like shape,216 which, as shown in other
studies, detracts from the chondrogenic phenotype.196 Because of this, PDGF has been used
in fibrocartilage tissue engineering, though its effects have been limited.217 Aside from these
growth factors, the most dramatic results have been seen with members of the TGF-β
superfamily. Involved in repair and inflammation,218 the TGF-β superfamily contains
several isoforms, such as TGF-β1 and TGF-β3. These have been shown to promote collagen
formation and increase construct wet weight.219,220 Scaffold-free constructs stimulated
using TGF-β1 showed approximately 1-fold increases in both aggregate modulus and tensile
modulus over controls.221 Both TGF-β1 and TGF-β3 have been employed in combination
with mechanical stimuli, to be discussed later.86,173,222,223 BMPs are also part of the TGF-β
superfamily. These growth factors influence endochondral bone formation, proliferation,
matrix synthesis, and defect healing in vivo.218,224 Increased matrix (e.g., proteoglycans and
collagen) synthesis, and cell proliferation have been demonstrated using BMP-2,221,224–226

BMP-4,224,227 BMP-7,224,228 BMP-12, and BMP-13.225 Of these, BMP-1 and -2 have been
shown to be particularly beneficial over other growth factors (e.g., other BMPs225 or TGF-
β1229). Like TGF-β, BMPs have also been investigated in conjunction with mechanical
forces.173,230

2. Mechanical Stimuli—In vivo, the synovial fluid reduces friction of articulating
surfaces, and tissue shear is minimal. Shear has nonetheless been examined as a tool to
induce matrix production. Oftentimes, the application of shear requires that a small amount
of compressive strain be applied to maintain contact between the two surfaces.231–233

Dynamic shear of 1–3% at 0.01–1 Hz has been shown to increase ECM synthesis.233 Within
this range (dynamic shear of 2% at 1 Hz) it has been shown that a 6-fold higher equilibrium
modulus in constructs compared to unstimulated controls can be achieved with just a short
(6 minutes every other day) application of this stimulus.234 Shear has also been shown to
increase cartilage oligomeric matrix protein expression.235 Shear, applied onto chondrocyte
monolayers using a cone viscometer at 1.6 Pa, resulted in a 10- to 20-fold increase in
prostaglandin E2 release and 9-fold increase in tissue inhibitor of metalloproteinase
mRNA,236 and shear also increases interleukin-6 and nitric oxide levels.191,237 These
proinflammatory mediators and signs that are observed in osteoarthritis have indicated to
some researchers that a shear force may not be the best stimulus for cartilage tissue
engineering. Since a method to increase diffusion is via fluid flow, efforts have thus been
directed toward reducing shear in systems that attempt to employ fluid flow in increasing
nutrient and waste transfer.238–242 Rotating wall bioreactors are capable of applying shear
on the order of ~0.15 Pa,238 as compared to the 1.6 Pa shown to increase proinflammatory
mediators.236 Rotating wall bioreactors have been shown to increase GAG content within
engineered constructs beyond physiological levels, while maintaining collagen levels.240

Direct compression, as applied to tissue engineered constructs, has been mostly dynamic, as
native cartilage has been shown to respond negatively to static loading.142,243–247 As
previously described, compressive loading has been suspected to increase solute transport248

in addition to mechanically stimulating the cells.245 For this reason, it may not be the static
force that is causing decreased synthesis, but the lack of diffusion under static compression
conditions. It has also been shown that static compression causes a decrease in the pH of the
local environment,245 which may also inhibit synthesis. As with other forms of mechanical
stimuli, the main dynamic compression parameters that have been optimized over the past
decade are frequency, the duty cycle, the strain or force used, and the duration of the
experiment. Over the past 15 years, frequencies ranging from 0.0001 to 3 Hz, strains from
0.1 to 25%, loads from 0.1 to 24 MPa, and durations lasting hours to weeks have been
examined at various duty cycles and waveforms.87,222,243,246,249–257 Many of these
experiments were performed on mature native tissue, though the developing environment in
engineered constructs can be vastly different. For instance, it is well known that the
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pericellular environment serves a unique role in mechanotransduction,25,37 and this
environment is rapidly changing during culture. The effects of ECM or scaffold stress-
shielding thus become an apparent obstacle in comparing direct compression studies for
tissue engineering. Nonetheless, certain results have been shown across several systems.
Dynamic compression at 1 Hz or lower and 10% or lower have typically shown beneficial
effects in agarose,243,250 poly(L-lactide-co-epsilon-caprolactone),256 and other scaffolds.257

Particularly, since the local microenvironment is so important in mechanotransduction, it
would be interesting to examine the effects of nanomaterials on mechanotransduction. This
has been investigated, preliminarily, with shear systems (though the effects of shear itself
were not quantified in conjunction with the nanomaterial).158 However, the combination of
nanomaterials with direct compression remains an open field with respect to direct
compression.

As described previously, fluid flow out of cartilage is inhibited by the dense matrix and
Donnan osmotic pressure. During compression, this inhibition results in elevated hydrostatic
pressures. Physiological levels of hydrostatic pressure have been determined to be 7–10
MPa,258,259 and tissue engineering studies have employed magnitudes within this range as
well as hypo- and hyper-physiological forces. Constant hydrostatic pressure applied for long
periods has been shown to have a negative impact on matrix secretions and cell
viability.260–262 Above the physiological range, static pressure at 30 MPa in chondrocyte
monolayers inhibited proteoglycan synthesis.261 Low frequencies of hydrostatic pressure
(akin to a static application) have also been shown to similarly deter synthesis in isolated
cells and explants in physiological and hypo-physiological magnitudes, but the same study
also showed that the ECM may alter cellular perception of hydrostatic pressure.260 From
these studies, it was initially presumed that static hydrostatic pressure would not be useful in
engineering cartilage, but recent studies have proven otherwise. Application of hydrostatic
pressure has thus far resulted in tissue engineered constructs with aggregate modulus values
approaching 300 kPa,172 and its combination with growth factors has shown both additive
and synergistic effects in improving construct properties.173 In this case, the developing,
scaffoldless construct contained rounded cells (contrasted with monolayers261) and
immature ECM that is distinctly different from the previously examined cartilage
explants.260 Aside from static pressure, a window of pressures and frequencies between 0.1
and 15 MPa and 0.05 and 1 Hz have been shown to yield positive results toward cartilage
tissue engineering.263–269

In addition, mechanotransduction has been well examined as a tool in tissue engineering, as
metabolic responses to mechanical forces can precipitate via several coupling mechanisms
(Figure 7). For instance, membrane deformation due to direct compression or shear can
result in the activation of mechanosensitive ion channels.270,271 Hydrostatic pressure-
sensitive changes to intracellular ion concentration have also been observed in
chondrocytes.272 These changes in intracellular ionic concentrations can activate or suppress
various genetic responses. Mechanical forces can also be coupled via integrins and the
cytoskeleton. Tethering to the mechanical environment, activated integrins initiate the
formation of a focal adhesion complex (FAC). The FAC is formed by recruiting not only
other integrins, but also adaptor proteins and several kinases, and these proceed to activate
or suppress genes and transcription factors.273

3. Combinations of Stimuli—BMP-2 application with IGF-I have been shown to
increase the functional properties of engineered constructs.174 In this case, continuous
versus intermittent growth factor treatments were compared, along with the combination of
two and three growth factors (BMP-2, TGF-β1, and IGF-1). Neither synergistic nor additive
response was observed, and the authors pointed to prior results showing that BMP-2 signal
transduction can be inhibited by TGF-β1.274 TGF-β alone is known to cross-talk with the
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mitogen-activated protein kinase (MAPK), P13K/Akt, Wnt, and various other pathways.275

Application of multiple growth factors continue to be an intense area of research for
cartilage tissue engineering.

Growth factors have been examined with shear, compression, and hydrostatic pressure. For
instance, shear and increased diffusion combined with BMP-2 induced chondrogenic gene
and protein expression when dedifferentiated chondrocytes were cultured.276 It was also
deduced in a separate study that shear, when combined with IGF-I, produce a synergistic
effect on chondrogenic synthesis.232 IGF-I also combined with direct compression to
increase proteoglycan and collagen synthesis by 180% and 290%, respectively.246 TGF-β3
combined with direct compression223 and TGF-β1 with hydrostatic pressure173 both
increased construct functional properties to native tissue ranges. In the latter case, the
growth factor and mechanical stimulus were found to have additive effects on functional
properties but synergistic effects on collagen content.173

V. CHALLENGES AND FUTURE DIRECTIONS
1. Technical

a. Design Specifications—Cartilage regeneration aided by tissue engineering faces
varied challenges, and among them are differences in anatomical geometries and loads for
different joints. Large, weight bearing joints require the replacement cartilage to have great
compressive stiffness. The patellofemoral problem requires that a high shear-bearing
construct be fitted. Clinical intervention in small, non-weight bearing joints suffer from the
challenges of tight joint spaces and small radii of curvature. Added to these considerations is
the fact that differences in integration have yet to be evaluated across different joints.

Actually, while cartilage must be engineered for functionality, a resultant engineered
construct dense in collagen fibers will prove difficult to integrate. An optimal maturity for
engineered constructs that balances construct stiffness with ease of integration has yet to be
determined. In addition, integration techniques must be developed to ensure that the
interface between engineered and native cartilages will not have stress concentrations.
Along these lines, new surgical techniques may need to be developed to implant engineered
cartilage.

It is difficult to design scaffolds while the design specifications for cartilage therapy are still
evolving. Due to the integration issue, it is unclear whether a cartilage product should be
designed to be mature (stiff but difficult to integrate) or immature (possibly easier to
integrate, but with lower weight bearing capacity). Without clear design standards, the
design process for scaffolds may be unclear. For instance, a parameter in scaffold design,
degradation rate, will greatly influence the maturation and integrative properties of a
resulting construct. It is recommended that, as researchers develop new biomaterials for
cartilage engineering, they should also consider how an engineered product using such
technology will be put to clinical use.

b. Stimuli interactions—Currently, the pressing questions that drive the area of multiple
growth factor use are how best to employ them in sequence and in combination. The
interplay of growth factors presented to chondrocytes (or progenitor cells) during cartilage
formation is varied and delicate. If sequenced stimuli were to be necessary, controlled
release of multiple growth factors at different sequences can be challenging in scaffold
development.

Likewise, current challenges in the application of mechanical stimuli are 1) to systematically
combine several mechanical stimuli at once, and 2) to investigate the coupled effects of
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different classes of stimuli (e.g., growth factor with mechanical stimuli). The roles that
growth factors play in altering mechanotransduction constitute an area of intense interest
and challenge. Past studies that have combined the two are exciting in their abilities to
increase construct functional properties. Some studies have even observed synergism for
these different classes of stimuli.173,232 How such synergism came about, why synergism is
not seen for all properties, and, finally, what one should do in order to obtain additional
synergistic effects are both interesting and perplexing questions. These must first be
addressed before exogenous stimuli can be efficiently applied for cartilage tissue
engineering.

Lastly, cartilage tissue engineering studies thus far have focused on anabolic processes, i.e.,
with creating more cartilage matrix. Recent studies using chondroitinase-ABC (C-ABC)
have shown that increased functional properties can be obtained with the selective and timed
application of a catabolic enzyme.277,278 This counter-intuitive method is proof that matrix
turnover in engineered constructs should be examined. Thus, catabolic processes can be
elucidated and harnessed in producing functional constructs.

2. Regulatory
The progress in cartilage tissue engineering during the past two decades is rapid and
humbling. As with other rapidly maturing technologies, standards and regulation have not
caught up with the advancements seen in this field. Clearance by the Food and Drug
Administration (FDA) now poses as a significant hurdle for companies seeking to translate
cartilage engineering technologies to clinical use. The different Centers of the FDA that are
relevant to cartilage tissue engineering and potential pathways to market are described
below.

a. Structure of the FDA—Of the seven product-oriented centers within the FDA, two are
particularly relevant to articular cartilage tissue engineering: the Center for Biologics
Evaluation and Research (CBER) and the Center for Devices and Radiological Health
(CDRH). For cartilage tissue engineering, a product that is a combination of both biological
product and a device will be assigned by The Office of Combination Products to one of the
two centers, where primary jurisdiction over the product will reside.

The CBER regulates products whose primary mode of action is metabolic. Past products
regulated by this center include blood, allergenics, tissues, and other cellular products
derived from living sources. Manufacturers of biological products must follow current good
manufacturing practices (cGMP), as described by 21 Code of Federal Regulations (CFR)
Part 211279 and report adverse events to the Adverse Event Reporting System (AERS).
Engineered cartilages derived from autologous, allogeneic, and xenogeneic products are
produced by cells and will be regulated by CBER if their primary mode of the effects is
metabolic.

For implants, the FDA has had a history of classifying most orthopaedic implants as medical
devices, which are regulated by the CDRH. The CDRH regulates firms that manufacture,
repackage, relabel, and/or import medical devices. A medical device is defined as “an
instrument, apparatus, implement, machine, contrivance, implant, in vitro reagent, or other
similar or related article, including any component, part, or accessory, which is intended for
use in the diagnosis of disease or other conditions, or in the cure, mitigation, treatment, or
prevention of disease.”280 In these cases, the primary mode of effect for devices is
mechanical or electrical.

b. Center Assignment—Potential cartilage therapies can be assigned to CBER or
CDRH, depending on the therapy’s primary mode of action. Assignment to different centers
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translates to different filing requirements, which result in different financial burdens and
time to market.

CBER oversaw the approval of ACI, whose primary mode of action is the metabolic
production of cartilage matrix after implantation. The metabolic agents are manipulated,
expanded autologous cells. In this case, a Biologics License Application (BLA) was filed for
the permission to introduce a biologic product into the market, and the BLA is regulated
under 21 CFR 600 to 680. Other requirements include complying with requirements set
forth by Form 356h, which includes the applicant information, product and manufacturing
information, pre-clinical studies, clinical studies, and labeling. For clearance by the CBER,
clinical studies, which can be slow and costly, are required, and these are quire burdensome
for companies that seek to introduce an engineered cartilage product whose primary mode of
effect is metabolic.

Implants, whose primary function is to bear mechanical load (as tissue engineered cartilage
is designed to function), may have CDRH as its primary regulator. Contrast this with the
case of ACI: while ACI may eventually result in tissue that bears load, the initial implant
does not act through a mechanical effect; instead, a metabolic process takes place where
tissues are formed in situ. Another example is Medtronic’s InFuse Bone Graft/LT-Cage,
which is regulated as a medical device, despite containing recombinant human BMP
(rhBMP). In this case, the primary mode of action for the product is mechanical. Other
products regulated as devices include bone void fillers and demineralized bone matrix, both
of which can be biologically derived, but serve mechanical functions during implantation.

Researchers and companies should take into consideration the Center assignment as they
develop cartilage therapies, because the pathways to clinical usage are substantially different
for each Center. Furthermore, if a company would like to be regulated under CDRH, it
should have a plan for which class a product falls into and project the time and financial
burdens from there. It is expected that tissue engineered cartilage implants would be
examined by either CBER or CDRH. Center assignment is both an industrial and a scientific
question. While the industrial aspect is obvious, scientists should likewise be cognizant of
how safety and efficacy are demonstrated in designing their studies.

c. Device Classes—Orthopaedic device manufacturing companies, where tissue
engineered cartilage therapies are likely to arise, are typically familiar with the CDRH.
Devices regulated within the CDRH fall into three classes, each with different requirements
that the manufacturer must fulfill prior to introducing a product to market. Again, the
relevance to tissue engineering is that the time and money spent under each class differs and
will affect whether and how long a therapy takes to reach the clinic.

Class I devices are low risk and pose minimal potential harm. For a Class I device to be
approved, a company must demonstrate that it has implemented “general controls,” which
include quality system regulation (QSR), as described by 21 CFR 820,281 to ensure
adherence to predefined design controls and good manufacturing practices (GMP), label
requirements to prevent product mislabeling, and the use of Medical Device Reporting
(MDR) (in contrast with the AERS for biological products) to maintain records for the
reporting of adverse events. Medical devices must use forms FDA-2891 and FDA-2892 for
establishment registration and medical device listing.

Tissue engineered cartilage is more likely to be regulated as Class II or Class III devices.
Class II devices are of moderate risk and often require a Premarket Notification 510(k)
pathway to market. A manufacturer must notify the FDA 90 days before marketing a Class
II device to show that it is substantially equivalent to a predicate device legally in
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commercial distribution in the US before May 28, 1976. Either a traditional, special, or
abbreviated 510(k) may be filed. A traditional 510(k) takes about 90 days to review. When a
device is modified without changes to the intended use, a special 510(k) can be filed, which
generally takes 30 days. An abbreviated 510(k) relies on use of guidance documents or
special controls to provide a summary report that describes adherence to the relevant
guidance document, and can also take less than 90 days. Class II devices may require special
controls, such as postmarket surveillance, patient registries, guidances, and standards, after it
has been marketed. Most joint arthroplasty components are cleared as Class II devices.

Devices that support or sustain human life, are of substantial importance in preventing
impairment of human health, or present a potential, unreasonable risk of illness or injury are
classified as Class III. Particularly relevant to tissue engineering, devices for which
substantially equivalent predicates are non-existent also fall into this class. New device that
are deemed to be substantially equivalent to a predicate Class III will also be classified as
Class III. Finally, new devices determined to be substantially equivalent to Class I or II
devices that were developed after 1976 will also be classified as Class III. Before legal
distribution can occur, a company must submit a premarket approval application (PMA) or
Product Development Protocol (PDP). Both preclinical and clinical data are needed to
demonstrate safety and efficacy. A new device must first have an investigational device
exemption (IDE) (see 21 CFR 812282) before it can be used in humans to collect clinical
data. A company may petition to have a new device reclassified to Class I or Class II.

Additional pathways to market include the Humanitarian Device Exemption (HDE), which
is intended for the development of devices to treat rare (<4,000 patients per year) conditions,
and the PDP (for Class III devices). An alternative to the PMA, companies seeking to purse
the PDP pathway, will work with the FDA in designing preclinical and clinical studies,
protocols, assessment methods, and acceptance criteria.

VI. CONCLUSIONS
In summary, there is a great promise to advance current cartilage therapies toward achieving
a consistently successful approach for addressing cartilage afflictions. Tissue engineering
may be the best way to reach this objective via the use of promising cell sources such as
stem cells, novel biologically inspired scaffolds or scaffoldless approaches, emerging
nanotechnology, chondrogenic factors, and physical stimuli. Undoubtedly, there are
challenges and a significant number of unanswered questions about cartilage
pathophysiology that may hinder the progress. Furthermore, the regulatory pathways that
future cartilage therapies may need to follow are still unfolding. Nevertheless, significant
evidence exists now supporting the idea that tissue engineered articular cartilage represents a
potentially cogent approach to effectively treat cartilage injury or trauma.
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Fig 1.
Schematic illustration of composition and structure of articular cartilage lining the bone (not
drawn to scale). There are four zones with different structures in articular cartilage:
superficial, middle, deep, and calcified.
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Fig 2.
The concept of tissue engineering. Tissue engineering incorporates many critical factors
including cells, scaffolds, bioactive factors, and physical stimuli to assemble biomimetic
tissue engineered constructs for replacing damaged tissues in humans.
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Fig 3.
The totipotent, pluripotent, multipotent, and unipotent stem cells.
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Fig 4.
Human bone marrow-derived mesenchymal stem cells after 6 days of culture, exhibiting a
fibroblastic morphology.
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Fig 5.
A scaffold-free, modular approach for the engineering of articular cartilage from stem cells.
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Fig 6.
Chondrocyte self-assembly and ECM development in a scaffold-free process. Sequences of
cadherin and collagen VI expression and distribution parallel those seen in native cartilage
development. (Used under the Creative Commons Attribution License, from Ofek et al.,
PloS ONE, 2008175)
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Fig 7.
Cells can respond to mechanical forces via several coupling mechanisms, such as stretch
activated ion channels and focal adhesion complexes.
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Table 1

The composition of articular cartilage

Articular Cartilage % wet weight19,20 % dry weight21 Functions

Solid Phase (ECM)

Collagen Type II collagen is 15–20%
All other collagens are < 2% 50–75% Contributes to tensile properties and

macromolecule entrapment19,11

Proteoglycan 10% 20–30% Contributes to compressive and flow-
dependent viscoelastic properties283

Other glycoprotein,
fibronectin etc. Small amount Small amount Contributes to cell-ECM interaction and

the stability of ECM

Solid Phase (Cells) Chondrocytes < 5–10% of total tissue volume Modify ECM and maintain suitable tissue
size

Fluid Phase Interstitial water
and electrolytes

60–80% __ Exchanges nutrients with synovial fluid,
lubricates the joint, and contributes to
compressive resistance and deformation19
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