Skip to main content
. 2010 Jan 8;11:15. doi: 10.1186/1471-2105-11-15

Table 2.

Best-performing Boolean features, ordered by information gain

Feature ACC SN SP FM PR RC IG
has-enzymes 0.821 0.914 0.796 0.681 0.543 0.914 0.188
has-reactions-present 0.797 0.919 0.765 0.655 0.509 0.919 0.173
majority-of-reactions-present 0.872 0.707 0.916 0.699 0.69 0.707 0.165
some-initial-reactions-present 0.84 0.724 0.87 0.654 0.597 0.724 0.138
some-initial-and-final-reactions-present 0.864 0.605 0.933 0.651 0.706 0.605 0.136
mostly-absent-not-unique 0.215 0.163 0.229 0.08 0.053 0.163 0.133
all-initial-reactions-present 0.825 0.747 0.845 0.641 0.561 0.747 0.133
every-reaction-present 0.871 0.508 0.968 0.623 0.807 0.508 0.132
every-reaction-present-or-orphaned 0.871 0.508 0.968 0.623 0.807 0.508 0.132
taxonomic-range-includes-target 0.795 0.813 0.79 0.624 0.506 0.813 0.131

See section "Feature Extraction and Processing" and Section 1 of Additional file 2 for description of features.

Columns 2 through 8 correspond to various performance measures: ACC = accuracy; SN = sensitivity; SP = specificity; FM = F-measure; PR = precision; RC = recall; IG = information gain.