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Reproducibility and quantitation of amplicon
sequencing-based detection

Jizhong Zhou1,2,3,4, Liyou Wu2,4, Ye Deng2, Xiaoyang Zhi2, Yi-Huei Jiang2, Qichao Tu2,
Jianping Xie2, Joy D Van Nostrand2, Zhili He2 and Yunfeng Yang1

1Department of Environmental Science and Engineering, Tsinghua University, Beijing, China; 2Department of
Botany and Microbiology, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
and 3Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

To determine the reproducibility and quantitation of the amplicon sequencing-based detection
approach for analyzing microbial community structure, a total of 24 microbial communities from a
long-term global change experimental site were examined. Genomic DNA obtained from each
community was used to amplify 16S rRNA genes with two or three barcode tags as technical
replicates in the presence of a small quantity (0.1% wt/wt) of genomic DNA from Shewanella
oneidensis MR-1 as the control. The technical reproducibility of the amplicon sequencing-based
detection approach is quite low, with an average operational taxonomic unit (OTU) overlap of
17.2%±2.3% between two technical replicates, and 8.2%±2.3% among three technical replicates,
which is most likely due to problems associated with random sampling processes. Such variations
in technical replicates could have substantial effects on estimating b-diversity but less on
a-diversity. A high variation was also observed in the control across different samples (for example,
66.7-fold for the forward primer), suggesting that the amplicon sequencing-based detection
approach could not be quantitative. In addition, various strategies were examined to improve the
comparability of amplicon sequencing data, such as increasing biological replicates, and removing
singleton sequences and less-representative OTUs across biological replicates. Finally, as
expected, various statistical analyses with preprocessed experimental data revealed clear
differences in the composition and structure of microbial communities between warming and
non-warming, or between clipping and non-clipping. Taken together, these results suggest that
amplicon sequencing-based detection is useful in analyzing microbial community structure even
though it is not reproducible and quantitative. However, great caution should be taken in
experimental design and data interpretation when the amplicon sequencing-based detection
approach is used for quantitative analysis of the b-diversity of microbial communities.
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Introduction

Soil microbial communities are among the most
complex, diverse and important assemblages in the
biosphere. It is estimated that 1 g of forest soil
contains 4� 107 prokaryotic cells, whereas 1 g of
grassland soil has 2� 109 prokaryotic cells (Daniel,
2005). DNA reassociation kinetic studies have
estimated that 1 g of soil contains approxima-
tely 2000–18 000 genomes (Torsvik et al., 1996,
1998; Torsvik and Ovreas, 2002), suggesting that

prokaryotic diversity in soil is extremely high.
Owing to such high diversity, soil microbial com-
munities are among the most difficult to character-
ize both phenotypically and genetically. Although
introduction of molecular biology approaches have
greatly advanced microbial community studies
(Zhou et al., 2004), our understanding of the extent
of microbial diversity in soil environments is still
very limited, especially in contrast to plants and
animals. In addition, due to the uncultivated status
of the majority of microorganisms (499%) in nature,
understanding their genetic properties, metabolic
characteristics, biochemical functions and ecologi-
cal functions is even more difficult.

Large-scale genome sequencing and associated
genomic technologies have revolutionized the study
of microbial communities. Recently, several new
high-throughput sequencing approaches such as
454 pyrosequencing, Illumina (Illumina, San Diego,
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CA, USA) and SOLiD (Applied Biosystems, Foster
City, CA, USA) have been developed (Margulies
et al., 2005; Hamady et al., 2008; Smith et al., 2008;
Schulte et al., 2010). At present, the 454 pyrosequen-
cing technology has been widely used to reveal
microbial diversity and ecology in different natural
environments, such as the deep sea (Sogin et al.,
2006; Huber et al., 2007), extreme hydrogeological
conditions (Edwards et al., 2006) and soil (Leininger
et al., 2006; Roesch et al., 2007). In addition,
multiplexed high-throughput pyrosequencing of in-
dividual genes (for example, 16S rRNA) by tagging or
bar coding with short nucleotides (also called pyrotag
sequencing (Kunin et al., 2010)) (Huse et al., 2007;
Parameswaran et al., 2007; Roesch et al., 2007;
Hamady et al., 2008) has been developed to process
many samples simultaneously and has been widely
used in microbial community studies (Youssef et al.,
2009; Cheung et al., 2010; Chun et al., 2010; He et al.,
2010a, b; Koopman et al., 2010; Schutte et al., 2010;
Teixeira et al., 2010; Uroz et al., 2010). A similar
strategy has also been used for sequencing functional
genes (Iwai et al., 2010). Thus, as PCR-amplified
products (amplicons) are used for sequencing, this
approach is generally referred to as amplicon
sequencing. Various studies have clearly demon-
strated that amplicon sequencing is powerful for
studying microbial community diversity and activity.

Some technical problems inherent to amplicon
sequencing have recently been observed, such as
overestimating the rare biosphere because of pyro-
sequencing errors (Quince et al., 2008, 2009; Kunin
et al., 2010) and overestimating gene and taxon
abundance because of inherent, systematic artifacts
(Gomez-Alvarez et al., 2009). Amplicon size and
primer pair also seem to have a great influence
on estimating microbial community richness and
evenness (Engelbrektson et al., 2010). However,
it is unclear whether amplicon sequencing-based
detection is reproducible and quantitative. In this
study, we have examined these important issues
by analyzing the composition and structure of
24 microbial communities from a field site in
Oklahoma (USA) for a long-term study of global
climate change. Genomic DNA obtained from each
community was used to amplify 16S rRNA genes
with two or three bar-coded tags as technical
replicates in the presence of a small quantity
(0.1% wt/wt) of Shewanella oneidensis MR-1 geno-
mic DNA as the control. In this study, technical
replicates mean that the same genomic DNA
obtained from a community is amplified multiple
times and subsequently sequenced. Our results
indicated that the reproducibility among technical
replicates and quantitative capability were quite low
for amplicon sequencing-based detection. Various
strategies for improving data comparability are
discussed. Although experimental data are gener-
ated by the pyrosequencing approach in this study,
the conclusions should be applicable to other
sequencing approaches as well.

Materials and methods

Site description and sampling
Soil samples used in this study were obtained from
the KFFL (Kessler Farm Field Laboratory) at the
Great Plain Apiaries in McClain County (OK, USA;
3415805400N, 9713101400W) and were part of a long-
term experiment using a paired nested design with
warming as the main factor and clipping as a
secondary factor (Luo et al., 2001). There were six
replicates for each of the following treatments:
(1) clipped, warmed, (2) unclipped, warmed,
(3) clipped control and (4) unclipped control.
The warming plots have been continually warmed
for B2 1C since November 1999. A total of 24 soil
samples were taken from a 0–15 cm layer in April
2007. Each sample was composited from four
soil cores (2 cm diameter� 15 cm deep) after being
sieved (2 mm). All samples were stored at �80 1C.

DNA extraction
Soil DNA was extracted by freeze-grinding mechanical
lysis as described previously (Zhou et al., 1996) and
was purified using a low melting agarose gel, followed
by phenol extraction. DNA quality was assessed based
on the absorbance ratios of 260/280 nm and 260/
230 nm using NanoDrop ND-1000 Spectrophotometer
(NanoDrop Technologies, Wilmington, DE, USA),
whereas DNA concentration was quantified by Pico-
Green (Promega, Sunnyvale, CA, USA) (Ahn et al.,
1996) using FLUOstar Optima (BMG Labtech, Jena,
Germany).

Sample tagging and PCR amplicon preparations for
sequencing
On the basis of the V4-V5 hypervariable regions
of bacterial 16S rRNAs (Escherichia coli positions
515–907), the PCR primers, F515: GTGCCAGCMGC
CGCGG and R907: CCGTCAATTCMTTTRAGTTT
were selected. Both primers covered 498% of the
16S gene sequences in the ribosomal database (Cole
et al., 2007, 2009). To pool multiple samples for one
run of 454 sequencing, a sample tagging approach
was used (Binladen et al., 2007; Hamady et al.,
2008). Each tag (6 mer) was added to the 50-end of
both forward and reverse primers (Supplementary
Table S1), synthesized by Invitrogen (Carlsbad, CA,
USA) and then used for the generation of PCR
amplicons. To evaluate the reproducibility of seq-
uencing results, a total of 60 sequencing tags were
used: 12 samples were amplified with 3 tagged
primers (n¼ 36) and 12 with 2 tagged primers
(n¼ 24). Pyrosequencing data for four samples were
excluded from data analysis because of some errors
in primers used.

The amplification mix contained 10 Units of Pfu
polymerase (BioVision, Mountain View, CA, USA),
5ml Pfu reaction buffer, 200 mM dNTPs (Amersham,
Piscataway, NJ, USA) and a 0.2 mM concentration of
each primer in a volume of 50 ml. Genomic DNA
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(10 ng) was added to each amplification mix.
Cycling conditions were an initial denaturation at
94 1C for 3 min, 25 cycles of 95 1C for 30 s, 58 1C for
60 s, 72 1C for 60 s and a final 2-min extension at
72 1C. To obtain enough PCR products for sequen-
cing, multiple (5–10) 100-ml reactions were used for
each sample. The products from each tagged primer
were pooled and purified by agarose gel electro-
phoresis. The amplified PCR products were recov-
ered and then quantitated using PicoGreen (Ahn
et al., 1996). Finally, amplicons of all samples were
pooled in an equimolar concentration for 454
pyrosequencing.

454 Pyrosequencing
Pyrosequencing was carried out at the Genome
Sequencing Center of the University of Oklahoma.
In brief, fragments in the amplicon libraries were
repaired and ligated to the 454 sequencing adapters,
and the resulting products were bound to beads
under conditions that favor one fragment per bead.
The beads were emulsified in a PCR mixture in oil,
and PCR amplification occurred in each droplet,
generating millions of copies of a unique DNA
template. After breaking the emulsion, DNA strands
were denatured, and beads carrying single-stranded
DNA clones were deposited into wells on a PicoTiter
Plate (454 Life Sciences, Branford, CT, USA) for
pyrosequencing (Margulies et al., 2005) on a FLX
454 system. For this study, we recovered both
forward and reverse sequencing reads of the 24
samples with an average length of B240 bp. All
pyrosequencing reads were initially processed using
the RDP (Ribosomal Database Project) pyroseq-
uencing pipeline (http://pyro.cme.msu.edu/) (Cole
et al., 2009).

Pyrosequencing data preprocessing
To minimize the effects of random sequencing
errors, we eliminated low-quality sequences as
follows: (1) sequences that did not perfectly match
the PCR primer at the beginning of a read; (2)
sequences with non-assigned tags; (3) short se-
quence reads (o200 bp) after the proximal PCR
primer if they terminated before reaching the distal
primer and (4) sequences that contained more than
one undetermined nucleotide (N). Only the first
240 bp after the proximal PCR primer of each sequence
was included as the quality of sequences degrades
beyond this point. After removing low-quality se-
quences, the raw sequences were sorted and distin-
guished by unique sample tags and each sample had
two or three unique tags as replicates. The tags and
primers were then trimmed for each replicate.

On the basis of sequences obtained, there is
B120 bp overlap between the sequences from the
forward and reverse primers. To identify sequences
that potentially originated from the same 16S rRNA
gene molecule, sequences from forward and reverse

primers were compared. If the number of overlapped
nucleotides was 4120 bp and their sequence iden-
tity was 497%, these two forward and reverse
sequences were considered to originate from the
same DNA molecule. If one sequence from the
forward (or reverse) primer was 497% identical to
multiple sequences, the one with the highest
identity from the reverse (forward) primer was
considered to be its corresponding counterpart.
The two matched sequences were then combined
to generate a longer sequence (356 nt). All combined
sequences and individual sequences from both the
forward and the reverse primers were then pooled as
a full set of sequences of each tag.

All sequences from the 24 samples were aligned
by RDP Infernal Aligner, a fast secondary-structure
aware aligner (Ribosomal Database Project,
Michigan State University, East Lansing, MI, USA)
(Nawrocki and Eddy, 2007) and then complete
linkage clustering was used to define operational
taxonomic units (OTUs) within a 0.03 difference
(Stackebrandt and Goebel, 1994). As 97% identify is
used as the cutoff and singleton sequence reads
were removed, each OTU contains more than two
sequence reads from at least two samples. The
sequence reads within an OTU were partitioned
into individual samples based on the original
sample-tagging information. In addition, sequences
were then assigned to a taxonomy by the RDP
classifier (Wang et al., 2007) with a confidence
cutoff of 0.8. The lineage of each OTU was
summarized with all phylogenetic information.

As the sequence numbers of individual OTUs
obtained varied significantly among different sam-
ples, the relative proportions of sequence numbers
were used for subsequent analysis. The RA (relative
abundance) was calculated as:

RAij ¼
Sij

PN

j¼1

Sij

;

where Sij is the number of sequencing reads of the
jth OTU (1 to n) in the ith sample (1 to m).

Statistical analysis
The Mothur program (University of Michigan Health
System, Ann Arbor, MI, USA) (Patrick Schloss,
http://www.mothur.org/) was used for rarefaction
analysis at different levels based on individual tags,
samples, treatments and the whole data set. Rarefac-
tion curves were created by plotting the results of
random sequence re-sampling from OTUs. The
rarefaction curves were fitted with the model
y¼ a(1�e�bx), and maximum OTUs were estimated
as predicted diversity based on the fitted rarefaction
curve. OTU predictions were also obtained using the
Chao1 method (Chao, 1987). Both Sørensen similar-
ity (Ss) and Bray-Curtis similarity (BCs) were
calculated between any pair of two samples, and
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the complement (Sd) of Sørensen similarity (1�Ss)
and the complement (BCd) of Bray-Curtis similarity
(1�BCs) were used to measure b-diversity of micro-
bial communities among different samples. One-
way ANOVA (analysis of variance) was used to
compare the b-diversity at technical (tag) replicate
and biological replicate levels, and that between
control and the treatments (warming and control).
The Duncan multiple range test was used to
determine statistical significance of the differences
between microbial communities at different levels.

Ordination analyses were further performed using
PC-ORD (McCune and Mefford, 1999) and confirmed
by CANOCO 4.5 (Biometris—Plant Research Interna-
tional, Wageningen, The Netherlands). Detrended
correspondence analysis was used to determine the
overall phylogenetic composition changes in micro-
bial communities. Detrended correspondence analy-
sis is an ordination technique that uses detrending to
remove the arch effect, in which data points are
organized in a horseshoe-like shape, in correspon-
dence analysis (Hill and Gauch, 1980).

Data sets of microbial communities generated by
different analytical methods were used to examine
whether warming or clipping had significant effects
on soil microbial communities. Typically, it is
difficult for all data sets to meet the assumptions
(for example, normality, equal variances, indepen-
dence) of parametric statistics. Thus, in this study,
three different complementary non-parametric ana-
lyses for multivariate data were used: analysis of
similarity (ANOSIM) (Clarke, 1993), non-parametric
multivariate ANOVA (Adonis) using distance mat-
rices (Anderson, 2001) and multiresponse permuta-
tion procedure (MRPP). We used the Bray-Curtis
similarity index to calculate the distance matrix for
ANOSIM, Adonis and MRPP analyses. MRPP is a
non-parametric procedure that does not depend on
assumptions, such as normally distributed data or
homogeneous variances. Rather, it depends on the
internal variability of data (Mielke and Berry, 2001;
McCune and Grace, 2002). All three methods are
based on dissimilarities among samples and their
rank order to calculate test statistics. The Monte
Carlo permutation was used to test the significance
of statistics. All three procedures (ANOSIM, Adonis
and MRPP) were performed using the Vegan package
(version 1.15-1, Department of Statistics, Iowa
State University, Ames, IA, USA) in R v. 2.8.1
(R Development Core Team, 2006).

Results

OTU overlaps among technical replicates
The V4-V5 regions of 16S rRNA genes were
amplified and sequenced with one pyrosequencing
run, and a total of 52.2 Mbp sequences with 213 329
reads were obtained (see Supplementary text for
overview of sequencing statistics). A total of 115 741
sequence reads were obtained after preprocessing.

An average of 1121±390 OTUs were obtained for
each tag based on the combined samples. Rarefac-
tion analysis indicated that the maximum number of
OTUs in this warming site is B17 370, and that the
diversity of the abundant populations in these
communities was recovered in this study (Supple-
mentary text).

As community DNA from the same sample was
amplified with two or three tagged primers as
technical replicates, followed by sequencing, theo-
retically, a maximum of 100% overlap of OTUs
detected among these technical replicates should
have been expected if all populations in these
communities were sampled. However, in reality,
the expected percentage of overlap will be lower
because of undersampling, random sampling and
the complexity of microbial communities. Surpris-
ingly, the overlap among these technical replicates
was quite low (Supplementary Table S2). The
average OTU overlap among the samples with two
technical replicates for the forward primer was
15.5%±2.5% (Supplementary Figure S1A), ranging
from 10.9% to 19.2% (Supplementary Table S2A)
and 18.8%±2.1% (Supplementary Figure S1B) for
the reverse primer with the range of 13.9–21.4%
(Supplementary Table S2B). The difference between
forward and reverse primers was significant
(P¼ 0.003 based on Mann–Whitney U-test). The
average OTU overlap among the samples with three
technical replicates was 7.4%±2.1% (Supplemen-
tary Figure S2A) in the range of 4.1–11.0% (Supple-
mentary Table S2A) for the forward primer, and
9.1%±2.5% (Supplementary Figure S2B) in the
range of 3.5–12% for the reverse primer (Supple-
mentary Table S2B). The difference between forward
and reverse primers was also significant (P¼ 0.05
based on Mann–Whitney U-test). These results
suggest that variations in technical replicates for
the amplicon sequencing-based detection approach
are quite high, which are most likely due to
problems associated with random sampling pro-
cesses.

The OTU overlap among technical replicates
was increased significantly by removing singleton
sequences. After removing singleton sequences, the

Figure 1 The average overlap of OTUs of microbial communities
sequenced with two or three pyrotags. (a) Reverse primer seq-
uences with two tags, singleton sequences removed. (b) Reverse
primer sequences with three tags, singleton sequences removed.
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OTU overlap among the samples with two technical
replicates ranged from 15.1–30.2% (Supplemen-
tary Table S2A), with an average of 23.3%±4.3%
(Supplementary Figure S1C, Po0.001 based on
Mann–Whitney U-test) for the forward primer, and
from 23.8% to 32.2% (Supplementary Table S2B)
with an average of 26.6%±2.1% (Figure 1a,
Po0.001) for the reserve primer. For samples with
three technical replicates, they ranged from 6.2% to
16.6% (Supplementary Table S2A), with an average
of 11.7%±3.3% (Supplementary Figure S2C,
P¼ 0.009) for the forward primer, and from 5.8%
to 17.7% (Supplementary Table S2B) with an
average of 13.3%±3.3% (Figure 1b, P¼ 0.005) for
the reverse primer. In addition, when biological
replicates are available, one could remove the less-
representative OTUs for a reliable diversity compar-
ison across different samples. The percentages of
OTUs overlap were significantly increased among
technical replicates (Supplementary Table S2A–C)
by removing the less-representative OTUs across all
biological replicates within a treatment. In addition,
to determine whether more abundant OTUs are
reproducibly detected among technical replicates,
OTUs were ranked based on their RA in each sample
against their frequencies detected among the tech-
nical replicates. Interestingly, no consistent patterns
were observed between the RA of the OTUs and
their reproducibility among technical replicates
(data not shown).

Effects of variations in technical replicates on diversity
estimations
To determine how such variations in technical
replicates affect the estimations of microbial local
diversity (a-diversity), the Shannon–Weaver index
was calculated at levels of the technical replicates,
biological replicates and treatments. Three-way
ANOVA indicates that gene richness, functional
gene diversity and evenness were all significantly
different among technical replicates (Po0.05) (Sup-

plementary Table S3), but most of them, if not all,
were not significantly different at the biological
replicate or treatment level. These results suggest
that variations in technical replicates may not affect
the estimation of a-diversity at biological replicate
and/or treatment levels.

To understand whether variations in technical
replicates affect the comparison of different micro-
bial communities (that is, b-diversity), two popular
similarity metrics, Sørensen’s incidence-based
and Bray-Curtis’s abundance-based methods, are
used. Their complements are used as metrics of
b-diversity, which are widely used in many studies
and range from 0 (when all OTUs/individuals are
shared between two communities) to 1 (when no
OTUs/individuals are shared). b-Diversity was cal-
culated for each pair of microbial communities at
the levels of technical replicates, biological repli-
cates and treatments based on the combined OTU
data from both forward and reverse primers (Table 1).
The average b-diversities at the technical replicate
level were 0.756±0.042 based on the Sørensen
index and 0.763±0.049 based on the Bray-Curtis
index without removing singletons (Table 1). These
results indicated that the background noise in
estimating b-diversity is quite high. However, in
this case, one-way ANOVA revealed that the average
b-diversity at both biological replicate and treatment
levels based on both the Sørensen and the Bray-
Curtis indices were all still significantly (Po0.05)
higher than those at the technical replicate level
(Table 1). As expected, removing singletons signifi-
cantly (Po0.05) decreased b-diversity estimations
at all three levels, but had more impact on the
b-diversity estimation based on the Bray-Curtis
index (Table 1).

Quantitation of the amplicon sequencing
To determine whether amplicon sequencing-
based detection is quantitative, 10 pg gDNA from
S. oneidensis MR-1 was spiked into PCR reactions

Table 1 One-way ANOVA and Duncan grouping method to assess b-diversity at the levels of technical replicates, biological replicates
and treatments based on the combined OTUs from both forward and reverse primers

Data sizea With singletons Singletons removed

Sørensen Bray-Curtis Sørensen Bray-Curtis

b-Diversityb Significancec b-Diversityb Significancec b-Diversityb Significancec b-Diversityb Significancec

Technical replicate 42 0.756 c 0.763 c 0.734 c 0.475 b
Biological replicate 322 0.814 b 0.866 a 0.798 b 0.533 a
Warming 196 0.83 a 0.854 b 0.815 a 0.526 a
Clipping 196 0.834 a 0.853 b 0.82 a 0.525 a

Abbreviation: ANOVA, analysis of variance.
aData sizes (n) are the number of data points of the pairwise comparisons within the technical replicates, biological replicates or treatments.
bWe calculate two popular b-diversity dissimilarity measurements, Sørensen and Bray-Curtis, in which Sørensen dissimilarity is based on OTUs
richness and Bray-Curtis dissimilarity takes OTUs abundance into account.
cSignificance at [pr(4F)]o0.05, using Duncan grouping method is shown. a, b and c represent the significance of b-diversity differences between
technical replicates, biological replicates and treatments. a marks the highest b-diversity, the one less than the highest but not significant is still
marked with a, then the ones significantly lower than the highest is marked with b or c.
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containing 10 ng community DNA of each sample,
and then PCR amplified and pyrosequenced. MR-1
has nine copies of the 16S rRNA gene, with 100%
identity among them in the sequenced regions.
Thus, only a single OTU from MR-1 would be
obtained. Theoretically, 0.1% (wt/wt) sequences
from the MR-1 genome would be detected in all
of these samples. However, our experimental results
indicated that the percentages of MR-1 OTUs detected
varied substantially among different soil samples,
ranging from 0.06% to 5.34% for the forward primer
and 0.0% to 4.42% for the reverse primer. The
difference between the maximum and minimum per-
centages of detected MR-1 sequences is B66.7-fold for
the forward primer. In contrast, no MR-1 sequence was
detected in some tags for the reverse primer, whereas
the maximum percentage of detected MR-1 sequences
was 4.42% (Supplementary Table S4).

Improving data comparability
Various methods were used to improve data compar-
ability, including increasing biological replicates,
and removing singleton sequences and less-repre-
sentative OTUs across biological replicates (see
Supplementary text). Among three statistical meth-
ods (MRPP, ANOSIM and Adonis), which were used

to compare the differences of microbial community
structure between warming and non-warming or
clipping and non-clipping, Adonis seems to be the
most sensitive (Tables 2 and 3, Supplementary
Tables S5 and S6). Thus, only the results from
Adonis are presented. The significance value (P) is
presented in these tables and smaller P-values
indicate better resolution. The following generali-
zations can be drawn. First, removing singleton
sequences yielded better resolution (Tables 2 and 3).
Removing less-representative OTUs is another op-
tion based on the results of biological replicates.
Considerable differences in P-values were obtained
by removing less-representative OTUs (one or two)
across samples (Tables 2 and 3). In addition,
generally only one-strand DNA sequences were
obtained by amplicon sequencing, and hence,
approximately half of the sequencing data are not
used. In this study, both primers for PCR amplifica-
tion were tagged, pyrosequenced and then assigned
to OTUs. Thus, using sequencing reads from both
forward and reverse primers leads to increased
sequencing efforts. As expected, considerably better
resolution was obtained using the combined sequen-
cing data sets from both primers (Tables 2 and 3).

Despite several findings for improving data com-
parability, the real question is whether the effects of

Table 2 Effects of data preprocessing on the significance (P-values) in resolving the differences of microbial communities between
warming and unwarminga

Primers Not removing singletons Removing singletons

Cut 0b Cut 1c Cut 2d Cut 0b Cut 1c Cut 2d

Forward 0.55 0.05 0.03 0.44 0.07 0.02
Reverse 0.51 0.08 0.04 0.19 0.13 0.03
Forward and reverse 0.63 0.02 0.03 0.04 0.03 o0.01

Abbreviations: ANOSIM, analysis of similarity; MRPP, multiresponse permutation procedure.
aThe values in the table are probability values (P), indicating significance with the Adonis method. Three statistical methods (MRPP, ANOSIM
and Adonis) were used. However, Adonis is more sensitive; thus, only results using this method are presented.
bNo OTUs were removed.
cOTUs present only in 1 of the 14 tag sequence data sets of a treatment were removed.
dOTUs present in 1 or 2 of the 14 tag sequence data sets of a treatment were removed.

Table 3 Effects of data preprocessing on the significance (P-values) in resolving the differences of microbial communities between
clipping and unclippinga

Primers Not removing singletons Removing singletons

Cut 0b Cut 1c Cut 2d Cut 0b Cut 1c Cut 2d

Forward 0.6 0.1 0.03 0.59 0.07 0.04
Reverse 0.62 0.18 0.04 0.16 0.16 0.09
Forward and reverse 0.58 0.02 o0.01 0.06 0.03 o0.01

Abbreviations: ANOSIM, analysis of similarity; MRPP, multiresponse permutation procedure.
aThe values in the table are probability values (P), indicating significance with the Adonis method. Three statistical methods (MRPP, ANOSIM
and Adonis) were used. However, Adonis is more sensitive; thus, only results using this method are presented.
bNo OTUs were removed.
cOTUs present only in 1 of the 14 tag sequence data sets of a treatment were removed.
dOTUs present only in 1 or 2 of the 14 tag sequence data sets of a treatment were removed.
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warming and/or clipping on microbial communities
can be detected based on such amplicon sequencing
data. Detrended correspondence analysis showed
that samples from warming and/or clipping plots
clustered together and were well separated from
control plots (Figure 2), suggesting that microbial
community composition and structure were mark-
edly different between warming and unwarming or
between clipping and unclipping. To examine
whether these observed differences are statistically
significant, three complementary non-parametric
multivariate statistical tests (ANOISM, Adonis and
MRPP) were performed. The phylogenetic commu-
nity structure based on the 16S rRNA gene was also
significantly different between warming and un-
warming, and between clipping and unclipping
when more than five biological replicates were
used, according to at least one of the three methods
(Table 4). It is clear that increasing biological
replicates provide better resolution in differentiating
the treatment effects of warming or clipping. Taken
together, these results indicated that the phyloge-
netic composition and structure of microbial com-
munities under experimental warming or clipping
were significantly different from those under control
conditions.

Discussion

With the recent development and application
of metagenomic technologies such as large-scale

high-throughput sequencing (Sogin et al., 2006;
Huber et al., 2007; Hamady et al., 2008), PhyloChip
and GeoChip (He et al., 2007, 2008, 2010a, b; Zhou
et al., 2008; Zhou, 2009; Vaishampayan et al., 2010),
spatial and temporal information on microbial
community structure and functional activities
can be rapidly obtained at a community-wide
level. Metagenomic technologies allow scientists to
address research questions, which could not be
approached previously. High-throughput meta-
genomic technologies have greatly advanced
microbiologists’ capabilities for analyzing microbial
communities in the environment and significantly
shaped the field of microbial ecology. However,
great caution is required when using high-through-
put sequencing technologies for characterizing
microbial community composition and structure as
demonstrated in this study and in several others
(Huse et al., 2007; Gomez-Alvarez et al., 2009;
Engelbrektson et al., 2010; Kunin et al., 2010).

Despite several reports on the rigorous analyses of
pyrosequencing error rates of 16S rRNA genes (Huse
et al., 2007; Kunin et al., 2010), overestimation
of rare biosphere communities (Huse et al., 2010;
Kunin et al., 2010) and gene/taxon abundance
(Gomez-Alvarez et al., 2009), as well as PCR
amplification conditions on estimating species

Figure 2 Detrended correspondence analysis (DCA) of 454
pyrosequencing data showing that warming and clipping sig-
nificantly affected soil microbial community composition and
structure. The relative abundance of all detected OTUs at 97%
similarity cutoff in at least 4 of 14 tagged sequence data sets for
each treatment were used for DCA analysis. Red dots are for
unclipped, unwarmed control (UC), blue dots are for unwarmed,
clipped (CC), dark purple dots are for unclipped, warmed
(UW) and dark yellow dots are for clipped, warmed (CW).
The effects of warming and clipping on soil microbial community
composition and structure appeared to be well separated by the
second axis.

Table 4 Significance tests of the effects of warming or clipping
on the overall microbial community structure with three different
statistical approaches

Data sets Adonisa ANOSIMb MRPP c

F P-valued R P-valued d P-valued

Warming vs unwarming
Six replicates 2.607 o0.01 0.519 o0.001 33.43 0.025
Five replicates 2.419 o0.01 0.5 0.009 33.12 0.052
Four replicates 1.960 0.04 0.427 0.059 32.02 0.107
Three replicates 1.797 0.06 0.482 0.179 30.82 0.220

Clipping vs unclipping
Six replicates 2.243 o0.01 0.406 0.014 32.76 0.072
Five replicates 1.966 0.05 0.396 0.037 33.18 0.188
Four replicates 1.637 0.06 0.344 0.087 32 0.307
Three replicates 1.549 0.15 0.407 0.213 28.55 0.304

Abbreviations: ANOSIM, analysis of similarity; MRPP, multiresponse
permutation procedure.
All three tests are non-parametric multivariate analyses based on
dissimilarities among samples.
aPermutational multivariate analysis of variance using distance
matrices. Significance tests were performed by F-tests based on
sequential sums of squares from permutations of the raw data.
bANOSIM: Statistic R is based on the difference of mean ranks
between groups and within groups. The significance of observed R is
assessed by permuting the grouping vector to obtain the empirical
distribution of R under the null model.
cMRPP: Statistic d is the overall weighted mean of within-group
means of the pairwise dissimilarities among sampling units. The
significance test is the fraction of permuted deltas that are less than
the observed delta;
dP-value of corresponding significance test.
The values in bold indicate the significant difference between the
treatments (warming and clipping) and the control (at the levels of
Po0.01, or Po0.05) by the tests.
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richness and evenness (Engelbrektson et al., 2010),
little is known about the technical reproducibility
and quantitation of amplicon sequencing. Our
results in this study demonstrated that the repro-
ducibility of the detected OTUs among these
technical replicates is quite low, with an average of
13.1%±1.5% OTU overlap for the two tags and
5.9%±1.6% OTU overlap for the three tags. Such
low percentages of OTU overlap among technical
replicates raise a concern of comparing the
b-diversity of microbial communities across differ-
ent samples for amplicon sequencing. Inherent
high variations in technical replicates could be a
significant problem for comparative studies (for
example, b-diversity), but it could be less proble-
matic for diversity discovery studies (for example,
a-diversity). To make meaningful comparisons
across different samples, variations among different
samples must be larger than variations in technical
replicates. Otherwise, it will be difficult to draw
confident biological conclusions.

The high variations among technical replicates is
most likely due to sampling artifacts associated with
random sampling (Zhou et al., 2008), as well as the
performance of the technology per se. Many steps in
the pyrotag-based sequencing analysis are asso-
ciated with random sampling, including PCR
amplification of target genes, ligation of amplified
PCR products to sequencing adaptors for generating
single-stranded DNA bound beads, emulsion and
immobilization of beads, as well as bead deposition
into wells on a PicoTiter Plate (454 Life Sciences).
Given the vast complexity of a soil microbial
community, the random sampling process could
have more dramatic influence on estimating the
difference of microbial communities across different
samples (that is, b-diversity) (Zhou et al., 2008).
However, further theoretical analysis is required to
support such speculation. In addition, based on
rarefaction analysis, o10% of the microbial popula-
tions/genomes were sampled in each sampling
event (that is, herein equivalent to sequencing a
community with a tag). If microbial population
abundance in the community is evenly distributed,
theoretical values of 1% and 0.1% overlap would be
expected for two and three sampling events, respec-
tively. However, the actual percentages of OTU
overlap were higher than the expected values
(Figure 1), which could be explained by the facts
that microbial populations could be not evenly
distributed and dominant populations have a higher
probability of being re-sampled. In addition,
although this study addressed the random sampling
problem of pyrosequencing, such problems should
also exist in other similar sequencing technologies,
such as Illumina and SOLiD sequencing platforms.

In general, only sequences from one strand are
used for analysis with pryotag sequencing. There-
fore, about half of the available information is not
used (Acosta-Martinez et al., 2008; Hollister et al.,
2010). As demonstrated in this study, combining

sequences from both forward and reverse primers
alleviates the problem of random sampling because
it doubles the sampling effort. As demonstrated in
this study, the statistical resolution is greatly
improved when sequences from both ends are used
for determining OTUs. To combine them together, an
appropriate length of overlap of sequences from both
ends is required. The 16S primers used in this
study (F515, R907) seem to be an appropriate choice
because they are highly conserved and their derived
sequences have an appropriate length of overlap
(123 bp) with the FLEX pyrosequencing technology.
Various studies have demonstrated that the average
length (240 bp) of DNA fragments generated by these
primers should be sufficient to determine statistically
significant differences among microbial genomes that
reflect the most likely biology occurring in the
environment (Edwards et al., 2006; Sogin et al., 2006).

Quantitative capability is a critical issue when
sequencing-based technology is used for environ-
mental and ecological studies. Using the control
DNA spiked into PCR reactions, substantial varia-
tions in the control sequences were observed among
the 56 tag sequencing, despite that various strategies
were used to alleviate the amplification biases on
quantitation, including combining several amplifi-
cations together and using less cycle numbers to
avoid PCR product saturation. Therefore, amplicon
sequencing is not quantitative. This observation is
consistent with previous pyrotag sequencing studies
(Engelbrektson et al., 2010) and the general con-
sensus that conventional PCR amplification is not
quantitative (Suzuki and Giovannoni, 1996; Qiu
et al., 2001). Therefore, great caution is required
when using the amplicon sequencing approach to
make quantitative inferences of microbial commu-
nity diversity in comparative studies.

One way to improve reproducibility and quantita-
tion is to use biological replicates. As demonstrated in
this study, increasing biological replicates greatly
helps to differentiate the effects of warming or
clipping on microbial communities and allows for a
more rigorous statistical analysis, which is important
for comparative studies. Notably, microarray-based
technologies have significant advantages in minimiz-
ing/eliminating the sampling artifacts associated with
random sampling processes (Zhou et al., 2008);
combining high-throughput sequencing with array-
based technologies could provide robust measure-
ments for comparative studies.

As demonstrated in this study, variations in
technical replicates could lead to overestimating
b-diversity of microbial communities. As such
effects vary in experiments, depending on the
complexity of microbial communities examined
and sampling efforts, it is important to assess the
effects of random sampling processes on estimating
b-diversity for later appropriate data interpretation.
Thus, we recommend that technical replicates
(for example, more than three for each biological
sample) should be considered in individual experi-
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ments. These technical replicates will allow us to
assess the background noise level in b-diversity esti-
mation. With the most recent advanced sequencing
technologies (such as Illumina HiSeq 2000), having
several technical replicates for each bio-
logical sample should be not difficult to achieve.
In addition, the three methods (MRPP, ANOSIM and
Adonis) used in this study should be useful to assess
the statistical significance of microbial community
diversities under different conditions.

In conclusion, amplicon sequencing of the rRNA
gene and other functional genes is rapidly becoming
the method of choice for profiling microbial commu-
nities and has generated great insights into micro-
bial community diversity. Although the amplicon
sequencing-based detection approach is powerful,
it suffers from several inherent drawbacks such as
high sequencing errors and artifacts as demonstrated
by several previous studies. This study revealed
that the amplicon sequencing-based detection
approach is not reproducible and quantitative with
soil microbial communities, which was most likely
caused by artifacts associated with random sam-
pling processes. Such variations in technical repli-
cates could have substantial effects on estimating
b-diversity, but less on a-diversity. Therefore, great
caution should be taken when amplicon sequen-
cing-based detection is used for making quantitative
inferences about the b-diversity of microbial com-
munities. In addition, various strategies can be used
to improve the comparability of amplicon sequen-
cing data, including removing singleton sequences,
adding sequences together from technical repli-
cates, combining the sequences from both primers,
removing less frequently encountered OTUs across
biological replicates and increasing biological repli-
cates. Consistent with many previous studies,
application of the amplicon sequencing-based det-
ection approach to analyze microbial communities
from a long-term global change experiment revealed
clear differences in the composition and structure
of microbial communities between warming and
non-warming or between clipping and non-clipping.
These results suggest that if used appropriately,
amplicon sequencing-based detection is useful for
analyzing microbial community structure despite
the fact that it has several inherent drawbacks, such
as poor reproducibility and quantitation.
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