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SUMMARY
We consider regulatory clinical trials that required a pre-specified method for the comparison of
two treatments for chronic diseases (e.g. Chronic Obstructive Pulmonary Disease) in which
patients suffer deterioration in a longitudinal process until death occurs. We define a composite
endpoint structure that encompasses both the longitudinal data for deterioration and the time-to-
event data for death, and use multivariate time-to-event methods to assess treatment differences on
both data structures simultaneously, without a need for parametric assumptions or modeling. Our
method is straightforward to implement, and simulations show the method has robust power in
situations in which incomplete data could lead to lower than expected power for either the
longitudinal or survival data. We illustrate the method on data from a study of chronic lung
disease.
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1. Introduction
Many clinical trials evaluate treatment differences for both correlated longitudinal and time-
to-event data. For example, a confirmatory randomized clinical trial was conducted to
compare a test treatment versus control in patients with Chronic Obstructive Pulmonary
Disease (COPD). COPD is characterized by airflow limitation that is generally permanent
and progressive. Although treatments can slow the progression, the disease is considered
non-reversible. COPD often develops in long-time smokers and is typically diagnosed by
spirometry, a procedure that measures the amount of air entering and leaving the lungs. For
this COPD study, the investigators recorded the time to death within 3 years of
randomization, as well as repeated measurements at 6 month intervals for respiratory lung
function through , with this being the percentage of FEV1 (postbronchodilator forced
expiratory volume at 1 second) to the predicted lung function [1]. Lung function is expected
to deteriorate over time with death ultimately occurring, causing deterioration of lung
function and survival to be highly correlated. There are well-established methods for
analyzing the longitudinal and survival data separately, including the linear mixed model for
longitudinal data [2] and the Cox proportional hazards model for survival data [3]. However,
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separate analysis of the longitudinal and survival data may be inefficient or biased when the
longitudinal variable is correlated with the survival data [4], especially when incomplete
data for patients could lead to lower than expected power for either the longitudinal or time-
to-event data structure.

We focus on chronic diseases in which patients will experience deterioration in health
regardless of treatment, as is the case with COPD, Alzheimer’s Disease, Parkinson’s
Disease, and other such chronic disorders. In this context, the longitudinal data structure has
a quantitative measure of deterioration or function, such as a direct measure of respiratory
function (COPD) or cognitive function (Alzheimer’s Disease), and provides a relevant
endpoint in its own right as opposed to a surrogate endpoint. We identify clinically-relevant
thresholds in the longitudinal process and define multiple composite endpoints as the times
to reach these thresholds or death, whichever comes first. Multivariate semiparametric and
nonparametric methods are used to evaluate treatment differences on these composite time-
to-event endpoints. Our method is straightforward to implement using standard software
(SAS) and makes minimal or no assumptions regarding underlying distributions.
Simulations show that the proposed method can have robust power in situations in which
incomplete data for patients could lead to lower than expected power for either the
longitudinal or time-to-event data structures. Our method is primarily of interest for clinical
trials in a regulatory environment in which the primary comparison between two treatments
must have a priori specification.

Many methods exist for jointly modeling distributions of correlated longitudinal and time-
to-event data [4–12]. Although joint models may be conceptually appealing, they can be
computationally demanding, difficult to implement, and may require specialized software
[13]. Many of these methods make strong parametric assumptions regarding the longitudinal
and time-to-event processes [14,15] which may not be obvious and can be difficult to
validate. Nonparametric methods have been proposed for correlated longitudinal and time-
to-event data (e.g. [16,17]), but these methods typically require a ranking of the importance
of the outcomes, such as first comparing patients for time-to-event, and then comparing
patients on the longitudinal measure if the comparison for time-to-event is not possible. For
more complete reviews of joint modeling methods, see Hogan and Laird [13], Tsiatis and
Davidian [14], Yu [15], and Ibrahim [18]. In contrast to these joint modeling methods, this
manuscript focuses on a robust method for the comparison between treatments in regulatory
clinical trials by jointly incorporating information from the longitudinal and time-to-event
data. We recognize that joint modeling methods may additionally be of interest in regulatory
settings to gain a complete understanding of the data, but such methods may be better suited
as key secondary analyses and their discussion is beyond the scope of this paper.

The manuscript is organized as follows. In Section 2, we introduce the multivariate
composite endpoint methods used in our approach. In Section 3, we present simulation
studies that assess the type I error and power of our method relative to other methods. In
Section 4, we apply our method to a clinical trial involving chronic lung disease, and we
conclude with a discussion in Section 5.

2. Application of Multivariate Time-to-Event Methods
2.1. Wei-Lin-Weissfeld Method

Suppose there are M time-to-event endpoints. To apply the method of Wei et al. [19]
(referred to as the WLW method), one fits a marginal Cox proportional hazards model for
each of the M events
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(1)

in which βm = (βm1,…, βmp)′ is the vector of parameters for the mth marginal model,  is a
vector of baseline predictors, and λmi(t) is the hazard for subject i proportional to the

baseline hazard λm0(t). Let  be the vector of all parameters and

 be the maximum partial likelihood estimates from all M models. Wei et al.
[19] showed that the asymptotic distribution of β̂ is normal with mean β and variance V; a
consistent estimator V̂ of the variance is a function of the score residuals and information
matrix (see Appendix). Given the asymptotic normal distribution of β̂ and variance estimate
V̂, it is straightforward to construct a model-averaged log hazards ratio to summarize the
treatment effect. Let βe = (β1e,…, βMe)′ represent the vector of parameters for the marginal
treatment effect (e indexes the experimental or treatment effect). Wei et al. [19] suggested
estimating a model-averaged log hazards ratio using the estimate

(2)

with C as  and V̂e equal to the estimated covariance matrix of β ̂e
(constructed from the appropriate elements of V̂). This estimator was proposed as the
optimal estimator because it has the smallest asymptotic variance among all linear
estimators from β ̂e. Alternatively, Cequ = 1M/M would invoke equal weights, which can be
of interest for reasons given in Sections 3 and 5. A test statistic for comparing the average
log hazards ratio to 0 can be constructed as

(3)

which has an asymptotic chi-square distribution with one degree of freedom. In SAS version
9.1 one can obtain this test statistic directly using the procedure PROC PHREG (see SAS
documentation) or by fitting the marginal models and constructing the appropriate
covariance matrix using residuals (see Appendix).

2.2. Nonparametric ANCOVA
Logrank scores are quantities which are used in nonparametric testing procedures for
comparing the survival times of two or more groups with possible censoring [20,21]. These
scores are centered about zero starting with 1 and decreasing as endpoints lengthen (see
Appendix). For M time-to-event endpoints, logrank scores can be computed for each of the
M events separately to obtain M vectors of logrank scores. One can then use multivariate
nonparametric ANCOVA to evaluate a treatment effect on all outcomes simultaneously
adjusting for relevant covariables by weighted least squares methods that produce an
estimated treatment effect β̂ and corresponding variance estimate V̂β̂ [35,22]; here β̂ is the
estimated mean difference in logrank scores between the treatment groups (see Appendix).
This method restricts the vector(s) of differences between means for the covariates to zeros
on the basis of randomization. One can use (2) with Cequ to obtain an average difference in
logrank scores between treatments (averaged across the M events) and its corresponding test
statistic as given by (3). SAS macros are available to compute the logrank scores (please
contact authors) and to perform multivariate nonparametric ANCOVA for comparing two
treatment groups [23].
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2.3. Defining the Multivariate Outcomes
We define M clinically relevant cutpoints or thresholds in the longitudinal data structure and
use these cutpoints to construct (M + 1) “threshold endpoints”. We define the first M
threshold endpoints as the time to the mth cutpoint or terminating event (e.g. death),
whichever comes first, with the final threshold endpoint defined as the time to the
terminating event. Subjects who do not experience a threshold event in the study are
considered censored. Consider the study of COPD with  threshold events at ≤ 50% or
death (whichever comes first), ≤ 30% or death (whichever comes first), and death. Suppose
three subjects have  values and time of death as given in Table I. For subject A, the
first threshold event is observed at 18 months, the second at 24 months, and the third at 26
months. For subject B, all three threshold events are censored at 36 months. For subject C,
the first threshold event is observed at 6 months, and threshold events 2 and 3 are observed
at 11 months. For subject D, the first threshold event is observed at 18 months, the second at
36 months, and the third is censored.

Various definitions of the thresholds are possible depending on the clinical relevance (e.g.
requiring a longitudinal cutpoint to be sustained for two or more observations). The
definition of these thresholds should be tailored toward the clinical application such that the
interpretations of the threshold endpoints are clinically relevant. Because our method is
meant for regulatory environments that require prespecified analyses, these thresholds
should be defined a priori. In most relevant degenerative diseases, there are well established
cutpoints in the longitudinal data structure representing clinical diagnosis of the various
stages of the disease. In the absence of clinically based thresholds, one may choose
thresholds based on the expected range of the longitudinal data, thereby resulting in a range
of the number of events for each threshold event.

We implicitly make assumptions in both the WLW and logrank approaches. For the WLW
approach, we assume that the observed time to reach a given threshold event has an
underlying continuous nature and that the hazards ratio for reaching an event is constant
across time for treatment and each covariate in the model. We also assume that there is a
log-linear relationship between the explanatory variables and the underlying hazard
function. For the logrank approach, essentially the only assumption is that the patients are
randomized to their respective treatment groups. The logrank approach makes no modeling
assumptions and does not require a continuous failure time.

For a clinical trial in a regulatory environment, it is often not clear how to work with
correlated longitudinal and time-to-event data, nor is it clear as to whether the primary
hypothesis should be based on the longitudinal or time-to-event data. The power of a time-
to-event analysis would increase with a larger number of events, but this would also be
associated with increasing (informative) dropout and decreasing power for a longitudinal
analysis. Conversely, one has increasing power in a longitudinal analysis as missing data
due to terminating events decreases, implying fewer events and decreasing power in a time-
to-event analysis. Even in cases in which the amount of missing data is predictable, it may
be unknown which process is likely to have greater sensitivity to treatment differences. Our
method is attractive in such situations, as one can incorporate the composite endpoint
structure from our multivariate approach in the study protocol with the understanding that it
can lead to increased sensitivity to treatment differences compared to the standard
longitudinal and time-to-event approaches and at worst should lead to a “second best”
approach, as shown in simulation studies in Section 3. By specifying the multivariate
composite endpoint approach as the primary analysis a priori, one can reduce the risk of
selecting the data structure with poorer sensitivity to treatment differences and have a
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reasonably good chance of selecting an approach with better sensitivity to treatment
differences, as shown in simulation studies in Section 3.

3. Simulation Studies
We conducted two simulations to evaluate the performance of our multivariate composite
endpoint approach (using the WLW or logrank strategy) relative to standard methods using
either of the longitudinal or survival data structures separately and to the joint model of
Henderson et al. [6]. Our proposed approach is most useful in settings with a small to
moderate treatment effect on both the longitudinal and survival data structures and fairly
large samples sizes (e.g. ≥ 300 per group). If the treatment effect were known to be large in
one or both of these processes a priori, there would be little need for our method. We first
simulated the longitudinal data with a trend over time for the mean and a random intercept
inducing an exchangeable correlation structure. We then generated terminating events using
a piecewise exponential model at fixed time points. The hazard function depended on
treatment, baseline covariates, and the population mean of the longitudinal variable for a
given interval. In the second simulation, we simulated the longitudinal data in the same
format as the first simulation, but we simulated deaths based upon subjects reaching a pre-
determined threshold for the longitudinal variable. When subjects reach this threshold, the
probability of death was set to 0.6 for each observed Yij below the threshold. We compare
the methods based on power and type I error.

3.1. Comparing Methods
Let Yij be the longitudinal response of subject i at observation j, for i = 1,…,n and j = 1,
…,ni. Additionally, let yi0 be the baseline value of the observed response (the longitudinal
response at randomization) and xi be the treatment indicator. Let Ti denote the time to death
of the ith subject, and Zi = min(Ti,Ui), in which Ui is a censoring time for survival of patient
i. In both simulation setups we compare the following methods:

• WLW1: The standard WLW approach using the optimal estimator of Wei et al.

[19], i.e. , which weights the marginal estimates by the
inverse of the covariance matrix. Using threshold events, one will observe a greater
number of events for earlier cutpoints; hence the optimal estimator places more
weight on estimates from the earlier cutpoints compared to those from later
cutpoints.

• WLW2: A modified WLW approach using Cequ = (0.25, 0.25, 0.25, 0.25)′ that
weights the marginal estimates equally, and is clinically justified by equal interest
in all thresholds.

• LR: The multivariate logrank analysis using nonparametric ANCOVA based on the
test statistic with equal weights, i.e. Cequ = (0.25, 0.25, 0.25, 0.25)′.

• Cox: A Cox proportional hazards model of the form

(4)

in which λi(t) is the hazard of subject i at time t, λ0(t) is an unspecified baseline
hazard function at time t, and γ1 and γ2 are parameters indicating treatment and
baseline measurement effects, respectively. To account for tied event times, we use
both the approximation of Efron [24] and the discrete logistic likelihood.

• LM1: A linear mixed model (with missing data due to failure) evaluating the
treatment main effect,
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(5)

in which tij is the observation time for subject i and observation j, β0 is a model
intercept, bi0 is a random subject intercept, and εij is the residual error. We assume
εij ~N(0, σ2) independent of bi0 ~N(0, ψ).

• LM2: A linear mixed model with time as a class variable (i.e. using indicator
variables for each time point) and a time by treatment interaction. The treatment
effect is evaluated at the last time point in which at least 50% of the subjects have
an observed response. Observations are discarded for the later time points with
fewer than 5% observed data, as this would not allow for precise estimates of the
time effect and treatment by time interaction at these time points.

• Hen: A joint model based on the method of Henderson et al. [6] using SAS code
from Guo and Carlin [4]. The longitudinal process takes the form of (5), and the
time to event Ti follows an exponential distribution with hazard function

(6)

in which γ0 determines the baseline hazard function and γ1, γ2, and γ3 indicate the
effect of the treatment, baseline measurement, and random coefficient, respectively.
The longitudinal and survival processes are linked through the random coefficient
bi0. A joint test H0 : β2 = γ1 = 0 will test for a treatment effect in both the
longitudinal and survival processes simultaneously. This joint model assumes a
constant hazard over time.

3.2. Simulation One
To generate the longitudinal data, we set n = 600 and sampled ε ~ N(0, 1), bi0 ~ N(0, 1), and
calculated

(7)

in which β1 = (0, −0.2, −0.5) and β2 = (0, .01, .02, .03, .04, .05) in different settings, with xi
~Bernoulli(0.5) and tij = j for j = (1,…,10). We calculated a baseline value yi0 = bi0 + εij to
be used as a predictor for the various methods. We then generated the time-to-event data
using a piecewise exponential model with hazard function

(8)

for the interval (j − 1, j], in which E(Yij) is the expected value of the longitudinal outcome,
γ0 = −2, γ1 = −0.5, and γ2 = (0, −.05, −.10, −.15) over the simulations. For subject i with
death in the interval (j − 1, j], we set Yij and all subsequent Yij to missing. We generated
5,000 datasets and calculate type I error rates and power at the α = 0.05 significance level.
The threshold endpoints for both simulations were defined as time to the 1st, 2nd, and 3rd
quartiles of the individual minimum longitudinal values or time to death, whichever comes
first. To determine these thresholds, one obtains a minimum longitudinal value for each
subject and then uses the quartiles of these values across all subjects as the threshold
cutpoints. Although we recommend clinically relevant thresholds in practice, this default
approach used in the simulation allows one to choose cutpoints that encompass the range of
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longitudinal values. This ensures a reasonable range in the number of events for each of the
threshold events and thereby extracts useful information from the longitudinal process.

With the exception of Henderson’s joint model, which was overly conservative, all methods
consistently preserved the type I error rate at 0.05. In general, the WLW approach had
slightly greater power than the logrank approach. With minimal sensitivity to treatment
differences in the longitudinal process (β2 = 0, 0.01), the Cox model had the greatest power,
followed by the multivariate composite endpoint methods and then the linear mixed models.
For cases with no direct treatment effect on survival (i.e. γ2 = 0, although treatment
indirectly impacts survival through γ1), the linear mixed model LM generally had the
greatest power, followed by the multivariate composite endpoint methods and then the Cox
model. Generally, for cases in which the longitudinal and time-to-event processes displayed
somewhat equal sensitivity to treatment differences, the multivariate composite endpoint
methods had greater power for detecting a treatment effect than either the Cox or linear
mixed models. Also, the modified (weighted) WLW approach (WLW2) had greater power
than WLW1. The performance of Henderson’s joint model varied over the simulations. It
generally had less power than the multivariate composite endpoint approaches for β1 =
(−0.2, −0.5) (more longitudinal dropouts induced by failure), and greater power for β1 = 0
(fewer longitudinal dropouts).

Figure 1 displays the power of the various methods for detecting a treatment effect for β1 =
(−0.2, −0.5), β2 = (0.04, 0.05), and γ2 = (0, −0.05, −0.15). These parameters were selected
for the graphical display to show different situations for which different methods performed
best relative to the others. For cases in which treatment does not directly impact survival (γ2
= 0), the linear mixed models LM1 and LM2 have the greatest power, followed by the
multivariate composite endpoint approaches, and then the Cox model. For datasets with
greater sensitivity to treatment differences in the time-to-event process (γ2 = −0.15), the
multivariate composite endpoint approach and Cox model have about equal power, while the
linear mixed models LM1 and LM2 have the least power. Henderson’s joint model is very
competitive compared to the other methods in the case of little missing data (β1 = 0) but has
fairly low power with increased missing data (β1 = −0.5) in the longitudinal process due to
death.

We conducted three-way comparisons of WLW2, Cox, and LM1, as well as the logrank, Cox
and LM1, by ranking each method as best, 2nd best, or 3rd best of the three methods with
respect to power (excluding parameter settings with null treatment differences). The WLW2
and logrank methods performed best in 39% and 30% of the simulations (respectively),
performed 2nd best in 61% and 70% of the simulations (respectively), and never performed
the worst (0%).

3.3. Simulation Two
The second simulation generated the longitudinal data in the same manner but simulated
deaths based on an increased probability of death upon reaching a pre-determined threshold
for the longitudinal data rather than assuming the piecewise exponential model. We set the
probability of death equal to 0.6 at all time points with Yij < −2.5. For subject i with death
event at time j, we set Yij and all subsequent Yij to missing (and manage the patient as death
at time j). Note in this setup, a subject may have technically died in the interval (j − 1, j] but
may not have an observed death until time j. We sampled 5,000 datasets and calculated type
I error rates and power at the α = 0.05 significance level. We used the same parameter
values as simulation one, except β2 = (0, .02, .03, .04, .06, .08) and β1 = (−0.05, −0.15,
−0.20, −0.25, −0.30, −0.40, −0.50, −0.70, −0.90, −1.4). One could view the failure times
for the terminating event as interval-censored because deaths can only occur at j = (1,…,J).
Hence we used the discrete logistic likelihood for the Cox survival model.
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With the exception of Henderson’s joint model, which again was overly conservative, all
methods consistently preserved the type I error rate at 0.05. In general, the logrank approach
had slightly greater power than the WLW method, but the difference was minimal. For data
sets with small amounts of missing data in the longitudinal outcome due to failure, i.e. <
20% (β1 ≤ −0.15), the linear mixed models performed best, followed by the multivariate
composite endpoint methods and then the Cox model. For data sets with 20% to 50%
missing data due to failure (−0.15 ≤ β1 ≤ −0.5), the multivariate composite endpoint
approaches performed best, followed by the Cox model and then the linear mixed models.
For data sets with 50% to 70% missing data (−0.70 ≤ β1 ≤ −0.90), the multivariate
composite endpoint approaches again performed best, followed by LM1, the Cox model, and
then LM2. For data sets with greater than 70% missing data (β1 = −1.4), LM1 performs best
followed by the multivariate composite endpoint methods, LM2, and the Cox model. The
modified WLW approach (WLW2) again had greater power than WLW1. Henderson’s
model had less power than the multivariate composite endpoint approaches for all
simulations except β1 ≤ −0.15 (little missing data), with particularly low power (and below
nominal type I error) when there was a large amount of missing data due to failure.

Figure 2 displays the power of the respective methods of detecting a treatment effect for β2
= (0.02, 0.05, 0.08) and β1 = (−0.05, −0.4, −0.9). For datasets with substantially greater
sensitivity to treatment differences in the longitudinal process compared to the survival
process (β2 = 0.05, β1 = −0.05), the linear mixed models have better power than the other
methods, followed by Henderson’s joint model, the multivariate composite endpoint
methods, and then the Cox model. For datasets with about equal sensitivity to treatment
differences in the survival and longitudinal processes, the multivariate composite endpoint
methods generally have better power than the Cox model, linear mixed models, and
Henderson’s joint model. For the three-way comparisons of the WLW2/logrank to the Cox
and LM1, the WLW2 and logrank methods performed best in 73% and 78% of the
simulations (respectively), performed 2nd best in 27% and 22% of the simulations
(respectively), and never performed the worst (0%).

4. Application
We illustrate our method for a clinical trial for 2,000 patients with COPD. Due to reasons of
confidentiality, these patients (1,000 test treatment and 1,000 control) correspond to a
random sample from the true study population, in which patients were randomized to either
test treatment or control in permuted blocks with stratification by country and smoking
status. Based on the GOLD criteria [25], the disease can be classified as mild

, moderate , severe , and very
severe , with all criteria requiring the ratio of FEV1 to FVC (forced vital
capacity) to be less than 0.70.

We first evaluated the treatment effect on time to death within 3 years (the primary endpoint
from the original study) using a Cox proportional hazards model with the following
explanatory variables: treatment, baseline , current smoking status (yes, no), age
categories (< 55, 55–64, 65–74, ≥ 75), gender, body mass index categories (< 20, 20–25,
25–29, ≥ 29), race (white, other), and geographical region (USA, Asia-Pacific, Eastern
Europe, Western Europe, other). Of the 2,000 patients, there were 139 deaths (13.9%) for
patients on the test treatment and 153 deaths (15.3%) for patients on control. The estimated
hazard ratio for test treatment versus control after adjustment for the covariates is 0.82 (p-
value = 0.09) with a 95% confidence interval of (0.65,1.03), which is not statistically
significant at α = 0.05.
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We analyzed the longitudinal data for  with a linear mixed model (LM2) with the same
explanatory variables as the Cox model, but also including time categories (6, 12, 18, 24, 20,
and 36 months) and a treatment by time interaction. The observation time was regarded as a
class variable through indicator variables for each observation time, and a random intercept
was used to account for the intra-subject correlation. A total of 8,372 observations from
1,703 subjects were available for this longitudinal analysis. 68% of these 1,703 patients had
observed  measurements at the 3 year mark, and 18% of the observations were missing
across all possible (1703 × 6) measurements, mostly due to death. We evaluated the
treatment difference at the last observation time (3 years), resulting in an estimated
difference of 1.94 percentage points (p-value ≤ 0.0001) with a 95% confidence interval of
(1.0%, 2.9%) in favor of subjects on test treatment versus control.

We implemented the composite endpoint structure from the multivariate approaches to
evaluate both data structures simultaneously, adjusting for baseline , current smoking
status, age, gender, body mass index, race, and region. We defined the threshold events as
time to  < 50% or death, time to  < 30% or death, and time to death, in which the
cutpoints were based on the GOLD criteria [25] corresponding to severe and very severe
COPD (99% of the subjects entered the study with at least moderate COPD). For subjects
with no  measurements and death (or censored) times greater than 130 days, we
censored the first two threshold events at 130 days, the earliest time at which an 
measurement was recorded.

The estimated differences in mean logrank scores are −0.074, −0.015, −0.024 for the three
threshold events, respectively. The average difference in logrank scores for test treatment
versus control using multivariate nonparametric ANCOVA is −0.04 (p-value = 0.005),
indicating extended survival times for reaching a threshold event for treatment compared to
control. The goodness of fit test (p-value = 0.41) supports compatibility with the expected
balance for covariates from randomization between treatments. The respective marginal
hazards ratios for the WLW approach are 0.86, 0.88, and 0.82. Using the optimal estimator,
the WLW1 hazards ratio is 0.86 (p-value≤0.0001) with a 95% CI of (0.81,0.92). The
modified estimator WLW2 has a hazards ratio of 0.86 (p-value=0.008) with a 95%
confidence interval of (0.77, 0.96), indicating lower hazards of reaching a threshold event
for treatment compared to control

In these data, the sensitivity to treatment differences is much smaller in the time-to-event
process (p-value = 0.09) than the longitudinal process (p-value ≤ 0.0001). Because the
multivariate composite approaches incorporate information from both processes, the
sensitivity to treatment differences of the logrank and WLW approaches is somewhere
between that of the longitudinal and time-to-event approaches, resulting in statistically
significant differences between treatment and control (in favor of the treatment). The
investigators of this study had prior evidence of a strong treatment effect on FEV1 and
conducted this study specifically to evaluate the treatment effect on mortality. However, had
the investigators been equally interested in both longitudinal and survival endpoints a priori,
a better approach may have been to specify a composite endpoint structure with either the
logrank or WLW approach as the primary analysis, which can have more robust sensitivity
to treatment differences. Also, to the extent to which the thresholds for the longitudinal data
are clinically meaningful, such an analysis could be more clinically interpretable than an
analysis based on the difference in means in the longitudinal process.
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5. Discussion
Our simulation studies show two examples in which the proposed composite endpoint
approach consistently performs better than at least one of the standard longitudinal or time-
to-event approaches. This finding makes our method very attractive in regulatory settings
that require prespecified analyses, because many investigators would rather be guaranteed
their method does not have the worst power, and are satisfied with a method that performs
better than either one or both of the Cox and linear models. Our method was also shown to
have better overall performance (with respect to power and type I error), easier computation,
and less restrictive assumptions than the joint model approach of Henderson et al. [6].

In our simulations, the use of equal weights (WLW2) provided better performance than the
“optimal” weights (WLW1) in both simulations. We investigated several alternatives for the
weights in both multivariate composite endpoint approaches and found that our methods are
not overly sensitive to the specification of weights (excluding the weighted inverse matrix
CWLW) and one can use a smaller number of cutpoints in the longitudinal process (M = 1, 2
resulting in 2 or 3 threshold endpoints) to achieve a similar result. In practice, there is
typically greater clinical interest in the more severe thresholds, but these thresholds also
contain less information than the less severe thresholds due to a smaller number of events.
The use of equal weights is an attempt to balance the precision obtained from the less severe
thresholds with the clinical relevance of the more severe thresholds. Additionally, if one
takes the view that the hazards ratios across the thresholds are similar, then an average of the
hazards ratios is a justifiable summary measure. Similar weighting issues arise in clinical
trials with multiple endpoints, in which Pocock [26] and Pocock et. al. [27] recommend
equal weights for the global test statistic of comparing two treatment groups with k
correlated endpoints. Other weighting schemes based on the inverse of the covariance matrix
exist [28], but these “optimal” weights can lead to undesirable and counterintuitive
weighting structures (e.g. negative weights) [26,29]. Hence we recommend the use of equal
weights for most applications.

The WLW and logrank approaches had very similar performance in our simulations with
respect to power and type I error. The logrank approach makes fewer assumptions than the
WLW approach but does not provide an interpretable point estimate or confidence interval
to describe the magnitude of the treatment effect. In contrast, the WLW method provides an
interpretable estimate (hazards ratio) and corresponding confidence interval, and can easily
accommodate extensions to address treatment by covariable interactions. If there are
concerns about the correctness of the proportional hazards model, we recommend specifying
the logrank approach as the primary evaluation of the treatment effect and using the WLW
method as a supportive analysis, which agrees with the approach of Koch et al. [30] for
incorporating both non-parametric and hazard ratio estimation procedures in an analysis
plan. One could also incorporate joint modeling methods [4–12] as key secondary analyses
to gain a better understanding of the data.

The WLW approach assumes that failure time (e.g. time to a threshold event) is continuous.
However, because longitudinal measurements are usually taken at fixed time points, there is
some ambiguity as to whether the continuous time assumption is satisfied for the threshold
endpoints in our applications. Extensions of the WLW approach for grouped failure time
and interval censored data are available in the literature [31,32,33], but these methods are
not easily implemented in standard statistical software packages and are not current practical
alternatives. Despite this concern, our simulations did not show adversity for type I error.

We note that it is possible for subjects to have intermittent periods of recovery in the
longitudinal process after reaching a certain stage of deterioration (e.g. they may reach a
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threshold event, experience recovery, and then reach the same threshold event again). For
example, see Table I, in which subject D experiences a threshold 1 event at 18 months, has
some recovery, and crosses threshold 1 again at 30 months. Although our method does not
account for the second occurrence of a threshold event, the intermittent recovery naturally
delays the time at which the next more severe threshold event is observed (when compared
to subject A). Hence our method indirectly takes into account the intermittent recoveries by
assessing more than one threshold. If the times to first occurrences of the respective
threshold events are longer for treatment compared to control, then the treatment has
produced a benefit to the patients, regardless of whether intermittent recoveries caused some
threshold events to be observed more than once. We recognize that joint modeling methods
[4–12] may more completely describe the longitudinal trajectory, and hence may be useful
as key secondary analyses.

Our method is primarily intended for comparing two treatments in regulatory environments
in which the primary analysis must be specified a priori. Extensions for comparing three or
more treatments are possible but are beyond the scope of this paper. Our method is useful
when treatment is expected to affect both longitudinal and time-to-event data, and it
provides a composite endpoint structure with control of type I error for addressing the null
hypothesis of no treatment difference. It has some analogy to more common composite
endpoints, such as cardiovascular studies in which both the time to the first of myocardial
infarction or death and time to death are of interest as primary outcomes. Typically, the
design of a trial incorporating our method would involve having adequate power for both the
longitudinal endpoint and the time-to-event endpoint, such that each of the separate analyses
could have secondary roles for better understanding of the treatment effect (even if our
method was used as the primary method). One could also base the power for the analysis on
either of separate endpoints but use our method as the primary analysis, which will provide
assurance that the study does not have severe loss of power due to deaths, dropout, or under-
estimation of the true effect size.

The example in this article is based on a random sample from a true clinical trial that was
conducted to compare three test treatments with placebo for patients with COPD. The
background, design, results, and interpretation of this trial are reported by Calverley [34].
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Appendix

A.1. The Wei-Lin-Weissfeld Method
Wei et al. [19] showed that

(A.1)

in which V is estimated by

(A.2)

The estimated covariance matrix V̂ is composed of the sub-matrices V̂mm′ = (Rm Âm)′(Rm′
Âm′), in which Âm is the inverse of the information matrix and Rm is the matrix of score
residuals for event outcome m. Conveniently, the quantity Rm Âm is common output in most
software packages and is known as the matrix of “dfbeta” residuals. The “dfbeta” residuals
represent the approximate change in a parameter estimate when the ith observation is
omitted. It follows that the asymptotic covariance matrix of β̂ can be obtained as a function
of the “dfbeta” residuals.

A.2. Nonparametric Analysis of Covariance with Logrank Scores
Let nj be the number of observations at risk at the beginning of the jth interval,
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(A.3)

in which N is the sample size, nk0 is the number of censored observations in the kth interval,
and nk1 is the number of observed endpoints in the kth interval. Then the logrank scores for
the jth interval are

(A.4)

in which d = 1 for observed endpoints and d = 0 for censored endpoints.

Suppose we are interested in comparing two treatments for logrank scores for M outcomes,
adjusting for p covariates. Let treatment i have sample size ni, mean response ȳi of
dimension (M × 1) for logrank scores and a mean of covariates x̄i of dimension (p × 1). Let d
= (ȳ1 − ȳ2) and u = (x̄1 − x̄2). We fit the model

(A.5)

using weighted least squares with weights based on the covariance matrix V0. Under H0,

(A.6)

in which ȳ and x̄ are means for all patients with treatments ignored [35,22]. The weighted
least squares estimator β̂ is obtained from

(A.7)

and its estimated covariance matrix is given by

(A.8)

A criterion for departures from (A.5) in terms of random imbalances takes the form

(A.9)

in which f ̂ = Xβ̂. The statistic Q approximately has a chi-square distribution with p degrees
of freedom and addresses the amount of random imbalance in the covariates at
randomization.
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Figure 1.
Simulation One: Power
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Figure 2.
Simulation Two: Power
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