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Abstract
There is an abundance of literature on complex networks describing a variety of relationships
among units in social, biological, and technological systems. Such networks, consisting of
interconnected nodes, are often self-organized, naturally emerging without any overarching
designs on topological structure yet enabling efficient interactions among nodes. Here we show
that the number of nodes and the density of connections in such self-organized networks exhibit a
power law relationship. We examined the size and connection density of 47 self-organizing
networks of various biological, social, and technological origins, and found that the size-density
relationship follows a fractal relationship spanning over 6 orders of magnitude. This finding
indicates that there is an optimal connection density in self-organized networks following fractal
scaling regardless of their sizes.

1. Introduction
There has been considerable interest in the organization of complex networks since the
descriptions of small-world [1] and scale-free [2] networks at the end of the 1990s. Of
particular interest are naturally occurring complex networks based on self-organizing
principles [2]. In particular, self-organized processes have been shown to exhibit some
scale-free and fractal behaviors [2, 3]. Barabási and colleagues demonstrated that scale-free
degree distributions in many self-organized networks [2, 4–6], which has sparked a great
debate [7–9] on the actual existence of scale-free behavior in naturally occurring networks.
Although the degree distributions of many networks were initially considered to follow
power law distributions [9–13], severe truncation has often been observed [14].
Nevertheless, it is intriguing that self-organized networks can exhibit scale-free degree
distributions, and this has led scientists to the search for universality within self-organized
systems.
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The literature on network organization encompasses a broad range of disciplines and
disparate types of networks. The literature boasts networks that range from email
communications to protein interactions to word frequencies in texts. The number of nodes
and the density of connections in these networks span multiple orders of magnitude,
complicating comparisons of metrics extracted from various studies. One common
characteristic, however, is that the majority of them are self-organized–from social to
technological to biological networks, the interactions between the nodes were not
predetermined by a top-down blueprint design. Despite this lack of top-down design, some
self-organized networks exhibit interesting characteristics associated with the connection
density and the network size. For example, utility networks from different countries in
Europe tend to have similar average degrees although these networks tremendously differ in
size [15, 16]. Another interesting observation is that the density of connections in social
networks seems to decay non-linearly as the size of the network increases [17]. These
observations suggest that there may be an underlying relationship between the size (the
number of nodes, N) and the connection density (the ratio of the number of existing edges to
the number of all possible connections, d) in these network. Although these findings are
based on particular types of networks, it is possible that this relationship is universal to all
types of self-organized networks. Thus, in this work, we examined any universal
relationship between network size and connection density, as well as the average node
degree, across various types of systems.

2. Methods and Materials
Network parameters from 47 unique networks were collected from the literature or publicly
available databases. Table 1 lists N and d, as well as the average node degree K and the total
number of edges m from these networks. Although d and/or K have been reported in some of
these networks, these metrics are recalculated based on N and m for consistency. Namely,
we use the formulae d = 2m/N(N − 1) and K = 2m/N. Although some of the networks are
directed networks, we use the formulae for undirected networks in order to focus on the
density of connections regardless of their directions. Note that, from these formulae, the
relationship between K and d can be expressed as d = K/(N − 1). If N is sufficiently large, d
≃ K/N.

In this data set, the relationship between N and d was examined. In particular, d was
expressed as an exponent function of N (i.e., d ∝ N−γ) and the exponent describing the
power-law relationship γ was determined. Moreover, the relationship between N and K was
also examined in a similar manner. If the observations by [15, 16] extends to other types of
networks, K should remain approximately constant over the range of N.

3. Results
When the network size N and the connection density d are plotted on a log-log plot (Figure
1), there is an obvious linear relationship between the variables. The fit to the data (d =
7.890N−0.986) reveals a power law relationship between the size and density of the networks.
The scaling exponent approaches negative one (−1), indicating that the relationship is fractal
in nature with 1/f properties. Despite the wide variety of networks, there is a pronounced
power law relationship between the size and the density covering more than 6 orders of
magnitude. The fit to the data is very strong (R2 = 0.928 on log10 transformed data), and
there is no indication of truncation at the very large network sizes. It can be seen from
Figure 1 that there are two extraordinarily large networks included in the analysis. These
networks demonstrate that there is no truncation of the relationship at the extreme values.
Even when these networks are removed, the correlation remains very strong (R2 = 0.893)
and the exponent is −0.978. Thus, these two points are not unduly influencing the analysis.
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When N is sufficiently large, a consequence of a power-law relationship d ∝ N−1 is that K
does not depend on N. This stems from the relationship d ≃ K/N, which can be rewritten as
K ≃ dN = cN−1N = c where c is a constant. Since our observation above indicates a power-
law relationship between d and N with the exponent approximately −1, the scatter plot of K
and N does not indicate any association between them (see Figure 2). In other words, a large
network size in terms of N is not necessarily associated with large K. It is interesting to note,
in Figure 2, that there seems to be a small number of networks with unusually large K
compared to the other networks. This is likely a consequence of the mean degree K having a
long-tail distribution, as seen in its cumulative distribution plot in Figure 3. In this type of
distributions, outliers such as K > 50 are likely to occur while the vast majority of K is
reasonably small and similar. These outliers seem to occur over the range of N, indicating
that such outliers occur randomly without any systematic dependance on N.

4. Discussion
The findings reported here demonstrate a universal relationship in self-organized networks
such that the network size dictates the density. The fractal behavior observed is of particular
interest because it indicates that self-organized networks are critically organized. The
number of connections within each network is scaled to the size of the network, and this
universal behavior likely represents an optimal organization that ensures maximal capacity
at a minimal cost. Furthermore, the critical organization would indicate that a density
reduction would decrease the communication capabilities of the system. Interestingly, this
relationship maintains the mean degree K approximately constant across different network
sizes. A similar finding has been reported on the mean degree of the gas and power networks
from European countries despite the large disparity in the network size [15, 16]. Our
findings further generalizes the constant mean degree K in a variety of network types. It
should be noted that the relationship d ∝ N−1 is not expected from the relationship d ≃ K/N
alone, as K could also depend on N rather than being constant. To the best of our knowledge,
this work is the first to demonstrate the power-law relationship between d and N, and
consequently K being almost constant over 6 orders of magnitude of N.

The relationship d ∝ N−1 is not surprising if one considers the emergence of a giant
component in an Erdős-Rényi (ER)-type random graph. In an ER random graph, a giant
component, or a large cluster of nodes comprising a large proportion of a network, emerges
if the connection density d is above the percolation threshold pc = 1/N [50, 51]. At d = pc,
the corresponding value of K is unity, but the observed K’s in real networks are always
larger than unity as seen in Table 1. There are some possible explanations for this. First,
most of the networks listed in Table 1 are not formed in the same way as an ER random
graph, but in much different mechanisms resulting in long-tail degree distributions [2, 14].
In such networks, the phase transition for formation of a giant component occurs at a
different threshold than that of the ER random graphs [52]. Secondly, the actual connection
density d in the observed networks may be elevated compared to the percolation threshold
pc, resulting in K being larger than unity. This may be because the networks in Table 1 may
only represent the giant component of a much larger network which includes many small
isolated clusters. In other words, only a portion of the network that happened to form a
connected cluster is observed, and the connection density in such a cluster may be slightly
elevated compared to pc just because all the nodes are connected to that cluster.

It is true that one could artificially generate networks that do not exhibit the size-density
relationship found above. In fact, the literature contains such artificially generated networks
that do not lie near our plotted line. However, such artificially created networks probably do
not have real world relevance. We show here the scale-free relationship between network
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size and connection density in real networks from such diverse origins, supporting the
notion of a universal law for network organization.

While replication of these findings from additional networks will be important, there are a
number of practical implications of these findings. First, the construction of networks is
inherently limited by the sampling procedure used to identify nodes and links. If a self-
organized network is found to disobey this relationship, one should seriously consider that
there was a bias in the sampling of the network structure. Second, when building artificial
networks to be compared to naturally occurring systems, the size-density relationship should
roughly follow the 1/f relationship. For example, in studies of functional brain networks,
cross-correlation matrices of nodal time series are often thresholded to identify links
between nodes [53]. The optimal threshold to be applied is not known, and the typical
solution is to utilize multiple thresholds [54] producing networks with various densities.
Based on the findings presented here, an optimal threshold can be easily determined,
resulting in a network following the 1/f size-density relationship. Finally, engineered
networks for practical applications may realize an optimal cost-benefit trade-off by ensuring
that the density of connections is appropriate for the network size.

5. Conclusion
We show an important, apparently universal feature of self-organized networks: fractal
scaling of size and density of connections. This fractal scaling is independent of network
types, as the analysis spanned a wide gamut of networks, including biological, information,
social, and technological. Thus, it appears that there is an underlying principle to organizing
these self-emergent networks, a principle that probably ensures optimal network
functioning.
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Research Highlights

• Network size and connection density exhibit a power-law relationship

• Fractal scaling size-density relationship spans over 6 orders of magnitude

• Average degree does not depend on network size in self-organized networks
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Figure 1.
Log-log plot of the relationship between the number of nodes in a network (network size, N)
and the density of connections (d). Each point represents a different network based on the
previous literature. The fit shows a power-law relationship that spans more than 6 orders of
magnitude with an exponent of -0.986 consistent with a scale-free fractal behavior.
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Figure 2.
A scatter plot of the mean degree K of various networks plotted against their network size N.
Surprisingly, K does not change systematically over 6 orders of magnitude of N.
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Figure 3.
The complementary cumulative distribution (1 − F(K)) of the mean degree K. The
distribution exhibits a profile of a long-tail distribution despite the limited number of
observations (47 networks).
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