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Abstract

Determining the body fluids where secreted proteins can be secreted into is important for protein function annotation and
disease biomarker discovery. In this study, we developed a network-based method to predict which kind of body fluids
human proteins can be secreted into. For a newly constructed benchmark dataset that consists of 529 human-secreted
proteins, the prediction accuracy for the most possible body fluid location predicted by our method via the jackknife test
was 79.02%, significantly higher than the success rate by a random guess (29.36%). The likelihood that the predicted body
fluids of the first four orders contain all the true body fluids where the proteins can be secreted into is 62.94%. Our method
was further demonstrated with two independent datasets: one contains 57 proteins that can be secreted into blood; while
the other contains 61 proteins that can be secreted into plasma/serum and were possible biomarkers associated with
various cancers. For the 57 proteins in first dataset, 55 were correctly predicted as blood-secrete proteins. For the 61
proteins in the second dataset, 58 were predicted to be most possible in plasma/serum. These encouraging results indicate
that the network-based prediction method is quite promising. It is anticipated that the method will benefit the relevant
areas for both basic research and drug development.
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Introduction

Protein secretion is a universal biological process occurring in all

organisms. Secreted proteins such as hormones, digestive enzymes,

neurotransmitters as well as antibodies, play vital regulatory roles

in various biological activities such as reproduction, digestion,

nerve conduction and immunization [1]. The studies on the

secreted proteins under different physiological and pathological

conditions in different growth and development stages can deepen

the understanding of many biological phenomena. Under the

condition of the disease, some secreted proteins showed abnormal

concentration level [2]. In recent years, several genes encoding

secreted proteins have been found to be consistently over-

expressed in various cancer specimens [3,4,5]. For example,

MIC1 gene has been observed to be over-expressed in breast,

colorectal and prostate cancer patients [5]. These proteins that

could be detected in blood, urine or other body fluids are more

suitable to serve as biomarkers for diagnosis [6]. This is because

the body fluid test (e.g. blood test or urine test) is less invasive,

cheaper, and easier to collect and process samples than tissue

biopsy test [7,8] since the latter requires surgery to get the disease

tissues. Besides, identification of body fluids where proteins can be

secreted into is very helpful for protein function annotation and

biomarker discovery.

However, how to realize the identification is still a big challenge

even having the advanced proteomics technologies because there

are a large amount of proteins with a variety of modifications in

body fluids [8]. To address this problem, let us resort to

computational approaches. In the past two decades, many studies

have focused on predicting the subcellular locations of proteins in

both prokaryotes and eukaryotes (see, e.g., [9,10,11,12,13,14,15,

16,17,18,19,20,21] as well as a long list of the relevant references

in a comprehensive review [22]). Unfortunately, none of the

aforementioned methods was aimed at identifying the final

locations where the extracellular proteins are secreted. The

present study was initiated in an attempt to address this problem,

with a focus on human secreted proteins and a novel approach via

protein-protein interaction (PPI) network.

According to a recent comprehensive review [23], to establish a

really useful statistical predictor for a protein system, we need to

consider the following procedures: (i) construct or select a valid

benchmark dataset to train and test the predictor; (ii) formulate the

protein samples with an effective mathematical expression that can

truly reflect their intrinsic correlation with the attribute to be

predicted; (iii) introduce or develop a powerful algorithm (or

engine) to operate the prediction; (iv) properly perform cross-

validation tests to objectively evaluate the anticipated accuracy of

the predictor. Below, let us describe how to deal with these steps.

Materials and Methods

Training dataset
The human secreted proteins were retrieved from UniProt [24].

The detailed procedures for collecting the human secreted protein
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sequences are as follows. (1) Open the web-page at http://www.

uniprot.org/ (Release 2011_05). (2) Click the button ‘‘Fields’’,

followed by selecting ‘‘Subcellular location’’ for Advanced
Search, ‘‘Secreted’’ for Term, ‘‘Homo sapiens’’ for Organism,

and ‘‘Experimental’’ for Confidence. (3) Click Add & Search.

Thus we collected a total of 1,019 experiment-validated human

secreted proteins. Subsequently, these proteins were mapped to 11

different kinds of body fluids contained in the human body fluid

database ‘‘Sys-BodyFluid’’ [25] (http://lifecenter.sgst.cn/bodyfluid/),

where the body fluid proteome data was manually collected from 50

peer-review publications. Finally, a total of 682 human proteins

have been obtained that can be secreted into the aforementioned

body fluids.

The human protein-protein interaction (PPI) networks were

retrieved from STRING [26,27] (http://string.embl.de/), which is

a database dedicated to both physical and functional interactions.

Information derived from 3 kinds of sources (high-throughput

experiments, mining of databases and literature, and prediction

from genomic context analysis) was integrated into several PPI

networks. As done by previous investigators in using the intuitive

graphic representation to deal with complicated biological systems,

such as enzyme-catalyzed system [28,29,30], protein-folding

system [31], and drug metabolism system [32], here the PPI

network can also be intuitively expressed via a graph, in which

each of the proteins is represented by a node, and the interaction is

represented by the edge between two nodes. The edge is weighted

by the interaction confidence, i.e., the likelihood that the inter-

action exists between two nodes. The interaction confidence score

of two proteins is obtained as follows: first, the interactions from

each source were scored by benchmarking them against a com-

mon reference set; then these scores were combined in the naive

Bayesian fashion [26].

Of the 682 human secreted proteins, we have found that 153

proteins have no PPI information nor interact with any of the

other secreted proteins, while 529 proteins interact with at least

one of the other proteins in the human PPI network from

STRING. Thus, we obtained a working PPI network that consists

of 529 nodes (proteins) and 27,176 interaction units. Such 529

human secreted proteins in the newly constructed PPI network

were used as the training dataset for developing the current

network-based method.

The distribution of the 529 human secreted proteins classified

according to the 11 different types of body fluids is shown in

Table 1, from which we can see that the sum of numbers in

column 3 is 1708 that is much more than 529, the number of

secreted proteins. This is because many proteins can be secreted

into more than one body fluid [25], as illustrated in Figure 1. As

we can see from the figure, of the 529 human secreted proteins,

179 can be secreted into one body fluid, and 350 proteins can be

secreted into two or more different types of body fluids. Therefore,

we are to deal with a multi-label classification problem.

Testing datasets
Two testing datasets were used in this study. The first one

contains 57 blood-secreted proteins, which was obtained as

follows. First of all, 305 blood-secreted proteins were retrieved

from the positive dataset in [33], where the proteins met the

criteria that they were not only secreted but also serum/plasma

detected. Of the 305 proteins thus obtained, 172 were excluded

because they occurred the training dataset, and 76 proteins were

also excluded because they had no interaction with the proteins in

the training dataset and hence could not be processed by the

current method (see the Network-based Method section). The

remaining 57 blood-secreted proteins were used to test our method

(Table S1).

The second testing dataset contains 61 proteins as obtained as

follows. From [33], we first collected 122 abnormally expressed

proteins involved with various cancers as indicated by many

published proteomics studies. From these proteins, we obtained 77

plasma/serum secreted proteins. After removing those that had

been contained in the training dataset and those that had no

interaction with the proteins in the training dataset, we finally

obtained the remaining 61 possible marker proteins (Table S2)

for the second testing dataset.

Network-based method
Many interacting proteins must co-occur in the same location to

participate in the biological processes [34]. Accordingly, we can

presume that the interacting secreted proteins are likely to be

secreted into the same body fluids. In other words, the following

assumptions would be valid.

Given a query protein, the higher interaction confidence score

between it and its interacting counterpart, the more likely they are

to be secreted into the same body fluid. Also, the more its

interacting proteins in a certain body fluid, the more likely it is to

be secreted into such body fluid [35]. With these points in mind,

the body fluids that secreted proteins can be secreted into can be

predicted as follows.

First, let us denote the n proteins in the PPI network as

P1,P2, � � � ,Pnf g and the 11 body fluids as F~½F1,F2,:::,F11�,
where F1 stands for the ‘‘Amniotic fluid’’, F2 the ‘‘Bronchoalveolar

lavage fluid’’, F3 the ‘‘Cerebrospinal fluid’’, and so forth (cf.

Table 1). Thus, the body fluids that the proteins in the PPI

network is secreted into can be described as

F~

f1,1 f1,2 � � � f1,j � � � f1,11

f2,1 f2,2 � � � f2,j � � � f2,11

..

. ..
. ..

. ..
. ..

. ..
.

fi,1 fi,2 � � � fi,j � � � fi,11

..

. ..
. ..

. ..
. ..

. ..
.

fn,1 fn,2 � � � fn,j � � � fn,11

2
666666666664

3
777777777775

i~1,2, � � � ,n
j~1,2, � � � ,11

� �
ð1Þ

Table 1. A breakdown of the 529 human secreted proteins in
the training dataset according to the 11 different types of
body fluids into which they can be secreted.

Type Body fluid Number of proteins in dataset

1 Amniotic fluid 192

2 Bronchoalveolar lavage fluid 65

3 Cerebrospinal fluid 204

4 Milk 71

5 Nipple aspiration fluid 37

6 Plasma/Serum 418

7 Saliva 175

8 Seminal fluid 155

9 Synovial fluid 63

10 Tear 84

11 Urine 244

Sum 1,708

doi:10.1371/journal.pone.0022989.t001
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where

fi,j~

1, if protein Pi can be secreted into the j-th

body fluid Fj

0, otherwise

8><
>: ð2Þ

For several query proteins P1,P2, � � � ,Pmf g, their interactions with

the n proteins in the PPI network can be described as

W~

w1,1 w1,2 � � � w1,i � � � w1,n

w2,1 w2,2 � � � w2,i � � � w2,n

..

. ..
. ..

. ..
. ..

. ..
.

wk,1 wk,2 � � � wk,i � � � wk,n

..

. ..
. ..

. ..
. ..

. ..
.

wm,1 wm,2 � � � wm,i � � � wm,n

2
66666666664

3
77777777775

i~1,2, � � � ,n
k~1,2, � � � ,m

� �
ð3Þ

where wk,i denotes the interaction confidence score [27] between

Pk and Pi. If there is no interaction between Pk and Pi, we have

wk,i~0. Since no self-interaction exists in the PPI network, wk,i~0

if k~i. Now, let us use S(Pk[j)to denote the likelihood that the

query protein Pk is secreted into the j-th body fluid Fj . Thus, the

likelihood that the m query proteins are secreted into the 11 body

fluids can be formulated as

M~W:F

~

w1,1 w1,2 � � � w1,i � � � w1,n

w2,1 w2,2 � � � w2,i � � � w2,n

..

. ..
. ..

. ..
. ..

. ..
.

wk,1 wk,2 � � � wk,i � � � wk,n

..

. ..
. ..

. ..
. ..

. ..
.

wm,1 wm,2 � � � wm,i � � � wm,n

2
66666666666664

3
77777777777775

f1,1 f1,2 � � � f1,j � � � f1,11

f2,1 f2,2 � � � f2,j � � � f2,11

..

. ..
. ..

. ..
. ..

. ..
.

fi,1 fi,2 � � � fi,j � � � fi,11

..

. ..
. ..

. ..
. ..

. ..
.

fn,1 fn,2 � � � fn,j � � � fn,11

2
66666666666664

3
77777777777775

~

S P1[1ð Þ S P1[2ð Þ � � � S P1[jð Þ � � � S P1[11ð Þ
S P2[1ð Þ S P2[2ð Þ � � � S P2[jð Þ � � � S P2[11ð Þ

..

. ..
. ..

. ..
. ..

. ..
.

S Pk[1ð Þ S Pk[2ð Þ � � � S Pk[jð Þ � � � S Pk[11ð Þ
..
. ..

. ..
. ..

. ..
. ..

.

S Pm[1ð Þ S Pm[2ð Þ � � � S Pm[jð Þ � � � S Pm[11ð Þ

2
66666666664

3
77777777775
ð4Þ

where

S(Pk[j)~
Xn

i~1
wk,ifi,j ð5Þ

The 11 elements of each row in Eq.4 represent the likelihoods that

protein Pk is secreted into the 11 body fluids, respectively. It can

be seen from Eq.5 that the likelihood S(Pk[j) can be formulated

as the sum of the interaction confidence scores of the protein Pk

with its interacting proteins that can be secreted into the j-th body

fluid Fj . Such scoring approach takes both the interaction

confidence score and the number of the interacting proteins into

consideration, just like the weighted vote. Obviously, the higher

the score, the more likely Pk is to be secreted into the j-th body

fluid Fj . In Eq.4, the 11 scores in the k-th row for the query

protein Pk are used to reflect the likelihoods that it is secreted into

the 11 body fluids, respectively. Accordingly, the most likely body

fluid Fm where Pk is secreted should be the one with the maximum

score, as can be formulated below

m~arg maxj S(Pk[j)jj~1,2, � � � ,11f g ð6Þ

where m is the j that maximizes the value of S(Pk[j).

Since many secreted proteins can be secreted into more than

one body fluid, our method is dedicated to provide flexible infor-

mation by predicting possible body fluids for secreted proteins,

Figure 1. The numbers of proteins that are secreted in different types of body fluids. See Table 1 for the definition of the numerical codes
used here for the body fluid types.
doi:10.1371/journal.pone.0022989.g001

ð4Þ
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rather than the most likely body fluid. To realize this, let us sort

the 11 elements of each row in Eq.4 according to descending

order. By doing so, we obtain a m|11 matrix as formulated by

D;M~

Q1 P1ð Þ Q2 P1ð Þ � � � Qu P1ð Þ � � � Q11 P1ð Þ

Q1 P2ð Þ Q2 P2ð Þ � � � Qu P2ð Þ � � � Q11 P2ð Þ

..

. ..
. ..

. ..
. ..

. ..
.

Q1 Pkð Þ Q2 Pkð Þ � � � Qu Pkð Þ � � � Q11 Pkð Þ

..

. ..
. ..

. ..
. ..

. ..
.

Q1 Pmð Þ Q2 Pmð Þ � � � Qu Pmð Þ � � � Q11 Pmð Þ

2
66666666666664

3
77777777777775

k~1,2, � � � ,m

u~1,2, � � � ,11

 !

ð7Þ

where D; is a descending operator that arranges the 11 S(Pk[j)

of each row in Eq.4 in descending order: Q1(Pk)§Q2(Pk)

§ � � �§Qu(Pk)§ � � �§Q11(Pk). If two or more elements of the

row in Eq.4 are equal to one another, they will be sorted in

random order. Accordingly, the predicted results for the secreted

protein Pk can be obtained from the descending order. For

instance, if Q1(Pk)~S(Pk[3), Q2(Pk)~S(Pk[6), and Q3(Pk)
~S(Pk[11), then that the query protein P is secreted into the 3rd

body fluid (Cerebrospinal fluid) will have the maximum likelihood

(cf. Table 1), that P is secreted into the 6th body fluid (Plasma/

Serum) will have the second maximum likelihood, and that P is

secreted into the 11th body fluid (Urine) will have the third

maximum likelihood. And so forth. The predicted results thus

obtained are called the 1st order predicted body fluid, the 2nd order

predicted body fluid, the 3rd order predicted body fluid, and so

forth.

Validation and Demonstration
In statistical prediction, the following three cross-validation

methods are often used to examine a predictor for its effectiveness

in practical application: independent dataset test, subsampling test,

and jackknife test [36]. However, of the three test methods, the

jackknife test is deemed the most objective [37,38]. The reasons

are as follows. (1) For the independent dataset test, although all

the proteins used to test the predictor are outside the training

dataset used to train it so as to exclude the ‘‘memory’’ effect or

bias, the way of how to select the independent proteins to test

the predictor could be quite arbitrary unless the number of

independent proteins is sufficiently large. This kind of arbitrariness

might result in completely different conclusions. For instance, a

predictor achieving a higher success rate than the other predictor

for a given independent testing dataset might fail to keep so when

tested by another independent testing dataset [36]. (2) For the

subsampling test, the concrete procedure usually used in literatures

is the 5-fold, 7-fold or 10-fold cross-validation. The problem with

this kind of subsampling test is that the number of possible

selections in dividing a benchmark dataset is an astronomical

figure even for a very simple dataset, as demonstrated by Eqs.28–

30 in [23]. Therefore, in any actual subsampling cross-validation

tests, only an extremely small fraction of the possible selections are

taken into account. Since different selections will always lead to

different results even for a same benchmark dataset and a same

predictor, the subsampling test cannot avoid the arbitrariness

either. A test method unable to yield a unique outcome cannot be

deemed as a good one. (3) In the jackknife test, all the proteins in

the benchmark dataset will be singled out one-by-one and tested

by the predictor trained by the remaining protein samples. During

the process of jackknifing, both the training dataset and testing

dataset are actually open, and each protein sample will be in turn

moved between the two. The jackknife test can exclude the

‘‘memory’’ effect. Also, the arbitrariness problem as mentioned

above for the independent dataset test and subsampling test can be

avoided because the outcome obtained by the jackknife cross-

validation is always unique for a given benchmark dataset.

Accordingly, the jackknife test has been increasingly and widely

used by those investigators with strong math background to

examine the quality of various predictors (see, e.g., [39,40,41,

42,43,44,45,46,47,48]). In view of this, here the jackknife cross-

validation was also used to examine the prediction quality of the

network-based method. Meanwhile, just for a demonstration to

show biologists how to use the predictor for practical application,

we also performed the computation for some independent

datasets.

For the j-th order prediction, the accuracy Wj obtained by the

jackknife test can be formulated as

Wj~
Mj

N
(j~1,2,:::,11) ð8Þ

where Mj represents the number of the secreted proteins whose j-

th order predicted body fluid is one of the true body fluids where

the protein is secreted, and N represents the total number of

proteins in the PPI network. These 11-order jackknife cross-

validation accuracies were used as an evaluation for the network-

based method. According to Eq.8, high Wj with small j and low Wj

with large j will indicate a good prediction based on the current

prediction method.

In the PPI network, the average number of body fluids that each

secreted protein is secreted into can be calculated by

SWT~

Xn

i~1

Ei

N
ð9Þ

where Ei represents the number of body fluids that the secreted

protein Pi is secreted into. Hence, a new evaluation for the

network-based method was proposed to calculate the likelihood

that the first k order predicted body fluids contain all the true body

fluids that the proteins can be secreted; it can be formulated as

Lk~

Xk

u~1

Wu

X11

j~1

Wj

ð10Þ

where k represents the smallest integer equal or greater than SWT
of Eq.9. Also, a large Lk indicates a good prediction of the

network-based method.

Results and Discussion

Performance of network-based method
In this study, the network-based method was applied to the

529 human secreted proteins to predict the body fluids where

they were secreted. All the 11 order jackknife cross-validation

Protein Body Fluids Prediction
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accuracies are shown in Figure 2. From the downward-slope

curve, we can see that except the 8th-order prediction accuracy, all

the other higher-order prediction accuracies are higher than the

lower-order ones, indicting that the body fluids were well

prioritized for the proteins by the method. The 1st-order (most

likely) prediction accuracy is 79.02%, indicating that the 1st-order

predicted body fluid for the secreted proteins is believable. The

11th-order (least likely) prediction accuracy is 6.99%, indicting that

the likelihood that the query protein is secreted into the 11th-order

predicted body fluid is very low and such predicted body fluid can

be ignored.

The average number of body fluids that each secreted protein in

the PPI network can be secreted into is 3.23 according to Eq.9.

Hence, a random guess of body fluid for the secreted proteins will

have a 29.36% (3.23/11) success rate, lower than the first 5 order

prediction accuracies. The parameter k (cf. Eq.10) was set to be 4

([3.23]+1), i.e., we consider the first 4 order predicted body fluids

from the 11 order prediction. The likelihood that the first 4 order

predicted body fluids contain all the true body fluids that the

proteins can be secreted into is 0.6294 according to Eq.10,

indicating that the first 4 order predicted body fluids should be

paid more attention to than others in the 11 predicted body fluids.

The availability of using the PPI information to predict
the body fluids that secreted proteins can be secreted
into

Many important biological activities are mediated by proteins

interactions. The interacting proteins should co-occur spatially

and temporally to intact with each other [34]. Similarly, the

interacting secreted proteins often are secreted into the same body

fluids to perform their functions. For example, peptidoglycan

recognition protein 1 (O75594, UniProt Protein) can be secreted

into plasma/serum [49], saliva [50,51], and urine [52,53,54]. Its

interactions with the other proteins are shown in Table 2. Except

3 proteins (P07492, Q13410, and P05814), the other 20 neighbor

Figure 2. All the 11 order jackknife cross-validation accuracies
by the network-based method for the 529 human secreted
proteins.
doi:10.1371/journal.pone.0022989.g002

Table 2. Interactions of peptidoglycan recognition protein 1 (O75594, UniProt Protein) with its neighbor proteins in the PPI
network.

Protein A Body fluid type numbera Protein B Body fluid type numbera Interaction confidence

O75594 6, 7, 11 P61626 1, 2, 3, 4, 6, 7, 8, 10, 11 0.532

O75594 6, 7, 11 O15263 7 0.501

O75594 6, 7, 11 P05231 6 0.300

O75594 6, 7, 11 P13500 6 0.291

O75594 6, 7, 11 P60022 6, 11, 7 0.291

O75594 6, 7, 11 P01350 6 0.286

O75594 6, 7, 11 P78380 11 0.279

O75594 6, 7, 11 P07492 8 0.257

O75594 6, 7, 11 P02743 3, 6, 7, 8, 9, 10, 11 0.249

O75594 6, 7, 11 P05120 6, 7, 10 0.243

O75594 6, 7, 11 P35858 1, 3, 6, 9, 11 0.235

O75594 6, 7, 11 P49913 1, 6, 7, 8, 11 0.232

O75594 6, 7, 11 P01375 6 0.227

O75594 6, 7, 11 Q13410 4, 5 0.221

O75594 6, 7, 11 P48023 6 0.218

O75594 6, 7, 11 P19883 6 0.207

O75594 6, 7, 11 P05814 3, 4, 5 0.196

O75594 6, 7, 11 P11226 6 0.191

O75594 6, 7, 11 Q14116 6 0.162

O75594 6, 7, 11 P13236 6 0.156

O75594 6, 7, 11 P02788 1, 3, 5, 6, 7, 8, 10, 11 0.154

O75594 6, 7, 11 P13501 6 0.154

O75594 6, 7, 11 P13591 3, 6, 11 0.154

aSee Table 1 for the definition of the body fluid type number.
doi:10.1371/journal.pone.0022989.t002
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proteins can be secreted into the plasma/serum or saliva or urine

just like peptidoglycan recognition protein 1. According to the

prediction criteria, when peptidoglycan recognition protein 1 was

considered as a query protein, the first three order predicted body

fluids that peptidoglycan recognition protein 1 can be secreted into

are plasma/serum, saliva, and urine, which are consistent with the

real locations.

Further demonstration
Now, let us demonstrate the prediction method on an in-

dependent testing dataset that contains 57 blood-secreted proteins

(Table S1). The 11 order prediction accuracies for the 57 blood-

secreted proteins by the network-based method are listed in

Table 3. The 1st prediction accuracy is 96.49%, i.e., 55 of 57

proteins were predicted to be secreted into plasma/serum in the 1st

prediction. And the 2nd prediction accuracy is 3.51%, and all the

other accuracies are 0. In other words, the first 2 predictions cover

the secreted locations of all the 57 blood-secreted proteins.

Apparently, the results indicate a good performance of the

network-based method for secreted proteins in blood. Except the

proteins in the training dataset and the 57 blood-secreted proteins,

few secreted proteins in other body fluids have been found in the

present researches. Therefore our method was evaluated on the

blood-secreted proteins.

Disease biomarker discovery
The 61 possible marker proteins listed in Table S2 were

also used to demonstrate our method. The 11 order prediction

accuracies for the 61 marker proteins are listed in Table 4. The 1st

prediction accuracy is 95.08%, indicating 58 of 61 proteins were

predicted to be secreted into plasma/serum in the 1st prediction.

The remaining 3 proteins were arranged into the plasma/serum in

the 2nd and 3rd prediction. The collected 61 biomarkers were well

arranged into the correct body fluid (plasma/serum).

Based on the quite promising results obtained through this

study, we can now propos a way to discover disease biomarker

in body fluids. After screening the proteins showing abnormal

expression levels in various diseases and identifying their sub-

cellular locations [11,12,13,14,15,18,19], they can be arranged

into body fluids using our method. Therefore, suitable biomarkers,

such as proteins in plasma/serum or urine can be discovered.

Application and improvement
As is discussed above, the predicted body fluids of the first 4

orders can be regarded as the candidate locations of the secreted

proteins. Biologists can focus on these body fluid candidates, which

can save a lot of time and labor so as to accelerate the research

progress. The predicted body fluids with the last 5 or 6 orders

might be excluded for consideration owing to their low accuracies.

Considering the effectiveness of the network-based method for

human secreted protein, it is possible to apply the current method

to predict the locations of secreted proteins in other species. The

PPI network can be collected from numerous sources including

STRING [27] (Version 8.0 covered 630 organisms), worm PPI

database [15], fly database [55], human PPI database [56,57,58],

BIND [59], BioGRID [60], CYGD [61], DIP [62], HPRD [63],

MINT [64], IntAct [65], and so forth. Based on the approach

proposed in this paper, we can predict the body fluids for proteins

of other organisms as well.

The performance of the network-based method can be further

improved via the following two avenues. The first one is to collect

the PPI data of high quality to exclude the false positive inter-

action, which was expected to improve the prediction accuracies.

The second way is to collect as much PPI data as possible for

constructing the PPI network, which was expected to make the

method cover as many secreted proteins as possible.

Conclusion
In this study, a multi-target model was developed for assigning

the human secreted proteins to the body fluid categories based on

the PPI network. Since it is the first computational method to

annotate the body fluids where human protein can be secreted

into, it is anticipated that the method will benefit the relevant

experimental researches and stimulate a series of follow-up

investigations into this emerging and challenging area.

Supporting Information

Table S1 The 57 blood-secreted proteins used to test the

network-based method.

(DOC)

Table 3. The prediction accuracies with 11 different orders
for the 57 blood-secreted proteins by the network-based
method, with order 1 corresponding to the most likely
prediction and order 11 the least likely prediction.

Order Accuracy (%)

1 96.49

2 3.51

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 0

11 0

doi:10.1371/journal.pone.0022989.t003

Table 4. The prediction accuracies with 11 different orders
for the 61 marker proteins by the network-based method,
with order 1 corresponding to the most likely prediction and
order 11 the least likely prediction.

Order Accuracy (%)

1 95.08

2 3.28

3 1.64

4 0

5 0

6 0

7 0

8 0

9 0

10 0

11 0

doi:10.1371/journal.pone.0022989.t004
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Table S2 The 61 abnormally expressed proteins (possible

biomarkers) used to test the network-based method that were

involved with various cancers.

(DOC)
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