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Abstract

Protein structure prediction methods such as Rosetta search for the lowest energy conformation of the polypeptide chain.
However, the experimentally observed native state is at a minimum of the free energy, rather than the energy. The neglect
of the missing configurational entropy contribution to the free energy can be partially justified by the assumption that the
entropies of alternative folded states, while very much less than unfolded states, are not too different from one another, and
hence can be to a first approximation neglected when searching for the lowest free energy state. The shortcomings of
current structure prediction methods may be due in part to the breakdown of this assumption. Particularly problematic are
proteins with significant disordered regions which do not populate single low energy conformations even in the native
state. We describe two approaches within the Rosetta structure modeling methodology for treating such regions. The first
does not require advance knowledge of the regions likely to be disordered; instead these are identified by minimizing a
simple free energy function used previously to model protein folding landscapes and transition states. In this model,
residues can be either completely ordered or completely disordered; they are considered disordered if the gain in entropy
outweighs the loss of favorable energetic interactions with the rest of the protein chain. The second approach requires
identification in advance of the disordered regions either from sequence alone using for example the DISOPRED server or
from experimental data such as NMR chemical shifts. During Rosetta structure prediction calculations the disordered
regions make only unfavorable repulsive contributions to the total energy. We find that the second approach has greater
practical utility and illustrate this with examples from de novo structure prediction, NMR structure calculation, and
comparative modeling.
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Introduction

Native protein structures frequently have disordered segments

which do not adopt single unique conformations in the native

state. These include both flexible termini and internal loops. In

some cases these segments may adopt unique structures when they

interact with binding partners [1,2], in others, they may remain

flexible in all functional states of the protein [3].

Disordered regions present a challenge for structure prediction

methods such as Rosetta which treat the prediction problem as a

search for the lowest energy state of the polypeptide chain. Such

regions do not adopt a single unique conformation, and proper

accounting for their contributions to the free energy of the native

state requires estimating their entropy as well as energy. This

presents two problems: first, computing entropies is difficult and

CPU intensive, and second, prediction cannot be treated as a

search for the single lowest energy state of the chain.

In this paper we describe two approaches for treating

disordered regions in structure prediction calculations. In the

first approach, an ensemble of models is generated using standard

energy based search methods. For each model, individual regions

are allowed to become disordered if the gain in entropy

outweighs the loss of attractive energetic interactions. The lowest

free energy models are then selected from the population. In the

second approach, disorder prediction methods are used to

identify in advance regions that are likely to be disordered in

the native state. Standard energy based search is then carried out,

but the predicted disordered regions are only allowed to make

unfavorable steric repulsive interactions with the rest of the chain,

which results in folded conformations with widely ranging

conformations for the disordered regions which make little

overall contribution to the energy. We compare the strengths

and weaknesses of the two approaches on a range of protein

structure modeling problems.

Methods

The algorithms and parameter determination for the first class

of methods for modeling protein disorder explored in this paper

are described in the Results section. Here we focus on the

implementation within the Rosetta program of the second

approach. In this approach, disordered residues are predicted in

advance and then during structure prediction simulations treated

as interacting through repulsive interactions only.
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Implementation of the Second Approach
Calculating only repulsive energies at known disordered regions

in Rosetta is implemented by creating a new residue type,

REPLONLY, and a ‘‘mover’’, RepulsiveOnlyMover.

Rosetta modeling generally starts with a coarse grained

‘‘centroid’’ representation and then switches over to a higher

resolution ‘‘all atom’’ representation. The REPLONLY residue

type has both a centroid and all-atom representation. The

REPONLY patch replaces all the heavy atoms with a newly

defined ‘‘REPLS’’ atom at the centroid stage, and with a

‘‘HREPS’’ atom at the all-atom level. These two artificial new

atom types, interact only through repulsive interactions; the

vdwscore at centroid level and lennard-jones (LJ) at the all atom

level [4]. The atom radius of the new atom types are taken to be

the smallest radius of any atom in the atom set (residue) being

replaced.

The RepulsiveOnlyMover uses the Mover interface [5] and

reads the disordered residue numbers from the command line and

replaces those residues with glycines. It then assigns the

REPLONLY residue type to those glycines. Because of the glycine

replacement, conformations are only penalized if the backbone of

the disordered region overlaps with rest of the protein chain; this

also reduces computation time at the all atom stage. The

REPLONLY assignment prevents disordered residues from

interacting favorably with the rest of the protein and with other

disordered regions, and hence focuses optimization on the ordered

portions of the protein.

To score REPLONLY residues, we modify both centroid and

all-atom scoring methods. At centroid level, we retain only the

repulsive interactions (the vdw_score). The SecondaryStruc-

turalPotential class identifies and scores secondary structure

elements. To turn off those energies, we modified the identi-

fy_ss function in SecondaryStructurePotential class to

prevent REPLONLY residues being assigned secondary structure

which excludes these residus from evaluation of secondary

structure packing terms. The remaining centroid level score terms

were modified with a simple residue type check prior to energy

calculations: If the residue or residue pair (for two-body energies) is

designated REPLONLY by the RepulsiveOnlyMover, they are

ignored.

At the all-atom level, van der Waals interactions between atoms

are explicitly modeled by a LJ potential, which is divided into

attractive and repulsive components. The LJ potential is

precomputed in a class called Etable, which generates a look-

up table by computing pairwise energies in advance (fa_atr/

fa_rep from the Lennard-Jones potential and fa_sol from the

Lazaridis-Karplus solvation model). The REPLONLY atom types

are ignored in the calculation of fa_atr and fa_sol by assigning

a value of zero for bins of any pairwise interactions between atoms

for which one atom is of type REPLS or HREPS. fa_rep remains

unchanged. Since REPLS and HREPS, do not have any hydrogen

bond donors or acceptors, they are ignored in the hydrogen bond

energy calculations. For the rest of the scoring methods at the all-

atom stage, we used a residue type check to skip energy

calculations for REPLONLY residues.

Results and Discussion

First Approach
Free Energy Function. As described in the introduction, our

first approach seeks to identify disordered regions from low energy

predicted models by optimizing a simple free energy function.

We use a free energy function very similar to that used in

previous studies of protein folding mechanisms [6]. Each residue is

considered to be either fully ordered or fully disordered. When

ordered, the residue has an energy equal to the sum of its

interactions with all other ordered residues, but zero entropy.

When disordered at the N or C terminus, the residue has entropy

Ed/T, but its interaction energies with other residues are all set to

zero. The entropy of disordered internal loops is taken to be b?ln

Table 1. Protein sequences used to test the prediction of disordered termini.

PDB code
Constructed N-terminal
tail sequence Core protein sequence

Constructed C-terminal
tail sequence

1enh VYCTRYRRPKQPKDKNTDEK RPRTAFSSEQLARLKREFNENRYLTERRRQQLSSELGLNEAQ

IKIWFQNKRAKI

KKSTGSKNPLALQLMAQGLY

1faa VVKRKDRRRMRGGEVRASM LELALGTQEMEAIVGKVTEVNKDTFWPIVKAAGDKPVVLDMF

TQWCGPCKAMAPKYEKLAEEYLDVIFLKLDCNQENKTLAKEL

GIRVVPTFKILKENSVVGEVTGAKYDKLLEAIQAARS

1mgw GPVAAAAPASHAVAASSAAS ASVKAVGRVCYSALPSQAHDTLDLIDEGGPFPYSQDGVVFQN

REGLLPAHSTGYYHEYTVITPGSPTRGARRIITGQQWQEDYY

TADHYASFRRVDFAC

1nps M ANITVFYNEDFQGKQVDLPPGNYTRAQLAALGIENNTISSVK

VPPGVKAILYQNDGFAGDQIEVVANAEELGPLNNNVSSIRVI

SVPV

QPRARFFYKEQFDGKEVDLP

1ten LHIVKNNTRGPGLKRVTTTR LDAPSQIEVKDVTDTTALITWFKPLAEIDGIELTYGIKDVPG

DRTTIDLTEDENQYSIGNLKPDTEYEVSLISRRGDMSSNPAK

ETFTT

GLDAPRNLRRVSQTDNSITL

1b3a LCAPASASPYSSDTTPCCFA YIARPLPRAHIKEYFYTSGKCSNPAVVFVTRKNRQVCANPEK

KWVREYINSLEMS

1hz6 PFVENKEETPETPETDSEEE VTIKANLIFANGSTQTAEFKGTFEKATSEAYAYADTLKKDNG

EWTVDVADKGYTLNIKFAG

KEKTPEEPKEEVTIKANLIY

1ctf SAAAAVAVAAGPVEAAEEKT EFDVILKAAGANKVAVIKAVRGATGLGLKEAKDLVESAPAAL

KEGVSKDDAEALKKALEEAGAEVEVK

doi:10.1371/journal.pone.0022060.t001
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(L/L0))/T, where L is the length of the loop. The optimization of

Ed, b and L0 is described below. Given an assignment of each

residue as ordered or disordered, the total free energy, F, is then

F~E{(nEdzb : ln (L=L0)) ð1Þ

where E is the interaction energy for all ordered residues.

Determining the lowest free energy assignment of order/

disorder to the structure requires a search over all possible

assignments. For computational tractability, no more than two

consecutive stretches of disordered regions are allowed. In this

case, the lowest free energy assignment can be found by

straightforward enumeration. The free energy of the conformation

is then taken to be the free energy associated with this optimal

assignment. The most likely structure has the lowest free energy,

and the extent of order/disorder at a given position is estimated as

the frequency with which the residue is ordered in the population

of models.

Prediction of Disordered Segments at Termini. We

began by allowing only disordered N and C terminal segments

(referred to as tails throughout the text). Most proteins determined

by X-ray crystallography have disordered tails trimmed by

crystallographers for easier crystallization or better crystal

quality. We spliced tail regions for the gene sequence onto eight

proteins where Rosetta makes reasonable predictions (Table 1). In

order to study the effects caused by different length of tails, for

each of protein in the set, we varied the length of the disordered

Figure 1. Results of disordered termini prediction. (A) Optimization of Ed value using 1ctf from the test set as a representative example. In
panel 1 to 3, histograms show the accuracy of prediction results using representative of Ed values, where the x-axis shows the length difference of
predicted and actual tail, and the y-axis shows the frequency of prediction. We show here the prediction results with Ed values of 1.4, 2.0 and 2.6 in
panel 1, 2 and 3, respectively. With the Ed value of 2.0, the prediction shows the greatest accuracy, where the predicted length difference equals to
zero (the prediction matches the actual length) with the highest frequency of 0.8 (maximum equals to 1). (B) Prediction of disordered terminal
regions. Blue and red symbols represent N- and C- terminal tails, respectively. Different symbols corresponds to different test cases; the multiple
instances of each symbol type represent the different tail lengths considered for a given test case.
doi:10.1371/journal.pone.0022060.g001
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tail from 2 to 20 amino acids. For each tail length, we then

generated a large number of models using the Rosetta de novo

structure prediction methodology (command lines are provided

below).

We used enumeration to identify the lowest free energy state

given a set of models (decoys) for a given chain length. For each

decoy set, we allowed increasing numbers of residues to be

disordered coming in from both the N and C terminus and

selected the assignment of disorder which produced the lowest free

energy according to Eq. (1). This calculation was carried out for

values of Ed between 1.0 and 5.0. Predicted disordered regions

were compared to ordered regions observed in crystal structures. A

value of 2.0 for Ed gave the most accurate recapitulation of the

order observed in the crystal structures (Figure 1 A). This is very

close to the value (1.75) used in our earlier models of protein

folding kinetics [6]. When restricted to decoys close to the native

structure (less than 2 Å Ca-rmsd), the method is reasonably

successful in properly assigning disordered termini (Figure 1 B).

As noted earlier, the native structure is at a minimum of the free

energy rather than the enthalpy. We compared the minima of the

free energy, computed using Eq. (1) with correct assignment of

disordered termini, to the minima of the Rosetta energy function.

Most of the decoy sets showed equal or better discrimination of

decoys with the free energy function, but the differences were not

large (Figure 2).

Prediction of Disordered Segments at Internal

Loops. We tested the method on cases with disordered

internal loops using a benchmark set derived from NMR

structures (Table 2). For each of 30 amino acid sequences for

which NMR ensembles were available, we generated ensembles of

Rosetta decoys. We defined residues with mean square deviations

in the NMR ensemble of greater than 2Å as disordered; this

definition was supported by visual inspection of the ensembles.

To make the search for the lowest free energy assignment of

disorder/order using Eq. (1) tractable, we required that disordered

regions be at least 4 residues. At the beginning of the search, we set

all of the residues for each of the decoys to be ordered. Then we

changed the state of the residues from ordered to disordered, four

consecutive residues at a time, and calculated the free energy using

Eq. (1). During each round of search, we kept the state that gave

Figure 2. Comparisons of energy versus rmsd (red) and free energy versus rmsd (green) plots for cases with disordered termini but
not disordered internal loops. The points in the plots represent Rosetta generated protein structure models. In column 1 and 3, the y axis is the
Rosetta all-atom energy, and in columns 2 and 4, the free energy computed using Eq. (1) with structure derived assignment of disorder/order. On the
x-axis is the CaRMSD deviation (core RMSD) to the folded portion of native structure. Black arrows highlight regions where the free energy landscape
provides improved discrimination; blue arrows, where discrimination is equivalent.
doi:10.1371/journal.pone.0022060.g002

Table 2. NMR structures used to test the prediction of
disordered internal regions.

2jpf 2jqj 2jrk 2jwx 2yw5

2kbg 2kbh 2kbj 2kbk 2kcc

2kcj 2kd5 2kdl 2khc 2kjd

2kjv 2kjw 2kk0 2kmg 2koj

2kpm 2kpn 2kpo 2kpq 2yrz

2kqr 2kre 2krk 2rqp 2rq6

doi:10.1371/journal.pone.0022060.t002
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the lowest free energy, and went on with next round of search until

the free energy could not be lowered any further.

This algorithm was used to assign order/disorder to each

residue in each of the decoy structures for each protein in the

benchmark set. For each residue in each protein, we calculated the

frequency that the residue was predicted to be disordered in the

lowest free energy state. We evaluated these predictions by

comparing them to the disordered regions identified in the NMR

ensembles using a simple scoring scheme

score~
X

Pi=N ð2Þ

For each residue i, Pi is the frequency in the model calculations of

the state (ordered/disordered) observed in the NMR ensemble,

and N is the length of the protein. Thus, if all ordered residues are

correctly predicted to be ordered, and all disordered residues to be

disordered, the score is 1.0.

In our previous work on protein folding pathways, we used values of

b and L0 of 1.8 and 0.15, respectively [6]. We optimized these

parameters for disordered loop prediction by repeating the search

process for different values and determining the score using Eq. (2).

Among the values we tried, the results showed no significant preference

for particular values for b and L0 that satisfy all the proteins in our set;

we chose compromise values of 1.5 for b and 0.3 for L0.

As a control, we compared the prediction accuracy to that of a

very simple null model in which all residues are considered to be

ordered (this is a reasonable first guess since for the proteins in our

test set most residues are ordered). Disorder prediction by

minimizing the free energy Eq. (1) results in improvements over

the null model in 16 of the 30 test cases, and for 10 cases the

Figure 3. Results of disordered internal loop predictions. (A) Comparisons of prediction accuracy using the free energy function with
optimized parameters (b = 1.5 and L0 = 0.3) with that of a null model. The y-axis shows disorder prediction accuracy over the benchmark set using Eq.
(2). The x-axis shows the prediction of the null model, which assumes all residues are ordered. (B) Examples of successful prediction of disordered
internal loops. Blue line: the actual disordered regions assessed from the residue deviations in the NMR structure. Red line: frequency of disorder
assignment by optimization of Eq. (1) over decoy population.
doi:10.1371/journal.pone.0022060.g003
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predictions are similar or slightly worse (Figure 3 A). Figure 3 B

shows examples of good predictions of disordered regions.

We next compared the free-energy landscapes computed using

Eq. (1) with predicted order/disordered assignments to standard

Rosetta energy landscapes for the 30 test proteins. While the free-

energy landscapes were consistently displaced vertically relative to

the energy landscapes (Figure 4 compare A and B), the overall

shapes were very similar. This is a consequence of strong

enthalpy/entropy compensation (Figure 4 C); the more residues

considered disordered, the more favorable the entropy but the less

favorable the energy (enthalpy) as there are fewer interacting

residues. Thus, while the free-energy optimization by disorder

assignment results in large changes in the energy and entropy, the

free energy itself does not change drastically. Such entropy/

enthalpy compensation is a ubiquitous feature of physical systems.

Second Approach
As described above, our first approach involves assignment of

disorder to specific regions of the protein chain based on

optimizing a simple free-energy function over a set of models

generated by Rosetta. Three considerations led us to consider a

second approach. First, the method described above depends on

the set of Rosetta models used to assign disorder containing some

near native structures, which will not always be the case

particularly if there are large confounding disordered segments

which could hinder search by becoming entangled with the rest of

the chain. Second, model discrimination based on the free energy

is not very different from discrimination based on the energy due

to entropy/enthalpy compensation. Third, modern sequence

based disorder prediction methods can be used to reasonably

accurately predict disorder before folding calculations are carried

out.

Based on these considerations, we developed an approach to

utilize sequence based disorder prediction during Rosetta structure

prediction calculations. Since these regions can include internal

loops, they cannot be simply trimmed from the starting sequence

as one would then be left with a disconnected chain. Instead, we

chose to model atoms in residues predicted to be disordered as

making only repulsive interactions with the rest of the chain. This

has the advantage that the chain stays connected, allowing

straightforward modeling, but the disordered regions are disfa-

vored from being intercalated into the protein core (no favorable

interactions result from this), and residues adjacent to disordered

regions must be in positions where there is free space for the

disordered segment to fill (ie, they cannot be completely buried).

Consistent with intuition, in this approach the energy based model

optimization during conformational search, and the subsequent

energy based model selection are dominated by the favorable

interactions within the ordered region of the protein, with little or

no contribution from the disordered segments.

Applications of REPLONLY residues in structure

calculations. We tested our second approach on a range of

structure modeling problems with both disordered tails and

internal loops. We considered three common applications of

Rosetta: de novo structure prediction, CS-Rosetta structure

calculation from NMR chemical shifts, and comparative

modeling. In each case, we compared the results with the new

method (treating the predicted disordered residues as purely

repulsive) to control calculations in which either 1) all residues

were considered to be ordered (standard Rosetta calculations) or 2)

disordered N or C terminal residues were truncated prior to

standard Rosetta calculations (this second control could not be

carried out for cases where there were disordered internal loops).

The results of the three calculations were compared using the

GDT-TS [7] computed over the ordered/structured part of a

protein. (Figure 5 A–D and Table 3).

Ab initio structure prediction. To illustrate the REPONLY

method for treating disordered regions in conjunction with

Figure 4. Comparison of energy versus rmsd and free energy
versus rmsd plots for case with disordered internal loop (2k0J).
A) Rosetta all atom energy and B) free energy computed using Eq. (1)
with predicted disordered regions (Fig 3B-2k0j). The energy shown in A is
calculated using the Rosetta all-atom energy. In A and B, the x-axis is the
RMSD to the folded portion of the native structure. The 10 lowest energy/
free energy decoys are shown in black. The dashed orange lines are
provided to aid comparison of the two plots. (C). Compensation between
the entropic and energetic contributions to the free energy (Eq. (1)).
doi:10.1371/journal.pone.0022060.g004
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traditional Rosetta de novo structure prediction, we selected a test

case (PDB ID: 1ENH) with disordered 20 residue termini at both

ends used in the test of method 1 above (Table 1). We used the

DISOPRED2 server [8] to predict the disordered residues, and

then assigned those regions as REPLONLY in otherwise standard

Rosetta de novo folding calculations. Treating the tails as purely

Figure 5. Rosetta modeling with disordered regions treated as REPONLY. (A) ab initio (1enh). (B) CS-Rosetta (2ae9). (C) CS-Rosetta (2k4n).
(D) Comparative modeling (2k4v). Column 1 to 3. Energy versus core GDT-TS plots. In column 1 (Truncated tails) standard Rosetta simulations are
carried out with disordered termini removed, in column 2 (Standard run) standard Rosetta simulations are carried out including tails/internal loops
and in column 3 (REPLONLY) the disordered regions contribute only repulsive-related energies during Rosetta structure calculations. The GDT-TS
values on the x-axis were calculated from the folded portion of native structure (Table 4). Column 4: Histograms of core GDT-TS of the 1% low-energy
models. Black line ‘‘Truncated tails’’ calculations, red line ‘‘Standard run’’ calculations, and blue line ‘‘REPLONLY’’ calculations.
doi:10.1371/journal.pone.0022060.g005

Table 3. Modeling with REPLONLY residues.

10 lowest-energy models 1% lowest-energy models

Prediction methodology Protein Run conditions
Highest
GDT-TSa Mean (sb) GDT-TS

Mean (s)
GDT-TS

Ab initio 1enhA With tails 0.80 0.55 (0.14) 0.57 (0.12)

REPLONLYc 0.88 0.66 (0.11) 0.67 (0.11)

Tails trimmed 0.83 0.69 (0.09) 0.73 (0.12)

CS-Rosetta 2ae9A With tails 0.91 0.58 (0.19) 0.53 (0.10)

REPLONLY 0.90 0.81 (0.09) 0.76 (0.13)

Tails trimmed 0.91 0.87 (0.02) 0.86 (0.03)

2k4nA Typical run 0.62 0.35 (0.14) 0.36 (0.10)

REPLONLY 0.65 0.53 (0.08) 0.44 (0.13)

Comparative modeling 2k4vA Typical run 0.30 0.24 (0.03) 0.24 (0.03)

REPLONLY 0.38 0.28 (0.06) 0.25 (0.04)

aGDT-TS was calculated only the folded portion of the native structure.
bs: Standard deviation.
cDisordered regions were treated as REPLONLY.
doi:10.1371/journal.pone.0022060.t003
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repulsive (Figure 5A REPLONLY) yields considerably better

models than control Rosetta runs including the termini (Figure 5A.

Standard run). The models are similar in quality to those

generated in runs in which the termini were trimmed (Figure 5A

Truncated tails); the lowest energy models have similar deviations

from the native structure (Table 3). While in this case, trimming

the disordered regions yielded good results, in other cases we have

observed this to yield low energy artifactual structures in which the

truncated termini are buried within models leaving no room for

the flanking disordered regions (Vernon, Kay, submitted).

Truncation also cannot be carried out for internal loops as this

would disconnect the chain.

CS-Rosetta. CS-Rosetta is a powerful method for

determining protein structures from NMR chemical shift data

[9,10]. In this case, rather than using the bioinformatics based

DISOPRED method to predict disordered regions, it is more

useful to utilize the experimental data, in particular the predicted

order parameters (S2) [11]. We chose as a cutoff for considering

residues to be disordered S2 values less than 0.70.

We illustrate CS Rosetta calculations with disordered regions

for a case with disordered regions at both termini (PDB ID: 2AE9)

and one with a disordered internal loop and relative short

disordered termini (PDB ID: 2K4N). For 2AE9, as in the de novo

modeling case described previously, treatment of the disordered

regions as purely repulsive yields results comparable to runs with

trimmed tails (Figure 5B–Distribution, compare blue line and

black line; Table 3). 2K4N (CASP8 T0460) has a disordered

internal loop of 18 residues. During CASP8 we found that in de

novo folding calculations Rosetta tended to bury this long internal

loop region into the core of the protein; we suspected these regions

to be disordered from multiple sequence alignments but there was

no way to prevent this. Using chemical shifts to pick fragments

yielded models with a GDT-TS of 0.62, but as shown in Table 3

and Figure 5C-Standard run, the median GDT-TS of the 10

lowest-energy models is 0.32, which indicates that the low-energy

decoys are still dominated by incorrect conformations. Structural

inspection suggested that the likely disordered regions were

making attractive contacts with residues in the core leading to

structural distortion. Treating residues in regions with average S2

values less than 0.70 as REPONLY (Table 4) yielded significantly

improved results: more high GDT-TS conformations are sampled

(Figure 5C-Distribution; compare blue and red) and the low

energy decoys have significantly higher median GDT-TS 0.53

(Table 3).

Comparative modeling. To illustrate the modeling of

disordered regions in comparative modeling, we chose the

CASP8 target T0482 (2K4V). The template has missing

density in several regions; we treated these residues as

REPONLY in calculations using the standard Rosetta loop

relax protocol using homologue derived constraints (Table 3).

Treating the missing density residues as REPONLY yielded

improved results over control runs (Figure 5D-Distribution;

compare blue and red).

Command lines
The command lines used to generate an ensemble of

Rosetta decoys in the first approach:
-frag3 [3mer_fragments_file]

-frag9 [9mer_fragments_file]

-database [path_of_database]

-nstruct 1

-in::file::native [native_pdb]

-rmsd_target [pdb_to_calulate_rmsd_for]

-rmsd_column _trunc

-abinitio::relax

-relax::sequence

-disable_all_filters

-abinitio::increase_cycles 10

-silent_gz

-mute all

-abinitio::rg_reweight 0.5

-abinitio::rsd_wt_helix 0.5

-abinitio::rsd_wt_loop 0.5

-abinitio::use_filters true

-user_tag [tag]

-ex1

Table 4. Test cases for 2nd approach.

Prediction
methodology

Disordered
regions Protein Protein sequence a

Disordered regions
prediction method

Ab initio Terminus 1enhAb
VYCTRYRRPKQPKDKNTDEKRPRTAFSSEQLARLKREFNENRYL
TERRRQQLSSELGLNEAQIKIWFQNKRAKIKKSTGSKNPLA
LQLMAQGLY

DISOPRED2 serverc

CS-Rosetta Terminus 2ae9A MLKNLAKLDQTEMDKVNVDLAAAGVAFKERYN
MPVIAEAVEREQPEHLRSWFRERLIAHRLASVNLSRLPYEPKLK

NMR chemical shifts
datad

Internal loop
plus
terminus

2k4nAe MNSEVIKEFLEDIGEDYIELENEIHLKPEVFYEVWKYV
GEPELKTYVIEDEIVEPGEYDPPEMKYTNVKKVKIKKVYFE
TLDNVRVVTDYSEFQKILKKRGTKLE

NMR chemical shifts
dataf

Comparative
modeling

Internal loops 2k4vAg
MFEPGHLHLVSLPGLDQQDINIHIRYEVRQNAESG
AYVHFDMDGEIDGKPFSDSFELPRDTAFNFAS
DATRVAQKHGLHPKFGAITRVHKEYDAMFEDIRAKLHAH

Missing density regions

aResidues predicted to be disordered are shown in bold font.
bAssumed from Table 1, tails of 1enh are constructed based on the gene sequence recovered from the gene sequence, in which we assumed these regions likely to be

disordered, and was mostly consistent with the prediction results using the DISOPRED2.
chttp://bioinf.cs.ucl.ac.uk/disopred/ [8].
dDisordered regions were predicted using ‘‘Predicted order parameter (S2)’’ calculated from backbone chemical shifts data with BMRB accession number 6571 [11].
eThis is the target T0460 in CASP8 directly downloaded from http://predictioncenter.org/download_area/CASP8/targets/.
fThe same method as described on d with BMRB accession number 15805.
gThis is the target T0482 in CASP8 directly downloaded from http://predictioncenter.org/download_area/CASP8/targets/.
doi:10.1371/journal.pone.0022060.t004
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-ex2

-steal_3mers

-steal_9mers

-in:file:psipred_ss2 [psipred_file]

The command lines used for De Novo structure
prediction in the second approach:

-abinitio::increase_cycles 10

-abinitio::relax

-score::weights score13_env_hb

-abinitio::rg_reweight 0.5

-abinitio::rsd_wt_helix 0.5

-abinitio::rsd_wt_loop 0.5

-disable_co_filter true

-frag9 [fragments_file]

-frag3 [fragments_file]

-in::file::fasta [fasta_file]

-in::file::native [native_pdb]

-replonly_residues [residue_numbers_of_disordere-

d_regions]

-correct

-residues:patch_selectors replonly

-mute all

-nstruct 50

Conclusion
The two approaches we have developed to treat disordered regions

in structure prediction calculations differ in both their inputs and their

philosphies. The first approach requires no additional input, and

seeks to identify likely disordered regions from first principles by

explicit optimization of a simple free energy function which balances

attractive interactions between ordered regions with increases in

entropy accompanying residue disordering. The second approach

requires input predictions of likely disordered regions from bioinfor-

matics or experiment, and makes no attempt to model entropic

contributions to the free energy. While less elegant, we find the

second approach to be more useful in practice as treatment of regions

as disordered during structure generation can yield improved models;

the first approach can only identify disordered regions following the

model generation. We expect the second approach to be useful in a

wide range of modeling applications since many biomolecules of

interest contain significant disordered regions.
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