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Abstract
The success of genome-wide association studies has paralleled the development of efficient
genotyping technologies. We describe the development of a next-generation microarray based on
the new highly-efficient Affymetrix Axiom genotyping technology that we are using to genotype
individuals of European ancestry from the Kaiser Permanente Research Program on Genes,
Environment and Health (RPGEH). The array contains 674,517 SNPs, and provides excellent
genome-wide as well as gene-based and candidate-SNP coverage. Coverage was calculated using
an approach based on imputation and cross validation. Preliminary results for the first 80,301
saliva-derived DNA samples from the RPGEH demonstrate very high quality genotypes, with
sample success rates above 94% and over 98% of successful samples having SNP call rates
exceeding 98%. At steady state, we have produced 462 million genotypes per week for each
Axiom system. The new array provides a valuable addition to the repertoire of tools for large scale
genome-wide association studies.
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1. Introduction
The past decade has witnessed a revolution in genomics technology, enabling the correlation
of common genetic variation with a variety of human traits and diseases through genome-
wide association studies (GWAS) [1–4]. The large majority of these associations are not
detectable by conventional linkage analysis, which is well powered primarily for Mendelian
diseases and/or genes with high relative risks. While there has been recent debate regarding
the success and significance of GWA studies [5,6], it is unequivocal that these studies have
produced a large number of clearly replicated novel genetic associations with many diseases
for which there had previously been no specific genes identified. It is also clear that the tools
used to date have been based primarily on common genetic variation (minor allele frequency
(MAF) of 0.10 or greater), leaving the door open for the potential detection of numerous
additional disease-associated variants that are less common, provided that the necessary
tools and sample sizes can be developed. This has also recently been made evident through
consortia whose combined large sample sizes have given rise to a significantly increased
number of validated associations [7,8].

The success of GWAS has been driven by the emergence and evolution of reliable and high-
throughput genotyping platforms capable of simultaneously assaying hundreds of thousands
of SNPs. Of the various genotyping technologies currently available, Affymetrix Axiom™
array plates and GeneChips™ and Illumina's Infinium BeadChips™ offer the highest SNP
density and are mostly commonly used for GWAS [9].

The content of these high-density SNP arrays generally comes from the work of large SNP
discovery consortia, including The SNP Consortium (TSC), followed by the International
HapMap Project, and most recently the 1000 Genomes Project (KGP). As the SNP catalogs
produced by the consortia grew, an early question was the extent of linkage disequilibrium
(LD) among common variants in the human population and the degree to which untyped
variants associated with disease could be detected through LD with genotyped SNPs
[10,11]. As dense genetic maps emerged it became evident that the human genome is
comprised of regions with extended LD and limited haplotype diversity, depending on the
particular population studied. Within such regions the genotypes of common SNPs could be
inferred from the genotypes of a smaller number of “tag” SNPs [12]. This meant that
commercial chip designs assaying approximately 500,000 SNPs could potentially capture
the majority of common genetic variation in most human populations. It was also recognized
that African-derived populations have greater genetic diversity and lower levels of LD,
requiring a greater density of SNPs to provide genome-wide coverage of common variation.
With advances in technology for massively parallel genotyping of SNPs, the capacity of
commercial arrays evolved to deliver very high density SNP capabilities, thus enabling
highly powered GWAS [13].

Until recently the International HapMap project (http://www.hapmap.org) has been the
primary data source for commercial SNP panels. The objective of the HapMap project when
initiated in 2002 was to genotype common (MAF>0.05) SNPs across the genomes of 270
individuals from European, African, and Asian populations. Genotypes for more than 3
million SNPs were released by the Consortium by 2007, as well as the characterization of
local LD patterns across the human genome. These Phase I and Phase II HapMaps guided
SNP selection strategies for commercial SNP panels to “capture” the common variation in
these particular populations.

The progression of Affymetrix arrays for massively parallel genotyping of SNPs (Table 1)
illustrates the general progress of the field, beginning with the Mapping 10 K array [14]. The
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technology for the first array overcame two bottlenecks: the requirement for locus-specific
SNP amplification and locus-specific allele discrimination. The source of variants was the
TSC project and SNPs discovered by Perlegen Science's resequencing project, and criteria
for selecting SNPs for the array resulted in a bias towards those with high (>0.1) MAF. The
Mapping 100 K array set [15] was the first in a family of products suitable for association
studies, and in fact produced the first GWAS finding, for adult onset macular degeneration
and complement factor H [16]. The SNP selection process required at least two minor alleles
in the 108 chromosomes genotyped, and consequently 90% of the SNPs are common.

The Mapping 500 K array
(http://media.affymetrix.com/support/technical/datasheets/500k_datasheet.pdf) was the first
array set with sufficient density to enable highly powered GWAS. SNPs were selected to be
polymorphic in the HapMap populations, and average heterozygosity in those populations
was 0.29. The Affymetrix SNP 5.0 array has essentially the same SNP content as the
Mapping 500 K, but the design involves multiple replicates of the most informative probes
rather than a single copy of many different probe sequences [17], leading to reduced cost
and increased throughput. Affymetrix SNP 6.0 was the next generation array. The design
was based on screening more than two million additional SNPs (chosen from HapMap and
dbSNP) and selecting 906 K SNPs to optimize coverage of common HapMap Phase II
variants in Europeans, East Asians and West Africans. As we show later, the SNP 6.0 array
provides excellent whole genome coverage for genetic variants with MAF greater than 0.1.

The Axiom™ Genotyping Solution
(http://media.affymetrix.com/support/technical/datasheets/
axiom_genotyping_solution_datasheet.pdf) is the newest genotyping product developed to
increase the power of a study by substantially increasing sample throughput with arrays that
maximize genetic coverage for at least one population. Here we describe a newly developed
Axiom array intended to provide coverage of both common and lower frequency variation in
the European population; similar arrays for other ethnic groups are also under development.

The Axiom genotyping platform is a two color, ligation-based assay utilizing 30-mer
oligonucleotide probes synthesized in situ on a microarray substrate, with automated,
parallel processing of 96 samples per plate. Features are 3 µm squares, at a pitch of 5 µm
center-to-center, with a total of ~1.38 million features available for experimental content.
Each SNP feature contains a unique oligonucleotide sequence complementary to the
genomic sequence flanking the SNP site on either the forward or reverse strand. Solution
probes bearing attachment sites for one of two dyes, depending on the 3' (SNP-site) base (A
or T, versus C or G) hybridize to the glass probe/target complex, and are then ligated for
specificity. Features are typically replicated twice on the array, so that each SNP is
interrogated by two features; A/T and C/G SNPs require four features, because the two
alleles match the same dye and therefore distinct probe sequences in different physical
locations on the array are required to distinguish them. A maximum of ~690,000 SNPs may
be accommodated by this format; this number is reduced if A/T or C/G SNPs are included,
or if additional features are used to improve the resolution of specific SNPs, but may also be
increased if high resolution SNPs are tiled with a single feature. The platform can be
leveraged for designing arrays at previously unattainable levels of SNP density with respect
to customization of variant selection.

Here we describe the development and quality characteristics of a new microarray for the
Axiom system tailored to the European population. This is the first in a series of
customarrays being developed for a genome-wide genotyping analysis of 100,000
participants fromthe Kaiser Permanente Northern California Research Program on Genes,
Environment and Health. The rationale for developing these new arrays is to maximize the
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number of high quality SNPs for genome-wide coverage; to provide coverage down to a
minor allele frequency of 0.01 in gene-based regions; to saturate regions previously
identified as disease associated from prior GWA studies for both replication and fine
mapping; to improve coverage of both common and uncommon variants by making use of
data from the low pass and high pass phases of the 1000 Genomes Project; and to
incorporate redundant coverage of SNPs with known strong associations with disease or trait
outcomes.

2. Results
2.1. Array statistics

Because the described Axiom array was developed as part of the Kaiser Permanente-UCSF
collaborative RC2 project specific for European ancestry populations, it has been given the
designation Axiom Genome-Wide EUR Array Plate. In total, there are 674,517 SNPs tiled
onto the microarray. Among these, 116 are mitochondrial, 289 are on the Y chromosome,
388 are pseudoautosomal, 12,735 are on the X chromosome, and the remaining 660,989
SNPs are autosomal. Even though it is optimized for individuals of European ancestry,
because of close kinship we expect it to also have high utility for individuals of West Asian,
North African and South Asian ancestry.

2.2. Performance on HapMap samples
Performance of the array was assessed by assaying the Caucasian and Yoruban HapMap2
populations (90 individuals each with cell line DNA). Results are shown in Table 2. Call
rates, sample concordance, reproducibility and Mendelian consistency are all extremely
high. Furthermore, a large majority of SNPs (98.5%) have overall call rates of 97% or
greater.

2.3. Performance on the KP RPGEH GERA cohort
To date, we have completed genotyping of 80,301 saliva samples over a 9 month period,
using 3 Affymetrix Gene Titan systems and 3 Beckman Biomek FXP Target Prep Express
Systems, including 818 pairs of duplicate samples. That translates to approximately 685
samples per week per system, and 462 million genotypes per week per system. We used the
Affymetrix Powertools Package version 1.12.0 [18] to make the genotype calls.

Fig. 1a is the cumulative distribution of DQC (quality control), scores for the 80,301
samples. Among these, 76,508 (95.3%) had passing DQC scores (>0.82). Fig. 1b is a scatter
plot showing the distribution of sample call rate vs. DQC for samples with DQC>0.82. We
see a strong correlation between the two measures, and that the great majority of the samples
fall along a “main sequence” of behavior. Below the main sequence is a diffuse halo of
samples whose call rate is below expected. Although few in number, these samples below
the call rate threshold of 97% show the necessity for a second filtering and genotyping step
in the standard workflow.

Fig. 1c shows the cumulative distribution of sample call rates for sample assays with
DQC>0.82. Among the 76,508 samples with DQC>0.82, 75,740 (99.0%) have a “passing”
call rate of 97% or greater. Overall, 87% of the samples have a call rate ≥99% and over 98%
of samples have a call rate ≥98%. From the original group of 80,301 samples, 94.3% pass
both DQC and call rate criteria.

Genotype reproducibility was assessed from the 818 duplicate samples. There are two types
of disagreement between duplicate samples. The first we refer to as a “call–no call” (CNC)
— where one sample has a genotype call, while the other is considered a no call. The second
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we refer to as a “miscall.” This occurs when both samples receive genotype calls, but the
calls differ. We calculated both the CNC rate (total number of disagreements out of total
number of SNPs) and the miscall rate (total number of miscalls out of total number of SNPs)
for each pair of duplicate samples. The majority of samples had CNC rates below 1%, with
0.7% of samples having a rate of 3% or higher and 4.8% with rates between 2% and 3%
(Fig. 1d). Similarly, the majority of samples had miscall rates below 0.5%, with 1% having a
miscall rate greater than 2% (Fig. 1d).

There was also a strong correlation between CNC and miscall rates for the duplicate samples
(r=0.93), indicating that samples with lower DQC and overall call rates are also likely to
have a higher rate of miscalls. These miscall rates are conservative overestimates because
they are based on first pass genotyping, and presumably can be brought down further based
on more refined genotyping procedures and higher stringency for genotype calls. We also
noted that for miscalls, the large majority (97.6%) occurred between homozygotes and
heterozygotes, and rarely between the two different homozygotes. This is consistent with
occasional difficulties in clearly assigning a genotype to a given sample when adjacent
clusters may not be very well separated.

2.4. Genome-wide coverage
We first compared the coverage of our array to the Affymetrix 6.0 chip, which includes over
906,600 SNPs [17]. Because coverage is dependent on MAF, we stratified all coverage
figures based on MAF. We first looked at the coverage of the “target set” that the array was
designed for (3,431,598 SNPs with MAF≥0.02), stratified by MAF ranges. We see in Fig. 2
that that the new array provides coverage comparable to Affymetrix 6.0 for common SNPs
(MAF≥0.1), but has higher coverage for lower allele frequencies, down to 0.03 frequency,
despite having fewer SNPs on the microarray. This is because the Affymetrix 6.0 chip was
designed from a smaller target set and was not an ethnic-specific chip. It is significant that
coverage is still good down to 0.03 MAF, where greater than 60% of SNPs are covered with
an r2 of 0.8.

We know that this target set is incomplete (e.g., not all the KGP data were screened at
design time). A larger set of 6,367,892 SNPs with MAF≥0.02 have been identified in the
sequencing of 60 CEU individuals in the low pass sequencing phase (KGLP) of the KGP
(http://www.1000genomes.org). This pilot dataset was sequenced at low (2–4X) coverage
[19–22]. Some of the genotype calls for these 60 subjects available on the KGP website had
been improved through imputation with HapMap 3 data [23]. Because of potential noise
from the low pass sequencing, it was unclear whether the KGLP dataset could provide an
accurate estimate of genome-wide coverage, so we first looked at coverage for the set of
SNPs overlapping those in the target set for which the array was designed (Affymetrix data)
and KGLP.

In Fig. 3 we see that the coverage calculated using these two sets of genotype data for the
same target SNPs was very similar. Hence, we conclude that the KGLP genotype data serve
as an adequate reference set for subsequent analyses.

We were next concerned with estimating genome-wide coverage based on a random
collection of valid SNPs, not limited to the SNPs used for the array design, to obtain an
unbiased estimate of full genome coverage. To do so, in theory, we could focus simply on
the totality of KGLP SNPs. However, because the KGLP SNP data were obtained from low
pass sequencing, we were concerned about the possible role of false positives in these data.
These will likely be particularly common for putative SNPs with low MAF. On the other
hand, we know that the KGP Pilot high pass sequencing data (KGHP) were created with a
much higher read depth (20–60×), although sequencing was only performed on 4
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independent individuals (two CEU parents and two YRI parents). Sequence variations
derived from these 4 founders can be considered a random sample of genotypes, albeit
biased towards common variants due to the small number of individuals examined.
Although low MAF SNPs are under-represented in this group overall, they still occur in this
sample and represent a random sampling of low frequency variants. Therefore, to get
another estimate of genome-wide coverage for a random set of valid SNPs, including
common as well as rare alleles, we calculated coverage for KGHP-derived SNPs that also
appeared in the KGLP data, and used the KGLP genotype data to determine coverage. We
see that our array has good coverage when using all markers in KGHP as the target set (Fig.
4), although not as strong as for the Affymetrix target set for which it was designed (Fig. 2).
For the original Affymetrix coverage set, at an r2 of 0.6, coverage ranged from about 74% at
MAF of 0.03 to 96% at MAF of 0.1 or greater, while for the KPHP target set, coverage
ranged from about 60% at MAF of 0.03 to 94% at MAF of 0.2. However, we also note that
these coverage estimates are likely to be conservative, as they are based on a relatively small
sample of 60 KGLP individuals. Therefore, the coverage of SNPs with MAF of 0.03 is
likely to be higher than 60% for a larger reference panel.

We were also interested in comparing coverage of those SNPs that appeared in the KGLP
data but did not appear in the KGHP or the Affymetrix database compared with those that
did appear in the KGHP data (but not the Affymetrix database). For SNPs missing from
KGHP, coverage was significantly worse (Fig. 5), in comparison to those that did appear in
KGHP. This indicates that many of these KGLP SNPs are likely false positives, leading to
absence of LD with neighboring SNPs and therefore a lack of coverage. Hence, caution
needs to be exercised in terms of genome-wide SNP coverage estimates based solely on
KGLP data.

Lastly, we looked at the coverage of the CNV data detectable on the Affymetrix 6.0 chip
[17,24,25] by our newly designed EUR array (Fig. 6). The dataset used for this analysis was
based on 59 independent CEU HapMap individuals; because CNVs were not included in the
EUR chip design and the SNP 6.0 chip uses a very different assay compared to Axiom
(hybridization-based instead of ligation-based), this analysis also provides an independent
estimate of how well the chip can cover variants not included in the target set used in the
chip design. For this analysis we discarded 216 “multiallelic” CNVs (i.e., CNVs that could
not be treated as SNPs, e.g., a CNV that could have 0, 1, 2, or 3 copies) and 632 “bi-allelic”
CNVs (i.e., can be treated as a bi-alellic SNP) with MAF<0.02, and report coverage of 293
“bi-allelic” CNVs with MAF≥0.02. We would anticipate CNV coverage to be comparable to
the random SNP coverage as depicted in Fig. 4. Such is the case down to a MAF of 0.1.
However, below that point, CNV coverage is reduced compared to SNPs. As yet, we are
uncertain as to the cause of this decrease; possibilities include reduced accuracy of the CNV
calling for low frequency CNVs, and heterogeneous origins of lower frequency CNVs, both
of which would reduce neighboring linkage disequilibrium and hence imputation ability.
Again, these coverage estimates are likely to be conservative because of the small size of the
reference data set of genotypes for this analysis.

3. Discussion
While genotyping chips with up to 1 million SNPs have now been extensively applied in
numerous GWA studies, questions about coverage of low frequency variation remain. Also,
throughput and expense have previously been limitations for large scale application of high
density genotyping chips.

The current Axiom system and the associated genotyping arrays, as described here for the
European population, offer a new opportunity to rectify some of these previous limitations.
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We have shown the array described here, with approximately 675,000 SNPs, offers a new
solution to high throughput, reduced cost genotyping that also provides coverage of low
frequency variation. This development was required due to the large scale genotyping
necessary for the KP RPGEH.

In considering the genotyping platform for the project to obtain genome-wide SNP data for
100,000 individuals of diverse ethnicity in 14 months, we chose the Axiom/GeneTitan
platform over the Affymetrix HuSNP 6.0 and the Illumina Omni1-Quad Infinium HD
platforms available in September 2009 because of 4 main reasons. First, the Axiom system
allowed us to design custom SNP panels with great flexibility. Once the SNP panel is
designed, fully manufactured Axiom arrays are shipped in less than 6 weeks. Second, the
Axiom assay protocol is highly automated using microtiter plates with substantially less
hands on time than that required on the other two platforms. The tasks performed by
technicians involve simple manipulations of microtiter plates placed onto robotic equipment
and reagents into reservoirs. In contrast, the Infinium and Affy 6.0 protocols require
handling of glass slides and DNA chips that require more sophisticated skill and mental
concentration. Technician burnout was a serious concern when considering the size of our
project. Third, the GeneTitan is a compact system that has a small footprint. The amount of
space required to house the iScans and robotic workstations needed for the Infinium
platform is about 3 times that required for the Axiom platform. Fourth, sample tracking is
robust in a 96-array format of the Axiom system. With the samples arrayed randomly
according to gender, checking for male/female mismatches in the genotyping data is a
simple way to confirm that there are no sampling errors.

To date, we have completed genotyping of approximately 80,000 RPGEH samples in a 9
month period, using three Axiom Gene Titan systems and three Beckman FXP Target Prep
Express Systems. This translates to approximately 685 samples and 462 million genotypes
per week per Gene-Titan system. The high throughput of this system will enable us to
complete the successful genotyping of 100,000 RPGEH subjects in a period of 14 months or
less.

As expected, the array demonstrates excellent coverage down to a MAF of 0.03 for the
millions of SNPs it was designed to cover; but we have also shown excellent coverage for
other random SNPs down to a MAF of 0.05 and reasonable coverage to even lower MAF of
0.03. Special attention was paid in the design process to coverage of SNPs with known or
plausible disease associations, with the result that the chip provides very good coverage of
SNPs with potential biological importance, such as SNPs in the regions of ADME genes,
MHC genes, or genes associated with cardiovascular disease or cancer [26].

We believe that the next generation of genotyping chips, for example the Axiom based chip
described here, will provide novel associations with both low frequency and common
variants, especially on large scale, well phenotyped studies. The first 100,000 samples from
the Kaiser Permanente Research Program on Genes, Environment and Health to be
genotyped, as described here, is but one such example. From its design, the custom chip will
also facilitate replication and extension studies of previously identified associations, and
because of its focus on SNPs of pharmacogenetic interest, will also be a valuable tool for
studying genetic effects on treatment response and side effects.

The high throughput and reduced cost with the Axiom system are attained at a tradeoff with
ethnic-specific coverage. Lower frequency variants, for example those with frequency below
0.1, have an enhanced probability of being race/ethnic group specific. Thus, in a multi-
ethnic study, different custom chips are required. We are currently designing other arrays
specific for East Asians, African Americans and Latinos, which will be described in a
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subsequent publication. While we expect a large amount of overlap in SNP content on these
different arrays for common variants (i.e., those with MAF>0.1), we also anticipate
inclusion of a sizable number of SNPs that are unique to that ethnic group at a MAF of 0.02
or greater.

It is likely that genome-wide genotyping chips will continue to be more efficient and less
expensive to apply than whole genome sequencing. As the field focuses more on studying
non-European populations, the importance of diverse ethnic groups will lead to next
generation arrays that provide significantly improved coverage of more relevant variants.
The development of new platforms and arrays as described here will offer enhanced and
complementary tools for genome-wide analysis to identify the genetic basis of complex
diseases and traits, as has already been demonstrated for the earlier generation genotyping
tools.

4. Materials and methods
4.1. SNP validation (conversion)

SNPs screened using the Axiom™ technology were validated (“converted”) according to
several metrics encompassing the following general principals:

4.1.1. Resolution—Cluster resolution was assessed by cluster separation and call rate.
The Axiom GT1 algorithm adapts pre-positioned clusters to the data using a probability-
based method. Clustering is carried out in two dimensions, log ratio (log2(A) − log2(B)) and
size (log2(A + B)/2). The algorithm is very similar to the modified version of BRLMM-P
described in [24], except that no manual adjustment of priors was performed, only bi-allelic
SNPs and indels are considered, and posterior estimation is dynamic using multiple samples
in combination with predetermined priors. Cluster separation or resolution was measured by
the minimum pairwise Fisher's Linear Discriminant (FLD) [27] between either homozygous
cluster and the heterozygote cluster, in the log ratio dimension. A minimum threshold of 3.6
has been empirically determined to eliminate the great majority of poorly resolved SNPs.
SNP call rate was also calculated, with a minimum threshold for conversion of 98% in the
screen of KGP SNPs discussed below. Additional measures of relative cluster position are
used to eliminate a variety of rare mis-clustering phenotypes that are not caught by the FLD
and call rate thresholds.

4.1.2. Polymorphism—A minimum of three observed examples of the minor allele (e.g.,
three heterozygotes, or one heterozygote and one minor allele homozygote) was required for
validation of a SNP. This provided evidence for both proper assay function and resolution
and the existence of an actual polymorphism at the indicated site.

4.1.3. Accuracy—Accuracy was assessed by concordance, reproducibility and consistency
with Mendelian inheritance. SNPs with HapMap reference calls in the individuals genotyped
were assessed for concordance between array-derived and reference genotypes, with a
minimum concordance threshold set at 96% and a minimum call rate threshold of 96%. For
SNPs without HapMap reference genotype data, a minimum threshold for the call rate of
98% was imposed. Reproducibility was calculated for each SNP as the fraction of genotype
calls concordant to the consensus call for all replicates of each sample. The threshold for
reproducibility was 97%. Mendelian inheritance consistency was calculated as the fraction
of offspring genotype calls in keeping with parental genotypes. The threshold for Mendelian
inheritance consistency was 98.5%.
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4.2. SNP selection for inclusion on the array
Two considerations guided SNP selection. First, we wished to maximize the number of
SNPs on the array. More SNPs allow for greater genomic coverage. The array
accommodates a fixed total of 1.38 million features. The majority of SNPs require two
features. Limiting SNP selection to two-feature sets would, in theory, provide room for
690,000 SNPs. However, because certain SNPs were deemed as high priority (as described
below), exceptions were made to allow for higher multiple-feature and multiple-probe SNPs.
In addition, some high-value SNPs were tiled on the array in multiple replicates to improve
the chances for high quality genotype calls.

The second consideration is that not all SNPs are equal in importance. SNPs based on
strongly confirmed trait or disease associations are of highest value, while SNPs chosen for
genomic coverage may have no particular significance beyond their ability to predict
genotypes of other SNPs. We therefore divided SNPs into selection tiers based on a
hierarchy of importance. Some SNPs were included because of known function or disease/
trait association; some SNPs were selected to “cover” or “tag” SNPs of known importance
which could not be converted in the Axiom assay, or for which we desired redundant
coverage; and finally others were selected algorithmically to optimize the coverage of
general genetic variation across the entire genome. SNP selection proceeded progressively
down tiers of importance, as described below.

4.2.1. Stage 1: A preselected set of SNPs—We first created a list of “preselected”
SNPs of varying levels of importance for inclusion on the array, defined as primary,
secondary, tertiary, and gene enrichment, in decreasing level of significance. Because
sources for these various tiers of SNPs often produced the same SNPs, we assigned each
SNP uniquely to its highest tier. Some of these SNPs met QC standards of inclusion (and
were directly tiled), while others did not. For those that did not, we algorithmically included
neighboring SNPs to infer these high priority SNPs, as described below. For some of the
highest priority SNPs, we also algorithmically included redundant coverage if possible.

There were 241 Primary SNPs. These were SNPs of highest importance, based on strongly
confirmed trait or disease associations derived from the literature and other database
sources, such as the NHGRI GWAS database [28] and the Human Genome Epidemiology
(HuGE) Navigator [29].

The secondary group consisted of 7929 SNPs that were obtained from various literature and
public database sources as suggestive of association with a disease or trait, but not yet as
strongly replicated. Each SNP in the secondary set was included on the array if it produced
high quality genotypes on the Axiom platform. The SNPs in this secondary group were
identified from a variety of sources, including: Pharmacogenetics Knowledge Base
(PharmGKB) [30] and Pharmacogenetics of Membrane Transporter (PMT) database [31] for
SNPs of pharmacogenetic interest; Candidate SNPs compiled from the literature; NHGRI
GWAS database for SNPs with association P-values <1e − 5 (appearing in the literature as
of January, 2010); HuGE Navigator database for the most-cited candidate gene association
SNPs.

The 72,324 tertiary SNPs were mined from various database sources and were based on
potential functional significance. The list of sources for these SNPs included miRNA SNPs;
splice site SNPs; MHC (chromosome 6p) SNPs; coding synonymous and non-synonymous
SNPs; other SNPs preselected for high value from the Affymetrix commercial CEU array;
and KGLP SNPs in functionally important regions.
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At a similar level of importance to the tertiary set was the gene enrichment set defined as
198,771 SNPs chosen from exonic and flanking regions of genes. The flanking regions
included 10Kb upstream of the first exon, 10Kb downstream of the last exon, and ± 50 bp
flanking regions for all intermediate exons for 4246 genes that were confirmed or suggestive
of potential disease or trait associations. The gene sources for these SNPs included the
HuGE database (most often cited genes), genes of neuro-endocrine interest, HLA genes,
telomere genes, genes of pharmacogenetic interest, genes of environmental interest
identified from the NIEHS website, and genes identified in GWAS studies from the NHGRI
database.

To screen out variants that are not polymorphic in Europeans and false positives in the
tertiary and gene-enrichment sets, we required at least two heterozygotes and ≥0.01 MAF
from 180 Caucasian individuals in a database generated by Affymetrix during their SNP
screening for the Axiom platform. For the tertiary set, this resulted in a total of 59,063 SNPs
for inclusion. For the gene-enrichment set, this resulted in a total of 107,706 SNPs.

The number of validated primary, secondary and tertiary SNPs that were directly tiled on the
array was 153, 4,094 and 48,252, respectively. Our strict validation criteria were previously
outlined. A few very high priority SNPs that were not validated were also tiled on the array,
to allow for the possibility that they would still provide useable genotype data. We did not
directly tile all the validated gene enrichment SNPs, but rather included them in the first
target set for greedy algorithm SNP coverage as described below.

4.2.2. Stage 2: Additional coverage of preselected SNPs—To insure successful
inference of the primary SNPs, layers of additional high QC SNPs were added. First, a
single 'tagging' SNP in sufficiently high LD (r2>0.6) was included, when available.
Subsequently, we greedily constructed a multiple marker “imputation tag” (r2 calculation
details described in the genome-wide coverage section below) from a 100 kb window
around each primary SNP, both those that could not be directly tiled and those that could,
adding respective coverage and redundant coverage. SNPs increasing r2 by more than 3%
were continuously added, prioritizing SNPs with better performance first, until no further
SNPs could be added.

For secondary SNPs that could not be directly tiled, we assigned a single tagging SNP (with
r2>0.6), if available. If no tagging SNP was available, imputations were performed and the
most predictive SNPs were added as described above for primary SNPs.

No tagging or imputation SNPs were added for the tertiary or gene-enrichment SNPs.
However, additional coverage was provided as the first step of the whole genome coverage
stage as described below.

4.2.3. Stage 3: Redundant and genomewide coverage—SNPs selected for genome-
wide coverage were obtained from several database resources, including HapMap, dbSNP,
and the KGP. Genotypes from the HapMap database were included in the coverage analysis
for SNP selection. Genotypes of SNPs identified by the KGP or in dbSNP, but not HapMap,
were determined by screening on the Axiom™ platform in the HapMap2 CEU, CHB, JPT,
and YRI populations (previous work by Affymetrix, results not shown).

An incremental greedy heuristic was used in the genome-wide coverage rounds, in which
SNPs were chosen for their ability to cover one or more set of target SNPs according to
multiple competing criteria. As with the preselected set, the most important coverage goal
was pursued in the first selection round, followed by a descending sequence of less
important goals in subsequent selection rounds.
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The need to optimize across multiple criteria led to several rounds of coverage optimization.
Within each round, SNPs were chosen from a set of candidate SNPs one at a time. Selection
was based on multiple criteria, including: the marginal increase in coverage of the Caucasian
population gained from inclusion of the candidate SNP; the observed robustness and
accuracy of the assay for the candidate SNP; and the absence of nearby SNPs within the 30-
mer probe sequence. These optimality criteria were set forth in a selection process, which
reflected the hierarchical set of optimization priorities. At each level a configurable range of
optimization measures were considered to be a tie, so that, e.g., a SNP would not necessarily
be selected only for providing negligibly greater marginal coverage than a more robust
alternative. If a single SNP was optimal for the criterion under consideration, with no others
close enough to be tied, it was chosen. Otherwise, the subset of SNPs that were tied was
tested in the same manner against the next criterion level, until a unique optimal SNP was
identified. If no optimal SNP could be chosen, one was randomly selected from the
remaining candidates. By controlling the size of the region of optimization measures that
was considered a tie, we could investigate tradeoffs among multiple criteria.

A guiding principal for SNP selection was the concept of a “target set” (SNPs to be included
or covered by LD on the array), a “selected” set (SNPs chosen to be included on the array),
and a “candidate” set (SNPs that passed our validation criteria for inclusion, as previously
defined). The first step was to include the preselected set of SNPs described above under
Stage 1 in the “selected” set. The second step was to include SNPs chosen to provide
coverage or redundant coverage of the preselected set in the “selected” set. The next round
of SNP selection was used to maximize the coverage across the whole genome. Here, a SNP
was considered covered if it was 'tagged' by at least one selected SNP with r2 greater than
0.8. This round contributed the bulk of the array's SNPs. A final round again maximized
genomic coverage, but allowed coverage with a lower r2 threshold of 0.6 to capture SNPs
that could not be covered at high correlation. Fig. 7 shows a summary of the coverage
algorithm in the form of a flow chart.

4.2.4. Definition of the target set—The target set for the first round of greedy tag SNP
selection (166,769 SNPs) consisted of SNPs with LD data and with MAF≥0.01 from the
tertiary and the gene enrichment set of SNPs In this round, 32,066 additional SNPs were
moved from the “candidate set” to the “selected set.” The second round of greedy tag SNP
selection was carried out for redundant coverage for the primary, secondary, tertiary and
gene enrichment SNPs. SNPs with LD data and with MAF≥0.01 from all four categories of
SNPs were included in the target set (173,549 SNPs). A total of 37,776 SNPs were moved
from the “candidate set” to the “selected set” in this round. For the next round of greedy tag
SNP selection all SNPs in the genome with LD data and with MAF≥0.02 were included in
the target set (3,505,510 SNPs), excluding SNPs already in the “selected” set. In this round,
544, 607 SNPs were added. The final round of greedy tag SNP selection used the same
target set for genome-wide coverage with SNPs in or covered by the “selected” set removed
from the target set; for this round, a lower threshold of r2 = 0.6 was used, and 9,294 SNPs
were added. For all target sets, SNPs with only one homozygous genotype for the minor
allele and no heterozygous genotypes in CEU samples were excluded.

4.3. Quality assessment for samples run on the final microarray product
The primary chip-level quality metric for Axiom™ microarrays is “DQC,” a measure of
interference between the channel-to-channel signal contrast distributions of probes that
complement genomic sequence with no expected polymorphism, half of which have
foreground signal in one channel and half in the other. The DQC value is highly correlated
with sample call rate. Loss of this correlation indicates sample or assay problems such as
contamination or mixing of DNA, or technical issues with hybridization. Low DQC values
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likewise indicate problems such as low input DNA mass. DQC ranges from 0 to 1; we
employed a minimum threshold of 0.82 for further analysis of a sample; samples with low
DQC were not included in genotyping analysis. Subsequently, for a genotyped sample, the
call rate was determined across all SNPs for an individual. A minimum threshold of 97%
was employed to declare that a sample was successfully genotyped. After removal of failed
samples, re-genotyping was performed to obtain more accurate genotypes for the remaining
samples.

4.4. Quality assessment of SNPs on the final microarray product
SNP performance was assessed in the experimental work primarily on the basis of call rate
and reproducibility of genotype calls in replicated samples. As described below, a single
duplicate sample was included on each plate for QC purposes. Reproducibility of genotypes
was then calculated based on these duplicates.

4.5. Genotyping the Kaiser Permanente Research Program on Genes, Environment and
Health (RPGEH) Genetic Epidemiology Research in Adult Health and Aging (GERA) cohort

The Axiom array development we describe here derives from an NIH funded RC2 program
entitled “A Resource for Genetic Epidemiology Research in Adult Health and Aging.” As
part of this program, we will be performing GWAS genotyping on 100,000 members of the
Kaiser Permanente Northern California (KPNC)membership who volunteered for the
Research Program on Genes, Environment and Health (RPGEH). Participants provided a
saliva sample in a whole-saliva collection kit (Oragene™ DNA collection kit, DNA
Genotek, Inc., Ottawa, Ontario, Canada), from which DNA was extracted and normalized.
Participants provided broad written informed consent for use of their DNA and resulting
genetic data in health studies. The study received approval from the KPNC Institutional
Review Board. This is a multi-ethnic cohort, including substantial numbers of Caucasians,
African Americans, Asians and Latinos. To maximize genomic coverage for low frequency
variation in each of these ethnic groups, we are creating four ethnic-specific arrays, one for
each of the above mentioned ethnic groups. We are taking advantage of the high density
customization enabled by the Axiom platform. In this first publication, we describe the array
developed for European Americans. To characterize the performance of the newly
developed array, we perform QC analysis on the first 838 plates, including ~80,000
participants of European ancestry from this cohort.

As part of the experimental design for this project, we have included duplicate samples on
each plate. The plate contains space for 96 separate samples, one of which was a duplicate
sample that was included on a previously processed plate. In each case, we randomly
selected a sample that had been successfully genotyped on a prior plate as a duplicate for the
current plate. The analysis of reproducibility is based on a total of 818 duplicates.

4.6. Calculating genome-wide coverage for the final microarray product
To assess the coverage performance of our array, we estimated the correlation between each
marker in a “target” set to the markers on our array. In a GWAS analysis, typically SNPs not
on the array will be imputed from SNPs that are on the array, when possible. Therefore,
rather than using the maximum pairwise correlation within a fixed window around the SNP
[12], we used imputation with regional markers. Normally, one would use the same set of
individuals for the reference and predicted sets of genotypes in this analysis. However,
leaving the same individual in both sets leads to overfitting, and hence overestimation of
coverage. Therefore, we employed “leave-one-out cross validation” to compute an unbiased
multiple-marker estimate of the correlation [32], as follows. For each individual in the
predicted set, we removed him (her) from the reference set and used all other individuals to
impute his (her) genotype via the software package Beagle v3.3.0 [33]. In this fashion, the
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imputed value was not influenced by an individual's actual genotype value. For each marker
and individual, we used the imputed probabilities of each genotype to compute the expected
value of the genotype under an additive coding (i.e., E(X)=pAa+2pAA). Then, using all
individuals in the predicted set, the squared correlation r2 was calculated between the actual
additive genotype value and the expected value from the imputed genotypes. For each SNP
in the “target” set, the calculated r2 represents its coverage by SNPs present on the array.
Finally, we computed the coverage of the full “target set” by the array for a given r2

threshold T as the proportion of the markers in the “target” set with r2>T. One thing to note
is that imputation performance can be affected by the size of the reference panel (especially
for lower minor allele frequencies); therefore, to facilitate comparability between coverage
estimates on different sets of reference genotype data, we used 59 or 60 independent CEU
HapMap individuals. For most analyses, these were the CEU founders, but in a few analyses
it included a child instead of parents.
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Fig. 1.
Results of QC analysis on the Kaiser Permanente RPGEH GERA cohort using the
Affymetrix Axiom system. (a) Cumulative distribution of DQC scores for 80,301 genotyped
saliva samples. (b) Sample call rate versus DQC derived from 76,412 genotyped saliva
samples. Only samples passing a DQC threshold of 0.82 are included. Red line indicates
threshold for passing call rate. (c) Cumulative distribution of sample call rates for 76,412
genotyped samples. Only samples passing a DQC threshold of 0.82 are included. (d)
Cumulative distributions for call-nocalls and miscalls based on 818 duplicate samples.
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Fig. 2.
Genome-wide coverage for the new Axiom Genome-Wide EUR Array (solid lines) versus
the Affymetrix 6.0 array (dashed lines) for a target set of Affymetrix validated CEU SNPs
using Affymetrix genotypes, stratified by minor allele frequency. Coverage based on
imputation with “leave-one-out cross validation.” The numbers in parentheses in the legend
are the numbers of markers in the target set in each particular minor allele frequency range.
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Fig. 3.
Genome-wide coverage for the new array for a target set of Affymetrix validated CEU SNPs
using either Affymetrix genotypes (dashed lines) or the 1000 Genomes Low Pass (KGLP)
genotypes (solid lines). Coverage based on imputation with “leave-one-out cross
validation.” The numbers in parentheses in the legend are the numbers of markers in the
target set in each particular minor allele frequency range.
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Fig. 4.
Genome-wide coverage for the new array (solid lines) versus the Affymetrix 6.0 array
(dashed lines) for a target set of 1000 Genome High Pass (KGHP) SNPs using 1000
Genomes Low Pass (KGLP) genotypes. Coverage based on imputation with “leave-one-out
cross validation.” The numbers in parentheses in the legend are the numbers of markers in
the target set in each particular minor allele frequency range.
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Fig. 5.
Genome-wide coverage of the new array for two complementary target sets: KGHP SNPs
with Affymetrix validated SNPs removed (solid lines), and KGLP SNPs with KGHP and
Affymetrix validated SNPs removed (dashed lines). Coverage based on imputation with
“leave-one-out cross validation” using KGLP genotypes. The numbers in parentheses are the
numbers of markers in the two target sets in each particular minor allele frequency range.
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Fig. 6.
Coverage of the new array (solid lines) versus the Affymetrix 6.0 array (dashed lines) for a
target set of Canary CNVs using Canary CNV and Affymetrix genotype data. Coverage
based on imputation with “leave-one-out cross validation.” The numbers in parentheses are
the numbers of CNVs in the target set in each particular minor allele frequency range.
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Fig. 7.
Greedy SNP selection algorithm. A set of SNPs are chosen for reasons of biological
importance, significance in published GWAS, etc., or as the result of previous rounds of
greedy SNP selection. The “target” set of SNPs to be covered by tagging is established to fit
the purpose of the current round of SNP selection, e.g., maximize coverage of SNPs in
coding regions, or maximize general coverage of the genome. Then, SNPs which are
available to be placed on the microarray are assessed for their ability to increase coverage of
the target set. If coverage can be increased, a set of decision rules is applied to select the best
single SNP to add to the selected list, as described in the text. This process continues until
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maximum coverage of the target set is achieved, or no space for additional SNPs on the
microarray remains.
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Table 2

Performance of the array on 180 HapMap 2 individuals.

Metric Performance

Average Sample Call Rate 99.69%

Average Sample Concordance to HapMap Reference Genotypes 99.71%

Fraction of SNPs with Call Rate>97% 98.5%

Average SNP Reproducibility 99.89%

Mendelian Inheritance Accuracy 99.94%
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