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Nonsense Mutations in SMPX, Encoding a Protein
Responsive to Physical Force, Result
in X-Chromosomal Hearing Loss

Antje K. Huebner,1 Marta Gandia,2,3,12 Peter Frommolt,4,5,12 Anika Maak,1 Eva M. Wicklein,6

Holger Thiele,4 Janine Altmüller,4 Florian Wagner,7 Antonio Viñuela,2,3 Luis A. Aguirre,2,3

Felipe Moreno,2,3 Hannes Maier,8 Isabella Rau,9 Sebastian Gießelmann,1 Gudrun Nürnberg,4,5,10

Andreas Gal,9 Peter Nürnberg,4,5,7,10 Christian A. Hübner,1 Ignacio del Castillo,2,3 and Ingo Kurth9,11,*

The fact that hereditary hearing loss is the most common sensory disorder in humans is reflected by, among other things, an extraor-

dinary allelic and nonallelic genetic heterogeneity. X-chromosomal hearing impairment represents only a minor fraction of all cases. In

a study of a Spanish family the locus for one of the X-chromosomal forms was assigned to Xp22 (DFNX4). We mapped the disease locus

in the same chromosomal region in a large German pedigree with X-chromosomal nonsyndromic hearing impairment by using

genome-wide linkage analysis. Males presented with postlingual hearing loss and onset at ages 3–7, whereas onset in female carriers

was in the second to third decades. Targeted DNA capture with high-throughput sequencing detected a nonsense mutation in the small

muscle protein, X-linked (SMPX) of affected individuals. We identified another nonsense mutation in SMPX in patients from the Spanish

family whowere previously analyzed tomapDFNX4. SMPX encodes an 88 amino acid, cytoskeleton-associated protein that is responsive

to mechanical stress. The presence of Smpx in hair cells and supporting cells of the murine cochlea indicates its role in the inner ear. The

nonsense mutations detected in the two families suggest a loss-of-function mechanism underlying this form of hearing impairment.

Results obtained after heterologous overexpression of SMPX proteins were compatible with this assumption. Because responsivity to

physical force is a characteristic feature of the protein, we propose that long-term maintenance of mechanically stressed inner-ear cells

critically depends on SMPX function.
As the most common sensory disorder in humans, hearing

loss affects about 1 in 1000 newborns.1 It is assumed that

at least half of the cases have a genetic basis, and more

than two-thirds of this subset of cases are classified as non-

syndromic hearing loss (NSHL) because of the absence of

additional symptoms. The vast majority of NSHL is caused

by mutations in autosomal genes. X-chromosomal inheri-

tance accounts for only 1%–5% of the cases.2 To date, four

X-chromosomal NSHL loci (DFNX) have been mapped,

and two genes have been implicated in this group of disor-

ders (Hereditary Hearing Loss Homepage). X-linked

DFNX1 (formerly DFN2 [MIM 304500]) is characterized by

postlingualprogressivehearingimpairmentandhasatypical

age at onset between 5 and 15years formales and in thefifth

decade for females. The gene mutated in DFNX1,3 PRPS1

(MIM 311850), encodes phosphoribosyl pyrophosphate

synthetase 1, which participates in the nucleotide biosyn-

thesis pathway by catalyzing the reaction of ribose-5-phos-

phatewithATP. Its function in the inner ear remains elusive.

Apart from its contribution to NSHL, mutations in PRPS1

have also been implicated in PRS-I superactivity (MIM

300661), Charcot-Marie-Tooth disease type 5 (CMTX5
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[MIM 311070]), and Arts syndrome (MIM 301835), all of

which can be accompanied by hearing loss.4 POU3F4

(MIM300039) encodes amember of the POU family of tran-

scription factors and is mutated in DFNX2 (formerly DFN3

[MIM304400]),5 which is characterized by prelingual senso-

rineural deafness accompanied by a conductive component

because of stapedial fixation.

In the present study, we investigated a large German

pedigree with a postlingual NSHL for which age at onset

is 3–7 in males. Initially, there is a moderate hearing loss,

especially for high frequencies, that progresses with age

and affects all frequencies later. Onset of hearing loss in

female carriers is in the second to third decades, and

patients present with a severe hearing loss after 10–15

years (Figure 1). Vestibular function was normal, and

tinnitus was not reported by the affected individuals. No

signs of a conductive hearing loss-component (no air-

bone gaps) were noticed in pure-tone audiometry; this

finding indicates a normal middle-ear function. Computed

tomography, magnetic resonance imaging and digital

volume tomography showed a normal middle-ear cavity

with regular ossicles, a normal mastoid, and no signs
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Figure 1. Clinical Phenotype and Segregation Analysis in a German Family Affected by Hereditary Hearing Loss
(A) Audiograms of selected family members (red indicates the right ear, and blue indicates the left ear). Hearing loss in males typically
starts between ages 3–7, whereas hearing loss in females begins in the second to third decades.
(B) Haplotypes constructed by four Xp22.12 SNP markers mapped the disease locus between rs1482816 (hg19 X: 5746140) and
rs1557901 (hg 19 X: 23222925). Individuals I-1–I-4, III-4, III-6, IV-1, and V-1 were not subjected to the 10K GeneChip linkage analysis.
of malformation in the affected individuals. The regular

inner-ear structures had fluid-filled, normally shaped

cochlea that allowed later treatment by cochlear

implantation.

Genome-wide linkage analysis (GeneChip Human

Mapping 10K Array, Affymetrix, Santa Clara, CA, USA) on

11 affected family members revealed linkage to a 17.5 Mb

interval in Xp22.12 and maximum LOD scores of 2.23
622 The American Journal of Human Genetics 88, 621–627, May 13,
(Figure S1, available online). Analysis of multiple informa-

tive meioses assigned the disease locus between

rs1482816 (hg19 X: 5746140) and rs1557901 (hg19

X: 23222925) (Figure 1). We calculated LOD score by using

the ALLEGRO6 program and assumed dominant inheri-

tance with full penetrance and a disease allele frequency

of 0.0001. Haplotypes were reconstructed with MERLIN7

and presented graphically with HaploPainter.8
2011
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Figure 2. Identification of Nonsense Mutations in SMPX
(A) Sequencing of genomic DNA revealed the SMPX nonsense mutations c.109G>T in exon 3 in the German family (left) and c.175G>T
in exon 4 in the Spanish family14 (right). Electropherograms of a respective heterozygous female carrier and a hemizygous male are
shown in comparison to a reference sequence. No additional mutations have been identified in a cohort of 34 GJB2-negative individuals
with early-onset hearing loss.
(B) SMPX is composed of five exons (left, the coding sequence is given in blue) and encodes an 88 amino acid protein (right) without
known functional domains.
To identify the gene mutated in the family, we per-

formed targeted enrichment of all exons and 1 kb of the

promoter regions of the 88 protein-coding genes and

known miRNAs within the critical interval (GRCh37/

hg19) by using the Roche NimbleGen 385K custom

sequence capture array. Final coverage of the design was

96.3% and included an offset of 100 bp. DNA of two

affected males from the family (individuals III-2 and III-5,

see Figure 1B) was subjected to target enrichment and

sequencing. We prepared the sequencing library by using

standard Illumina protocols including end repair;

A-tailing, paired-end adaptor ligation; and amplification

by PCR. Enrichment factors (284-fold and 280-fold) were

determined by quantitative PCR of four control loci in

the array in a comparison of enriched versus nonenriched

DNA. The two libraries were subjected to massively parallel

sequencing (Illumina GA IIx), resulting in approximately

2828.6 Mb and 2606.0 Mb of raw sequences for the two

individuals analyzed. For primary data analysis, a semiauto-

mated data-processing pipeline was established. We first

mapped reads to version hg19 of the human reference

genome by using the MAQ short-read alignment soft-

ware9 on a large-scale compute cluster. We called single-

nucleotide variants (SNVs) by using the MAQ downstream
The Ame
analysis tools.9 For indel calling, we repeated the align-

ment procedure by using the BWA aligner10 and the SAM-

tools11 software for downstream analysis. A total of 3858

and 3443 X-chromosomal variants were called for individ-

uals III-2 and III-5 (Table S1).

At the same time, we collected DNA samples from addi-

tional affected males and genotyped them for highly poly-

morphic microsatellite markers; by doing this we reduced

the linkage region to ~8.5 Mb flanked by DXS987 (hg19

X:14709303) at the telomericend.Whenthe refined interval

(UCSC Genome Browser hg19 X:14709303-23223175) was

taken into account, the number of SNVs remaining was

398 and 347 for the respective patients (Tables S1 and S2).

Six variants located to exons and were not annotated as

SNPs. We considered these variants for their impact on

protein synthesis and the degree of evolutionary conserva-

tion by using GERP and PolyPhen.12,13 The nonsense muta-

tion c.109G>T (p.Glu37X) in small muscle protein, X-linked

(SMPX) (NM_014332.1, hg19 X:21761891) was considered

the best candidate for NSHL in view of the character of the

mutation and the GeneRIF entries and was confirmed by

Sanger sequencing (Figure 2A, left panel).

Remarkably, the candidate interval included DFNX4

(MIM 300066, formerly DFN6), the locus for one form of
rican Journal of Human Genetics 88, 621–627, May 13, 2011 623
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Figure 3. Heterologous Expression of the SMPX Mutant Proteins
(A) C-terminally Myc-tagged human SMPX (SMPX_myc) was overexpressed in HeLa cells. Costaining withMyc (Santa Cruz, A14 sc-789)
and vinculin antibodies (ChemikonMAB3574) revealed overlap, especially in the focal adhesion sites of the cell periphery. Enlargements
of the cell membrane (white rectangles) are given. Note that SMPX_myc was largely absent from themature focal adhesions that serve as
anchor points for actin stress fibers (right, arrowheads). The scale bar indicates 5mm.
(B) Truncated SMPX (SMPX_59X_myc) revealed an intracellular staining in HeLa cells; the signal was largely absent from adhesion sites
at the cell membrane, indicating partial mislocalization of the protein. Enlargements of the cell membrane (white rectangles) are given
on the right. SMPX_37X_myc, corresponding to the mutation identified in the German family, was not detectable with Myc antibodies
after heterologous expression in HeLa cells (not shown). The scale bar indicates 5mm.
X-chromosomal NSHL mapped in a Spanish family.14 The

NSHL in this family was bilateral, symmetric, sensori-

neural, postlingual, and progressive. In affected males,

a high-frequency hearing loss was detected at age 5–7; by

adulthood, it had become severe or profound and involved

all frequencies. Females manifested a moderate hearing

impairment for the high frequencies, and onset was in

the fourth decade of life. Subsequent investigation of

SMPX in this family identified the nonsense mutation

c.175G>T (p.Gly59X) (hg19 X:21755773), which segre-

gated with the hearing loss (Figure 2A, right panel). Both

the c.109G>T and c.175G>T SMPX mutations (Figure 2B)

result in transcripts with premature stop codons and are

likely to undergo nonsense-mediated mRNA decay

(NMD), suggesting loss-of-function as the underlying

mechanism of the hearing impairment. These data demon-

strate that SMPX is the gene mutated in the DFNX4-associ-

ated disease. In an independent concurrent study of two

additional families with hearing loss, Schraders et al. (in

this issue) also identified mutations in SMPX and their

study provides additional support for our findings.15

Written informed consent was obtained from all the study

participants after approval from the Institutional Review

Boards at the participating institutions.

Human SMPX encodes a small 88-amino acid protein

(NP_055147.1) that has no known functional domains

andwas initially cloned frommuscle.16 SMPXwas also iden-
624 The American Journal of Human Genetics 88, 621–627, May 13,
tified in a screening for stretch-responsive skeletal muscle

genes and shown to be highly upregulated in response to

passive stretch in vivo.17 In adult striated myocytes, Smpx

localizes to costamere structures,18 muscle-specific protein

networks that couple the force-generating sarcomeres

with the sarcolemma and the surrounding extracellular

matrix. This functional unit acts as a buffer to protect the

sarcolemmal plasma membrane from damage generated

by themechanical stress of contractingmuscle cells. Costa-

meres are believed to represent a striated-muscle-specific

elaboration of focal adhesions in nonmuscle cells.19 These

dynamic protein complexes, through which the cytoskel-

eton of a cell connects to the extracellular matrix, are

mechanosensitive in that they respond to force by

changing their size, dynamics, and signaling activity.20 In

line with this, Smpx has been shown to partially colocalize

with focal adhesion complexes upon heterologous expres-

sion and precipitate with the focal adhesion marker vincu-

lin.21 In HeLa cells, heterologously expressed, C-terminally

Myc-tagged SMPX (SMPX_myc) showed a predominant

intracellular staining and enrichment in lamellipodia

(Figure 3). A partial overlap with vinculin was observed,

especially in adhesion complexes of the cell periphery. Of

note, SMPX_myc did not reveal a substantial overlap with

the mature focal adhesions that serve as anchor points for

actin stress fibers, and this implies a nonexclusive role for

the protein in adhesion processes. Staining of the truncated
2011
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Figure 4. Localization of Smpx in the Mouse Inner Ear
(A) A schematic representation of the cochlea. The sensory epithelium is composed of inner hair cells (IHC) and outer hair cells (OHC).
Nonsensory supporting cells include Deiters cells (DC), Böttcher cells (BC), and inner and outer pillar cells (iPC, oPC). Root cells (RC)
build up a cellular network in the lateral wall of the cochlea.
(B) Cryosections (7-mm thickness) from the cochlea of adult C57BL/6J mice were stained with an Smpx antibody (Sigma Aldrich
#AV41597, 1:500, green), and DAPI (blue). The overlay with differential interference contrast is shown. The scale bar represents
25mm. Stainings of SMPX_myc overexpressing HeLa cells with the Smpx rabbit-antiserum gave the same signal as with the mouse
Myc-antibody (data not shown).
(C and D) Enlargements of spiral ligament cells and outer sulcus cells together with root cells (C) and the sensory epithelium with sup-
porting cells (D). Note the Smpx localization in root cells, Böttcher cells, inner and outer pillar cell, and weaker signals in Deiters cells and
hair cells (marked by arrows).
(E) Apical basilar membranes of fixed cochleae were dissected and immunostained with an Smpx antibody (green) and conjugated phal-
loidin (red). Weak Smpx immunoreactivity was detected in inner and outer hair cells. The scale bar indicates 5mm.
variant SMPX_59X_myc (p.Gly59X in the Spanish family)

with the Myc antibody showed an intracellular signal

comparable to wild-type; however, absence of the protein

from the cell membrane and thus the vinculin-positive

cell periphery indicated partial mistargeting (Figure 3). No

specific staining was observed with the Myc antibody after

expression of the sequence-verified SMPX_37X_myc

variant (p.Glu37X, German family), indicating very low

abundance or rapid degradation of newly synthesized poly-

peptides. These results suggest that the SMPX transcripts

with early stop codons are degraded by NMD and represent

a functional null allele. Alternatively, transcripts can escape

NMD and produce largely truncated and misrouted, that is

nonfunctional, polypeptides.

Immunolocalization studies by an Smpx antibody and

longitudinal cross-sections of the mouse cochlea revealed

staining in different cell types, including Böttcher cells,

root cells, pillar cells, and interdental cells of the limbus

spiralis. Smpx immunoreactivity was also detected at low

levels in hair cells (Figure 4).

In thehearingprocess, the inductionof soundcausesfluid

tomove through the cochlear duct and thereby deflects the
The Ame
basilar membrane with the sensory epithelium against the

tectorialmembrane.Thus, chronicmechanical stress is char-

acteristic for the inner ear. Themechanical forceonhair cells

leads to the transduction of sound into an electrical signal

that underlies the hearing process. The tips of hair cells are

equipped with mechanical-vibration-sensitive stereocilia

that enable mechanosensory transduction. Stereocilia are

arranged as a staircase and connected with lateral and tip

links on the basis of elaborate actin-based cellular protru-

sions. Indeed, a significant number of genes in which

variation is associated with deafness encode actin or actin-

binding proteins, motor proteins of the myosin family, or

proteins that are otherwise linked to the cytoskeleton.22,23

Given the association of SMPX with the cytoskeleton, the

responsivity to mechanical force, and the detection of

Smpx in hair cells in the mouse, it is tempting to speculate

that SMPXmight play a role in themaintenance of stereoci-

lia, which are permanently exposed to physical forces.

SMPX might also contribute to actin turnover and length

regulation in stereocilia because these features are tightly

regulated by extrinsic biomechanical forces.24 However,

the antibody stainings failed to show a selective labeling of
rican Journal of Human Genetics 88, 621–627, May 13, 2011 625



the stereociliar bundles of the inner and outer hair cells,

whichargues against highabundanceof Smpx in stereocilia.

Mechanotransduction is not limited to hair cells and is

crucial in the maintenance of many mechanically stressed

tissues.25 Hence, any changes in normal intracellular-force

transmission can result in altered mechanosensitive

signals and cellular dysfunction. In addition to hair cells,

physical force is also applied to other cells of the organ of

Corti. SMPX might play a protective role against mechan-

ical stress in different cell types of the organ of Corti, in

line with the observed expression pattern, and functional

loss of SMPX could lead to the progressive hearing impair-

ment in the affected individuals.

Despite its strong expression in muscle cells, SMPX

appears to be largely dispensable for muscle function

because patients from the families studied do not show

obvious signs of muscular dysfunction. Interestingly,

elevated creatine kinase levels (400 U/l) and myalgias

have been repeatedly reported in a 71-year-oldmale patient

from theGerman family; however, the relation to the SMPX

mutation is currently unclear. Mice with a targeted disrup-

tion of Smpx (named Csl) did not exhibit an overt muscle

phenotype.18 Breeding of the Csl knockout-mouse line

has been discontinued, and thus it is not available for

hearing tests (R.P. Harvey, personal communication).

Remarkably, defects in the Rac1/p38 pathway, which is

a target of Smpx,21 have also been shown to be associated

with inner-ear dysfunction. Rac1 belongs to the family of

small GTPases. It is activated by biomechanical stress,

upon which it is recruited to sites of actin reorganization

and integrin-mediated cell adhesions. Intriguingly, condi-

tional ablation of Rac1 in the otic epithelium of mice re-

sulted in defective morphogenesis of the auditory sensory

epithelium and stereociliary bundle.26 p38 has also been

shown to be of relevance for inner-ear function; inhibition

of p38 MAP kinase phosphorylation suspended genta-

micin-induced ototoxicity, a side effect of aminoglycoside

therapy leading to permanent hair-cell loss and hearing

impairment.27 Smpx is also stimulated by insulin-like

growth factor-1 (IGF-1).18 IGF-1 mutations in humans are

associated with syndromic sensorineural deafness28 and

Igf-1-null mice exhibit hearing loss.29

In conclusion, our study identified mutations in SMPX

in patients with X-chromosomal hearing impairment

and suggested that the stress response of mechanically

challenged inner-ear cells might critically depend on

SMPX function.
Supplemental Data

Supplemental Data include one figure and two tables and can be

found with this article online at http://www.cell.com/AJHG/.
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