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Abstract
In the decade and a half since Biswal’s fortuitous discovery of spontaneous correlations in
functional imaging data, the field of functional connectivity (FC) has seen exponential growth
resulting in the identification of widely-replicated intrinsic networks and the innovation of novel
analytic methods with the promise of diagnostic application. As such a young field undergoing
rapid change, we have yet to converge upon a desired and needed set of standards. In this issue,
Habeck and Moeller begin a dialogue for developing best practices by providing four criticisms
with respect to FC estimation methods, interpretation of FC networks, assessment of FC network
features in classifying sub-populations, and network visualization. Here, we respond to Habeck
and Moeller and provide our own perspective on the concerns raised in the hope that the
neuroimaging field will benefit from this discussion.
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Introduction
We begin by thanking Habeck and Moeller for initiating a worthwhile discussion and
express our gratitude to the editors for providing a forum in which it may take place. Only
with critical reflection on our own research practices can we begin to address the challenges
of this rapidly growing field. We respond to their four criticisms in point/counterpoint
format, and refrain from raising (too many) new questions.

A network by any other name
In their first point, Habeck and Moeller raise some important questions about network
identification and the attribution of functional relevance. In particular, they question 1) the
face validity of networks obtained using blind decomposition techniques like principal
component analysis (PCA) and independent component analysis (ICA) and the lack of
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evidence in the form of behavioral or diagnostic correlates of network activity, 2) the
assessment of robustness and replication in independent data, and 3) the labeling of
networks based on topography without demonstration of functional relevance. In the
subsequent paragraphs we put forth our own perspective on each of these concerns.

We agree that activation patterns derived purely by the virtue of statistical independence
(ICA), orthogonality (PCA), or correlation with a given seed need not have any
neuroscientific meaning. However, their criticism of face validity seems to ignore the last
decade of research during which an overwhelming number of studies have demonstrated the
behavioral relevance of components and elucidated their functional roles. We mention a
handful of examples. Using ICA, Carvalho et al. (2006) investigated the effects of
intoxication on simulated driving and showed dose-related deterioration in attention and
driving performance associated with activity in cerebellar and motor networks. Eichele et al.
(2008) demonstrated that activity in multiple ICA networks including frontal and default-
mode regions predicted performance errors in a flanker task involving conflict. In an
impressive meta-analysis of peak activation coordinates obtained from a large and
heterogeneous collection of experiments, Smith and colleagues (2009) showed close
correspondence between ICA networks obtained from resting-state decompositions and
spatial activation patterns linked with task paradigms. Along with functional relevance, ICA
components have been demonstrated to covary with demographic variables like age and
gender (Allen et al., 2011; Biswal et al., 2010) and neuropsychiatric disorders such as
Alzheimer’s disease (Greicius et al., 2004), schizophrenia, and bipolar disorder (Calhoun et
al., 2008b). It is our impression that “additional evidence” of meaningful networks is
presented regularly.

Regarding their complaint of a lack of replication and assessment of robustness, we note that
components and seed-based maps have been widely replicated within and between studies.
Resting-state networks are highly reproducible at the group level (Damoiseaux et al., 2006)
and show reasonably high reliability at the level of the individual (Shehzad et al., 2009; Zuo
et al., 2009). Furthermore, corresponding networks are found consistently in a variety of
behavioral tasks (or lack thereof in resting-state paradigms), as demonstrated by Calhoun
and colleagues (2008a) who show similar components in ICA decompositions of resting and
task-related data. Finally, comparable networks can be obtained with seed-based and ICA
approaches, and network connectivity strengths for individual subjects are correlated
between the methods (Van Dijk et al., 2010). As an illustration of the robustness of FC
components, we show in Figure 1 that the default mode network is easily identified
regardless of experimental paradigm (auditory oddball task or resting-state) or analysis
method (general linear model (GLM), ICA, or seed-based correlation).

The authors raise an additional concern regarding the topographic labeling of spatial
components. We agree that labels derived from topography or other conventions do not
bestow relevance or inherent meaning to components. However, as discussed above, FC
networks are highly reproducible across studies, and the putative importance of components
can often be inferred by spatial correspondence to previously investigated networks or by
localization to brain regions with well-established functions (such as visual, motor, and
auditory areas). We would additionally argue that in some cases, a topographic label might
be preferable to one based on a presumed function, particularly when considering a
component that might subserve a variety of functions in different contexts. For example, one
might denote a component as a “left lateralized fronto-parietal network”, rather than a
“memory network”. Although these areas are often implicated in explicit memory processes
(Iidaka et al., 2006), they undoubtedly have other functions as well, such as in language and
semantic processing (Smith et al., 2009).
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In summary, spatial patterns of connectivity identified with any analytic method need not
have inherent significance. However, a wealth of literature demonstrates that FC networks
are associated with directed behaviors and individual traits. Researchers should use this
foundation of knowledge to inform their own hypotheses and interpretations regarding the
roles of components.

Seeds of confusion
In their second point, Habeck and Moeller recognize that the display of seed-based
correlation maps (as in Fig 1, second panel), encourages misinterpretation with respect to
correlations between non-seed regions. That is, it is intuitive but incorrect to expect that
regions correlated with the seed are also correlated with each other. Since such connectivity
maps are often called a “network”, Habeck and Moeller call for more clarity on what
generally constitutes a network.

To address the second point first, context determines the meaning and interpretation of the
word “network” in brain imaging analysis. For example, both the GLM and seed-based
method define a network as a subset of voxels whose timeseries are significantly correlated
with a reference signal. Using graph theory, a network may be defined as a connectivity
matrix between nodes, which represent voxels, areas, or components. Because there are
many existing ways to characterize and estimate a “network”, we feel it is unreasonable that
the community “fine-tune” a single definition. Rather, each author should explicitly state the
interpretation implicit in the method.

To elaborate Habeck and Moeller’s point on the misinterpretation of seed-based correlation
maps, we provide a theoretical account of possible correlations between pairs of voxels,
given their known association with a seed. Consider Figure 2, where a coronal slice is shown
from a thresholded seed-based correlation map. Label the seed voxel “A”, and any other two
voxels “B” and “C”. Given that you know r1 = corr(A,B) and r2 = corr(A,C), what is r3 =
corr(B,C)? The distribution for r3 can’t be estimated without additional information or
assumptions, however, we can calculate a theoretic minimum for r3, as displayed in Figure
21. From the image, it can be seen that if r1×r2 ≥ 0.5, then r3 ≥ 0. Thus, we may observe
rather high correlations r1 = r2 = 0.707 with almost no information for the value of r3, 0 ≤ r3
≤ 1. Note that we have focused on the magnitude of correlation, rather than its statistical
significance, since correlation magnitude is meaningful and interpretable, indicating linear-
relatedness. Correlation significance is used strictly for making a decisions regarding
specific hypotheses and is largely determined by sample size (and must, in this case, be
corrected for time series autocorrelation).

To summarize, it is almost instinctual to look at a seed-based map and assume that voxels
that are correlated with the seed are also correlated with each other, but no such claim can be
made. A fuller description of the relationships among all voxels can be determined with
multivariate methods, such as ICA and graph theoretic approaches. Here too, resulting maps
and networks must be clearly described. For example, if voxels A, B, and C appear in a
thresholded ICA map, one can correctly infer that the timeseries of these voxels share
common features. However it is not necessarily true that the timeseries of voxels A, B, and
C will be highly correlated, since each may contain unique features (potentially shared with
other voxels) that may comprise additional components. Thus, the precise meaning of maps
generated with each method will be different, and it is the author’s responsibility to
explicitly provide the correct interpretation for readers. In light of these cautionary notes, we

1Because a covariance matrix (e.g., a correlation matrix) is positive definite, the minimum for r3 is found when the smallest
eigenvalue of the 3-by-3 correlation matrix between A, B, and C is zero.
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add that seed-based maps can strongly resemble ICA components (e.g., Figure 1),
suggesting that these approaches, and many others, estimate similar phenomena.

Diagnose my classification
In Point 3 of their critique, Habeck and Moeller discuss the use of FC-based biomarkers for
the purpose of diagnostic classification. They recommend that innovative network measures
should be habitually compared to preexisting biomarkers using out-of-sample prediction.
We agree with this suggestion. Whenever possible, researchers should present comparative
assessments of biomarkers in a single study. Comparisons between studies can be
misleading since classification performance is affected by data quality, sampling variability,
and the selected classifier and optimization procedure. By comparing the performance of
several measures on the same set of data using the identical classification scheme,
researchers can obtain a clearer picture of the discriminative information in each measure,
and ultimately accelerate the development of better diagnostic tools. We note that in such
comparisons, novel FC measures need not perform “at least as well, or better, than what is
already available.” There are numerous scenarios where FC-based measures with equivalent
or inferior performance would be of great interest. Traditional measures may be more costly
or difficult to acquire or may expose subjects to possible harm, e.g., with radioactive tracers
or carcinogenic contrast agents that must be introduced intravenously. Safe and easily
acquired measures with relatively low discriminability can also be combined (potentially
with those from other modalities) to form a classifier with superior performance. Thus,
along with classification sensitivity and specificity, the feasibility of acquisition and possible
costs to subject safety must be considered when determining diagnostic potential.

Habeck and Moeller make a second point regarding the choice of FC measures for
classification purposes. Namely, that more complex or “derived” measures will have greater
“statistical noise” which may hinder predictive performance. Assuming the “statistical
noise” to which they refer is synonymous with estimation variance, we agree: it is generally
true that estimation of higher order statistics requires more observations2. As a useful rule of
thumb, J. W. Tukey suggests that the calculation of the kth moment ought to be based on at
least 5k observations (as found in (Sachs, 1992), p. 172). However, estimation uncertainty is
not directly related to the discriminative capabilities of a measure. Here, the appeal to
simplicity may be misguided.

In our opinion, a diagnostic classifier is valuable if it (1) has features that discriminate
between sub-populations of interest, (2) is sensitive and specific, and (3) can be replicated.
Robustness in itself is not of value in a classification framework; biomarkers must simply be
robust enough to replicate prediction across samples. The information contained in higher-
order statistics should be exploited for classification, not avoided because of a fear of greater
“statistical noise” or number of “processing steps.” While the authors offer Occam’s razor to
shorten the reins on otherwise unbridled enthusiasm for complexity, we note Karl Menger’s
Law Against Miserliness, which reminds us that “entities must not be reduced to the point of
inadequacy.” Ultimately, replication is the gold-standard of science. If researchers compare
and validate biomarkers with out-of-sample prediction, the most suitable classifiers will
emerge naturally, regardless of their complexity.

To illustrate the disassociation between biomarker complexity and predictive power, we
present a classification experiment complementing that of Habeck and Moeller. Following
their example, we computed simple measures from resting-state fMRI data to predict

2The technical details relate to relative rates of convergence of moments based on the law of large numbers and central limit theorem
(Hall, 1982).
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subjects’ age (young/old) and, in a separate sample, subjects’ diagnosis (healthy/
schizophrenia). We considered five minutes of resting-state data acquired on a 3T Trio Tim
Siemens scanner (TR = 2 sec) from 40 young subjects (age range 14–15 years, mean ± SD
age = 14.6 ± 0.50 years; 20 females) and 40 older subjects (40–55 years, 45.7 ± 3.8 years; 21
females). In addition, we considered data from 40 middle-aged subjects diagnosed with
schizophrenia (range 20–39 years, 9 females) and 40 healthy subjects that were matched to
the schizophrenia group for age and gender. Further details on data collection and
preprocessing can be found in (Allen et al., 2011). For each dataset we derived three
features: 1) a mean map, as in Habeck and Moeller, 2) a low frequency amplitude map,
computed by taking the Fourier transform of each voxel timeseries and averaging amplitude
in [0.01, 0.1] Hz, and 3) Fisher z-transformed seed-based correlation maps. Rather than a
single seed, we used a set of four seeds to identify two so-called task-positive networks
(FEF, MNI = [34, −17,54]; MT+, MNI = [−46, −69, −9]) and two task-negative networks
(mPFC, MNI = [−1,53, −3]; PCC, MNI = [−6, −52,43]), as described by Fox et al. (2005).
Before computing pairwise correlations, voxel timeseries were orthogonalized with respect
to ventricular, white matter, and motion parameter time series and bandpass filtered within
[0.01, 0.125 Hz].

For classification, we used a support vector machine (SVM) with a radial basis kernel.
Within each classification problem (i.e., age or diagnosis) SVMs were trained on 60% (48
subjects) and test performance was evaluated on the remaining 40% (32 subjects); training
and testing were iterated on 100 sub-population balanced samples. To reduce the high
number of potential features (i.e., ≥ 68,000 voxels), we used PCA for dimension reduction.
Thus, features were the subject scores for principal components of mean, amplitude, or seed
correlation maps. In the training phase, PC scores were ranked by two-sample t-statistics to
discriminate between groups. PC scores were then added to the SVM model in order of
decreasing t-statistic magnitude and the final set of features was determined as the model
with the maximum accuracy using 5-fold cross-validation of the training set. SVM model
parameters were optimized with a grid search via cross-validation, and the trained model
was used to predict age or diagnosis in the test set. Prediction performance was quantified
with the balanced accuracy rate, that is, the mean of the true positive rate and true negative
rate.

Balanced accuracy rates for prediction of age and diagnosis are shown in Figure 3.
Replicating the results of Habeck and Moeller we find that for age, mean maps give the best
prediction, followed by the low frequency amplitude and seed-based correlation maps. For
diagnosis, the trend is reversed with seed-based correlation maps outperforming mean and
amplitude maps. The opposing trends demonstrate unambiguously and empirically that
predictive power can be completely disassociated from feature complexity. Classifier
performance depends first and foremost on the discriminative information contained in its
features relevant to the sub-populations of interest. It is hardly surprising that large
differences in age can be very well predicted by the mean map since tissue relaxation
constants are known to change dramatically with age, e.g., due to iron-depositions in sub-
cortical nuclei (Siemonsen et al., 2008). Likewise, we expect biomarkers capturing patterns
of functional connectivity to perform better in the diagnosis of schizophrenia than simpler
measures since the pathophysiology of the disease is believed to involve impaired
coordination between regions rather than localized deficits (Andreasen et al., 1998). In
general, we should exploit prior information and carefully select features to enhance
classification.
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Think before you ink
As their final point, Habeck and Moeller remind us of Tufte’s principle to maximize the
“data-ink ratio” in graphical displays. Specifically, they make the observation that figures of
neuroimaging analyses often have remarkably low data-ink ratios due to the prominence of
visually appealing (though non-data) templates. We applaud Habeck and Moeller for
initiating a discussion on existing practices of data visualization and join them in advocating
for general adherence to Tufte’s ideas on maximizing data-ink, as well as his principles on
maximizing data-density and minimizing chartjunk (Tufte, 2001). We take this opportunity
to more deeply address the challenges associated with the effective display of neuroimaging
data, and how we might, as a field, works towards a set of improved standards.

Neuroscientists face a formidable challenge in concisely displaying high-dimensional and
spatially-related data. While low data-ink is regrettable, detailed structural templates serve
as an important coordinate reference frame for the functional data of interest. A template
provides information regarding physical boundaries and disambiguates localization in a
manner that labeling schemes and wordy descriptions cannot. Consider climate scientists,
who also work with highly multivariate data that span atmosphere and ocean strata. Just as
the physical borders of coastlines, rivers, and mountains provide context to understand
climate patterns, so too do gyri, sulci, and ventricles provide context for neuroimaging
observations. While we welcome improvements to the conventional display, it is difficult to
find an alternative for presenting high-dimensional information in a spatial context that
others can easily interpret. A table listing maximum activation coordinates loses spatial
relationships and activation extents, and other displays, such as bar charts, do not show the
same information. Overall, we believe the merits of a template display outweigh its
criticisms.

Generally, as much thought should go into data visualization (as a form of communication)
as went into experiment design and analysis. We have a duty to prioritize the clear,
undistorted presentation of the data, particularly given evidence that results presented on
brain images can be perceived as more persuasive than similar information presented in less
attractive formats (McCabe and Castel, 2008). For any display, researchers should ask, does
the image prioritize data content? Is the figure consistent with the model or hypothesis being
tested? Is the effect size accurately represented and could it be misinterpreted (such as when
using a nonlinear scale when a linear scale may be assumed)? Is the figure visually
appealing and accessible, encouraging inspection, or is it cluttered, disorganized, and
overwhelming? For map displays, do the selected colors in the figure provide a natural
interpretation and is the color map clearly defined? Furthermore, while rarely done,
associated uncertainty (confidence surfaces) can be represented in maps, for example, by
coding quantitative effects with hues and coding uncertainty with white or increasing alpha
(transparency) (Hengl and Toomanian, 2006). Our diligence in honest visual portrayal is
imperative both within the field and for the science reporters who take our neuroimaging
results to the public.

Ultimately, the responsibility for good figures lies with the authors, peer-reviewers, and
editors involved in the publication process. Together, we should agree upon a set of best
practices for creating visual displays and hold ourselves to these standards. Journals can
provide specific style recommendations beyond those affecting print quality. Researchers
regularly have questions about how to present information, for example, when should one
report the standard deviation versus the standard error of the mean3, and when is it

3(Holopigian and Bach, 2010) suggest using the standard deviation to describe a sample distribution and the standard error of the
mean for comparisons involving the mean. This applies for both graphical and numerical summaries.
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appropriate to use a “fancy” 3D chart for two-dimensional or categorical data4. Formal
responses to such frequently asked questions and explicit examples of different chart types
exemplifying Tufte’s principles will benefit the field as a whole.

Conclusion
By and large we agree with many of the criticisms raised by Habeck and Moeller. Some of
their points benefited from a more rigorous treatment, such as the interpretive challenges of
seed-based correlation maps (Point 2), the determination of a classifier’s diagnostic potential
(Point 3), and the call for higher standards of graphical visualization (Point 4). However
other criticisms, in our opinion, are unjustified. For instance, the behavioral relevance of
several FC networks has been demonstrated repeatedly (Point 1), and we feel that the
evidentiary standard to which they appeal has largely been met. Regarding the use of FC in
classification (Point 3), we agree that out-of-sample validation should be used regularly. Yet
we find there is no need for an initial “robustness analysis”. Potential classifiers should not
be prioritized or penalized by virtue of their complexity.

Based on this discussion, we feel that it may be too early for convergence to a set of best
practices in the context of FC analysis and display. However, it is easy to identify better
practices as those that make careful and thoughtful interpretations of written and graphical
results and help to steer the reader away from misinterpretation. As with Habeck and
Moeller, we hope our commentary contributes to the progress in this field and that, more
importantly, the dialogue continues.
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Figure 1.
A demonstration that the default mode network can be estimated regardless of experimental
paradigm (auditory oddball task or resting-state) or analysis method (GLM, ICA, or seed-
based). For seed-based analysis, the seed location is in posterior cingualte cortex (MNI=[−6,
−52, 43]). For both ICA decompositions, the model order is 20. For GLM results, we
display only negative activations to a novel–standard contrast.
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Figure 2.
From a seed voxel “A”, correlations with two arbitrary voxels “B” (r1 = corr(A,B)) and “C”
(r2 = corr(A,C)) are known, however the correlation between “B” and “C” is not. We plot
the minimum possible value for r3 = corr(B,C). Note that if r1×r2 ≥ 0.5 (above the bold arc),
then r3 ≥ 0.
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Figure 3.
Balanced accuracy rates for out-of-sample prediction of age (young/old, left) and diagnosis
(healthy/schizophrenia, right). The distribution of accuracy over 100 training/testing
iterations is depicted with a violin pot and overlayed boxplot.
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