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Abstract
The GU-rich element (GRE) was identified as a conserved sequence enriched in the 3′ UTR of
human transcripts that exhibited rapid mRNA turnover. In mammalian cells, binding to GREs by
the protein CELF1 coordinates mRNA decay of networks of transcripts involved in cell growth,
migration, and apoptosis. Depending on the context, GREs and CELF1 also regulate pre-mRNA
splicing and translation. GREs are highly conserved throughout evolution and play important roles
in development of organisms ranging from worms to man. In humans, abnormal GRE-mediated
regulation contributes to disease states and cancer. Thus, GREs and CELF proteins serve critical
functions in gene expression regulation and define an important evolutionarily conserved
posttranscriptional regulatory network.
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Introduction
The precise control of gene expression during cellular processes such as activation,
proliferation, differentiation, and development requires multiple levels of regulation,
including transcriptional and posttranscriptional mechanisms. Steady-state protein levels
within a cell correlate poorly with steady-state levels of mRNA, suggesting that large
numbers of transcripts undergo post-transcriptional regulation [1]. Cis-acting regulatory
sequences found in coding regions and in 3′ and 5′ untranslated regions (UTRs) of mRNA
allow selective recognition by RNA-binding proteins (RBPs) or microRNAs which direct
the fate of the mRNA by controlling posttranscriptional processes such as translation and
mRNA degradation (reviewed in references [2]•, [3], [4], [5]). Here, we review the GU-rich
element (GRE) as an example of an evolutionarily conserved cis element in mRNA that
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controls posttranscriptional gene expression networks through its interaction with the protein
CELF1.

Cis Elements in the Coordinate Regulation of mRNA Decay
Cis elements in mRNA function at posttranscriptional levels to coordinately regulate gene
expression through their interactions with microRNAs or RBPs. microRNAs are small
endogenous RNA molecules that bind to specific sequences in mRNA and regulate
translation and/or mRNA degradation during growth and development [6]•, [7]•, [8].
Overexpression of a specific microRNA can lead to the down-regulation of hundreds of
mRNAs suggesting that microRNAs play important roles in orchestrating mRNA
degradation. In addition to microRNAs, certain RBPs bind to specific mRNA sequences and
also coordinately regulate mRNA degradation and/or translation. The combinatorial
interplay between various miRNAs and RBPs that bind to a given mRNA transcript control
many developmental decisions in a variety of species [9], [10], [11].

Considerable insight into the mechanisms of coordinate mRNA degradation by cis elements
has come from studies involving the AU-rich element (ARE) and ARE-binding proteins.
The ARE is a well characterized cis-acting mRNA sequence that regulates mRNA decay by
binding to a variety of RBPs depending on the cellular context (for reviews see [12],[13]).
Several ARE-binding proteins, including AUF1 [14], BRF1 and TTP [15],[16],[17], and
KSRP [18], [19], promote ARE-mediated mRNA decay, whereas other ARE-binding
proteins such as HuR [20],[21], HuB, HuC, and HuD stabilize target mRNAs and stimulate
their translation [22]. ARE-binding proteins rapidly modulate the stability and/or translation
of mRNA during cell proliferation and development [23],[24],[25] •. For example, the
destabilizing protein TTP is induced following T cell activation and functions to mediate the
degradation of multiple ARE-containing transcripts that encode inflammatory mediators
such as interleukin-2 and interferon-gamma [26],[27]. TTP mediates the decay of ARE-
containing transcripts by recruiting components of the mRNA decay machinery to the
transcript [28],[16],[29]. This mechanism allows for the coordinate down-regulation of
multiple genes at the appropriate time following T cell activation. The characterization of
the ARE as a cis-acting regulator of mRNA decay led to a more systematic classification of
ARE-containing genes, including the construction of ARE databases [30],[31]•,[32] and
examination of the mRNA decay rates of ARE-containing transcripts using microarray
technology [33]. These methodologies enabled biologists to globally assess the
physiological significance of ARE-mediated mRNA decay regulation and to identify
coordinate gene expression networks regulated by AREs [34],[35],[13],[36]. This approach
can be applied to identify and understand other posttranscriptional regulatory networks.

In this review, we describe how knowledge about coordinate gene regulation by conserved
cis sequences in mRNA led to the identification of the GRE, which defines a
posttranscriptional regulatory network that has been conserved through evolution. By using
bioinformatic sequence motif discovery methods, in conjunction with gene expression
clustering, the GRE was identified as a highly conserved sequence that was enriched in the
3′ UTR of mRNA transcripts with short half lives and was shown to function in human cells
as a regulator of mRNA decay [37] ••. In human cells, the GRE is a target of CELF1, also
known as CUG-binding protein 1 (CUGBP1), a member of the CELF (CUGBP and
embryonically lethal abnormal vision-type RNA binding protein 3-like factors) family of
RNA-binding proteins. CELF1 has been implicated as a regulator of alternative splicing
[38],[39],[40], translation [41], deadenylation [42], and mRNA degradation [37]••,[43] ••.
Together, the GRE and CELF1 define an evolutionarily conserved posttranscriptional
regulatory network.
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GREs as Regulators of mRNA Decay
The GRE consensus sequence, UGUUUGUUUGU, was identified as a sequence that was
highly enriched in the 3′ UTR of short-lived transcripts expressed in primary human T cells
[37] ••. The GRE is a bona fide mRNA decay element because it conferred instability upon
reporter transcripts when it was inserted into their 3′ UTR. The CELF1 protein binds to
GREs, and knockdown of CELF1 leads to stabilization of GRE-containing transcripts,
indicating that CELF1 is essential for GRE-mediated mRNA decay. More recently, RNA-
immunoprecipitation (RNA-IP) was performed in cytoplasmic extracts from HeLa cells
using an anti-CELF1 antibody, and CELF1-associated transcripts were identified using
oligonucleotide microarrays. A bioinformatics search for conserved sequences in
immunoprecipitated transcripts, using the program BioProspector (and overrepresentation
algorithm), found the previously described UGUUUGUUUGU sequences as well as the
GU-repeat sequence UGUGUGUGUGU sequences to be overrepresented [43] ••.
Interestingly, the GU-repeat sequence was previously identified through systemic evolution
of ligands exponential enrichment (SELEX) as a CELF1-binding sequence [44], and CELF1
binds with high affinity to GU-repeat sequences [45],[46]. Insertion of a GU-repeat
sequence into the 3′ UTR of a reporter transcript conferred instability to the reporter
construct, demonstrating that this GU-repeat sequence functioned as a decay element [43].
Because the UGUUUGUUUGU sequence and the GU-repeat sequence both bound to
CELF1 and functioned as decay elements, the GRE was redefined to contain both of these
sequences ([43] ••, see Table 1). In myoblasts, a similar RNA-IP approach using an anti-
CELF1 antibody identified GRE hexamers to be significantly overrepresented in short-lived
transcripts that co-immunoprecipitated with CELF1 [47] ••. In this system, knockdown of
CELF1 led to the stabilization of certain GRE-containing targets, confirming that CELF1
regulated the stability of those transcripts. In Xenopus, target transcripts identified by RNA-
IP using an antibody against embryo deadenylation element binding protein (EDEN-BP), the
CELF1 orthologue, were enriched in GU-rich sequences, very similar to GREs and the 15
nucleotide consensus motif (UGU/UG)n was predicted to be a target of CELF1 [48]••,[49].
Overall, these studies revealed that GU-rich sequences function as mRNA decay elements
and serve as binding sites for CELF1 in a manner that has been conserved through
evolution.

Evolutionary Conservation of GREs and CELF Proteins
Translation and mRNA decay are often coupled with one another to control of gene
expression in response to environmental and developmental changes. In several organisms,
translation is regulated by deadenylation, which is also an early step in the mRNA decay
pathway. The deadenylation and translation of genes important in development are regulated
by GU-rich sequences and CELF proteins across diverse species [50],[51]. In Xenopus, the
CELF1 orthologue, EDEN-BP, binds to the GU-rich EDEN element, which functions as a
deadenylation signal in Xenopus embryos after fertilization and regulates translational
activation [52],[53]. In Drosophila, the CELF1 orthologue, Bru-3 (Bruno-3), binds
specifically to (UG)15 repeats to regulate translation of proteins involved in embryogenesis
and organogenesis [54], [55], [56]. The Zebrafish orthologue, Bru-l, also binds preferentially
to GU-rich RNAs and regulates development [57]. NMR-based solution studies
demonstrated that human CELF1 RNA recognition motifs bound specifically to RNA
UGUU or UGUG sequences [58]•,[59] •.

CELF proteins are essential post-transcriptional regulators of development in lower
organisms such as Xenopus where they regulate deadenylation and translation [60]. Whereas
GRE-mediated deadenylation often regulates translation in lower organisms, the
deadenylation is usually the first step leading to mRNA degradation in mammalian cells.
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The consequences of deadenylation differ in different organisms, although the mechanism of
deadenylation appears to be evolutionarily conserved. For example, a GU-rich sequence
from human c-jun mRNA substituted for the EDEN element as a deadenylation signal in
Xenopus extracts [61]. Furthermore, human CELF1, which has 88% identity with EDEN-
BP, was able to functionally substitute for EDEN-BP to mediate transcript deadenylation in
Xenopus extracts [53], suggesting that the deadenylation function of GU-rich sequences and
CELF proteins were conserved in diverse species. Human CELF1 was shown to associate
with poly A ribonuclease (PARN) and to stimulate poly A tail shortening in a cell-free assay
using S100 extracts from human cells, suggesting that CELF1 mediates mRNA decay
through deadenylation [42]. Thus, the deadenylation function of GREs and CELF1 is
conserved through evolution and may be responsible for coordinated mRNA decay in
mammalian cells.

In addition to regulating deadenylation and translation, CELF proteins regulate alternative
splicing in diverse species by binding to GU-rich or U-rich sequences (reviewed in [62] •,
[4]). CELF-mediated regulation of alternative splicing is necessary for maintenance of
normal muscle structure and function [63],[64],[65]. Recently, a RNA cross-linking
immunoprecipitation (RNA-CLIP) approach was used to identify 315 CELF1 RNA targets
in whole cell extracts from mouse hindbrain [66] ••. RNA binding targets for CELF1 were
enriched in UG repeat sequences with 64% of target sequences found in introns and 25%
found in 3′ UTR sequences. Thus, by binding to GU-rich sequences, CELF1 may function to
regulate pre-mRNA splicing, translation, and/or deadenylation/decay, depending on the
context.

Coordinate Regulation of the GRE/CELF1 Network in Cellular Activation
and Differentiation

In primary human T cells, GREs and CELF1 appear to regulate rapid changes in gene
expression following T cell receptor-mediated activation. Figure 1 shows a network of short-
lived GRE-containing transcripts that are involved in T cell signaling. Many of these GRE-
containing transcripts were expressed transiently following T cell activation and then rapidly
disappeared [67], suggesting that GRE-mediated mRNA decay plays a central role in the
coordinate down-regulation of these genes following T cell activation [37]••,[68] ••. Thus,
GRE-mediated mRNA decay appears to be an important regulatory step in the early stages
of T cell activation.

In mouse myoblasts, RNA-IP followed by microarray analysis identified a variety of CELF1
target transcripts that contained GU-rich sequences, including networks of transcripts that
regulate cell cycle and intracellular signaling cascades involved in intracellular transport and
cell survival (Figure 2) [47] ••. Many of these CELF1 target transcripts were found to be
significantly stabilized in CELF1 knockout myoblasts [47] ••, suggesting CELF1 mediates
the decay of a network of transcripts that may be involved in myoblast growth and
differentiation. Interestingly, many of the CELF1 target transcripts in mouse myobasts were
also found to be target transcripts of EDEN-BP in Xenopus tropicalis extracts (Figure 2),
providing further evidence that GRE/CELF1 posttranscriptional networks were conserved
through evolution.

The GRE/CELF1 Posttranscriptional Network in Human Diseases
CELF1 and its GRE-containing target transcripts define posttranscriptional regulatory
networks that functions to control cellular growth, activation, and differentiation.
Disruptions in GRE-mediated mRNA regulation may play a role in developmental
pathology [69],[62] or cancer. CELF1 was found in a transposon-based genetic screen in
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mice to be one of the top ten genes to drive tumorigenesis if mutated and/or dysregulated
[70] •, suggesting that CELF1/GRE networks may be regulated abnormally in cancer. RNA-
IP followed by microarray analysis to identify CELF 1 target transcripts in human Hela cells
(carcinoma cell line), revealed that numerous target transcripts play roles in processes
important for cancer development including cell growth, apoptosis, and cell migration
[43] ••. For example, CELF1 targets in HeLa cells included numerous transcripts encoding
regulators of G-protein signaling pathway and G-protein coupled receptor ligands (Figure
3). These pathway activate/or repress cell-cell interaction, cell migration and invasion, and
thereby play important roles in cancer development and metastasis. Thus, CELF1/GRE
networks may be aberrantly regulated in malignant cells.

Conclusions
Posttranscriptional regulation of gene expression is controlled through a highly dynamic and
combinatorial interaction of RBPs, microRNAs, and mRNA that forms complex
ribonucleoprotein particles. Sequences and structures within a given mRNA species may
interact with numerous regulatory proteins and microRNAs that function together to
determine the fate of the transcript. Networks of transcripts may share regulatory sequences,
such as the GRE, that allow for coordinated expression during cellular activation or
development. Coordination of mRNA degradation by the GRE in mammalian cells depends
on the CELF1 protein, but further work is needed to understand the mechanisms by which
CELF1 mediates mRNA decay and how this process responds to environmental signals
during cellular activation and differentiation. A better understanding of the molecular
mechanisms through which GREs and CELF1 regulate mRNA decay and how this process
is disrupted in disease states such as malignancy may provide new avenues for therapeutic
modalities.
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Figure 1. T-cell receptor signaling pathways regulated by GREs
The network diagram depicts the coordinate regulation of GRE-containing transcripts
involved in T cell receptor signaling. Transcripts in bold are GRE-containing. Transcripts in
grey were identified as CELF1 targets in HeLa cells by RNA-IP [43].
Transcripts in green represent short-lived GRE-containing transcripts expressed in primary
human T cells [33], [37]. Transcripts labeled with an asterisk exhibited changes in steady
state levels following T-cell receptor stimulation [33]. This network diagram was built using
Ingenuity Pathway Assistant Software.
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Figure 2. A posttranscriptional network of CELF1 target transcripts in mouse myoblasts
Transcripts shown in orange are CELF1 targets in mouse myoblasts [47]. Transcripts shown
in red are CELF1 targets in mouse myoblasts and are also targets of EDEN-BP in Xenopus
tropicalis extracts [48]. Transcripts, marked with asterisk (*), were stabilized in CELF1
knockout myoblasts. This network diagram was built using Ingenuity Pathway Assistant
Software.
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Figure 3. A posttranscriptional network of CELF1 target transcripts in malignant cells
This network represents transcripts that involved in G protein coupled receptor signaling
pathways. Transcripts depicted in tan represent GRE-containing CELF1 target transcripts in
HeLa cells [43]. This network diagram was built using Ingenuity Pathway Assistant
Software.
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Table 1

GU-rich motifs known to bind CELF1.

Sequence Assay Reference

UGUUUGUUUGU In vitro binding [37]

UGUGUGUGUGU RNA-IP [43]

(UGU/C)n SELEX [44]

(GUU/GUG)n RNA-IP [48]

UGUUGU, UUUUUU RNA-IP [47]

GU-rich, U-rich RNA-CLIP [66]

UGU/(U/G)n RRM Crystal Structure [58]

(UG)15 Surface Plasmon Resonance [46]
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